Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence from personal ornaments suggest nine distinct cultural groups between 34,000 and 24,000 years ago in Europe

Abstract

Mechanisms governing the relationship between genetic and cultural evolution are the subject of debate, data analysis and modelling efforts. Here we present a new georeferenced dataset of personal ornaments worn by European hunter-gatherers during the so-called Gravettian technocomplex (34,000–24,000 years ago), analyse it with multivariate and geospatial statistics, model the impact of distance on cultural diversity and contrast the outcome of our analyses with up-to-date palaeogenetic data. We demonstrate that Gravettian ornament variability cannot be explained solely by isolation-by-distance. Analysis of Gravettian ornaments identified nine geographically discrete cultural entities across Europe. While broadly in agreement with palaeogenetic data, our results highlight a more complex pattern, with cultural entities located in areas not yet sampled by palaeogenetics and distinctive entities in regions inhabited by populations of similar genetic ancestry. Integrating personal ornament and biological data from other Palaeolithic cultures will elucidate the complex narrative of population dynamics of Upper Palaeolithic Europe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material used for Gravettian personal ornaments.
Fig. 2: Seriation analysis of the bead database for Gravettian occupation sites.
Fig. 3: Seriation analysis of the bead database of Gravettian occupation sites attributable to Gravettian phases (Early, Middle and Late).
Fig. 4: A PCoA and neighbour-joining analysis of the bead database for Gravettian occupation sites.
Fig. 5: Seriation analyses of the bead database for Gravettian burial sites.
Fig. 6: A PCoA and neighbour-joining analysis of the bead database for Gravettian burial sites.
Fig. 7: Neighbour-net analyses of the Gravettian occupation and burial sites.
Fig. 8: Map of Europe showing the location of human remains attributed to the Gravettian.

Similar content being viewed by others

Data availability

The data used for the statistical tests can be found in the Supplementary tables.

Code availability

Code used is available from the corresponding author upon request and is detailed in the Supplementary Information.

References

  1. Jordan, P. Technology as Human Social Tradition: Cultural Transmission Among Hunter-Gatherers Vol. 7 (Univ. California Press, 2014).

  2. O’Brien, M. J. & Lyman, R. L. Evolutionary archeology: current status and future prospects. Evol. Anthropol. 11, 26–36 (2002).

    Article  Google Scholar 

  3. Pettitt, P. The Palaeolithic Origins of Human Burial (Routledge, 2013).

  4. Bar-Yosef, O. & Kuhn, S. L. The big deal about blades: laminar technologies and human evolution. Am. Anthropol. 101, 322–338 (1999).

    Article  Google Scholar 

  5. Bon, F. At the crossroad. Palethnol. Archéol. Sci. Hum. https://doi.org/10.4000/palethnologie.680 (2015).

  6. Kuhn, S. L. et al. The early upper paleolithic occupations at Üçağızlı cave (Hatay, Turkey). J. Hum. Evol. 56, 87–113 (2009).

    Article  PubMed  Google Scholar 

  7. Bennett, E. A. et al. The origin of the Gravettians: genomic evidence from a 36,000-year-old Eastern European. Preprint at bioRxiv https://doi.org/10.1101/685404 (2019).

  8. Fu, Q. et al. The genetic history of ice age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Posth, C. et al. Paleogenomics of upper paleolithic to neolithic European hunter-gatherers. Nature 615, 117–126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villalba-Mouco, V. et al. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat. Ecol. Evol. 7, 597–609 (2023).

    PubMed  PubMed Central  Google Scholar 

  11. Eisenmann, S. et al. Reconciling material cultures in archaeology with genetic data: the nomenclature of clusters emerging from archaeogenomic analysis. Sci. Rep. 8, 13003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Riede, F. in Investigating Archaeological Cultures: Material Culture, Variability, and Transmission (eds Roberts, B. W. & Vander Linden, M.) 245–270 (Springer, 2011).

  13. Riede, F., Hoggard, C. & Shennan, S. Reconciling material cultures in archaeology with genetic data requires robust cultural evolutionary taxonomies. Palgrave Commun. 5, 55 (2019).

    Article  Google Scholar 

  14. Joyce, R. A. Archaeology of the body. Annu. Rev. Anthropol. 34, 139–158 (2005).

    Article  Google Scholar 

  15. Plog, S. E. & Richman, K. Symbols in action: ethnoarchaeological studies of material culture. Ian Hodder. Am. Anthropol. 85, 718–720 (1983).

  16. Alvarez-Fernandez, E. Los Objetos de Adorno-colgantes del Paleolítico Superior y del Mesolítico en la Cornisa Cantábrica y en el Valle Del Ebro: Una Visión Europea (Univ. Salamanca, 2006).

  17. Rigaud, S., Manen, C. & García-Martínez de Lagrán, I. Symbols in motion: flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean. PLoS ONE 13, p.e0196488 (2018).

    Article  Google Scholar 

  18. Rigaud, S., d’Errico, F. & Vanhaeren, M. Ornaments reveal resistance of North European cultures to the spread of farming. PLoS ONE 10, e0121166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sehasseh, E. M. et al. Early middle stone age personal ornaments from Bizmoune Cave, Essaouira, Morocco. Sci. Adv. 7, eabi8620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vanhaeren, M. & d’Errico, F. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J. Anthropol. Sci. 33, 1105–1128 (2006).

    Google Scholar 

  21. Aubry, T., Santos, A. T. & Martins, A. Côa Symposium. Novos olhares sobre a arte paleolítica. New perspectives on palaeolithic art. Repositório Comum http://hdl.handle.net/10400.26/38285 (2021).

  22. Bouzouggar, A. et al. 82,000-year-old shell beads from North Africa and implications for the origins of modern human behaviour. Proc. Natl Acad. Sci. USA 104, 9964–9969 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. d’Errico, F., Henshilwood, C., Vanhaeren, M. & Van Niekerk, K. Nassarius kraussianus shell beads from Blombos Cave: evidence for symbolic behaviour in the Middle Stone Age. J. Hum. Evol. 48, 3–24 (2005).

    Article  PubMed  Google Scholar 

  24. Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    Article  PubMed  Google Scholar 

  25. Miller, J. M. & Wang, Y. V. Ostrich eggshell beads reveal 50,000-year-old social network in Africa. Nature 601, 234–239 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Iliopoulos, A. Early body ornamentation as ego-culture: tracing the co-evolution of aesthetic ideals and cultural identity. Semiotica 2020, 187–233 (2020).

    Article  Google Scholar 

  27. Janowski, M. in Beads and Bead Makers: Gender, Material Culture and Meaning (eds Sciama, L. D. & Eicher, J. B.) 213–246 (Berg Publishers, 1998).

  28. Weiner, A. B. The Trobrianders of Papua New Guinea (Holt, Rinehart and Winston, 1988).

  29. Cangelosi, A. Evolution of communication and language using signals, symbols, and words. IEEE Trans. Evol. Comput. 5, 93–101 (2001).

    Article  Google Scholar 

  30. Kuhn, L. S. & Stiner, M. C. Paleolithic ornaments: implications for cognition, demography and identity. Diogenes 214, 40–48 (2007).

    Article  Google Scholar 

  31. Newell, R. R., Kielman, D., Constandse-Westermann, T. S., van der Sanden, W. A. B. & van Gijn, A. An Inquiry into the Ethnic Resolution of Mesolithic Regional Groups. The Study of Their Decorative Ornaments in Time and Space (Brill, 1990).

  32. Hamilton, M. J., Milne, B. T., Walker, R. S., Burger, O. & Brown, J. H. The complex structure of hunter–gatherer social networks. Proc. R. Soc. B 274, 2195–2203 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  33. d’Errico, F. & Vanhaeren, M. in Upper Palaeolithic Mortuary Practices: Reflection of Ethnic Affiliation, Social Complexity, and Cultural Turnover (eds Renfrew, C. et al.) 45–62 (Cambridge Univ. Press, 2015).

  34. Jordan, P. & Shennan, S. Cultural transmission, language, and basketry traditions amongst the California Indians. J. Anthropol. Archaeol. 22, 42–74 (2003).

    Article  Google Scholar 

  35. Kovacevic, M., Shennan, S., Vanhaeren, M., d’Errico, F. & Thomas, M. G. in Learning Strategies and Cultural Evolution During the Palaeolithic (eds Mesoudi, A. & Aoki, K.) 103–120 (Springer, 2015).

  36. Lycett, S. J. Confirmation of the role of geographic isolation by distance in among-tribe variations in beadwork designs and manufacture on the High Plains. Archaeol. Anthropol. Sci. 11, 2837–2847 (2019).

    Article  Google Scholar 

  37. Shennan, S. Genes, Memes, and Human History: Darwinian Archaeology and Cultural Evolution (Thames & Hudson, 2002).

  38. Shennan, S. J., Crema, E. R. & Kerig, T. Isolation-by-distance, homophily, and ‘core’ vs. ‘package’ cultural evolution models in Neolithic Europe. Evol. Hum. Behav. 36, 103–109 (2015).

    Article  Google Scholar 

  39. Hardy, O. J. & Vekemans, X. Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83, 145–154 (1999).

    Article  PubMed  Google Scholar 

  40. Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kozłowski, J. The origin of the Gravettian. Quat. Int. 359, 3–18 (2015).

    Article  Google Scholar 

  42. Taller, A. & Conard, N. J. Were the Technological Innovations of the Gravettian Triggered by Climatic Change? Insights from the Lithic Assemblages from Hohle Fels, SW Germany. PaleoAnthropology 2022, 82–108 (2022).

  43. Wilczyński, J. et al. New radiocarbon dates for the late Gravettian in eastern Central Europe. Radiocarbon 62, 243–259 (2020).

    Article  Google Scholar 

  44. Broglio, A. & Dalmeri, G. Pitture Paleolitiche Nelle Prealpi Venete: Grotta di Fumane e Riparo Dalmeri Vol. 9 (Museo Civico di Storia Naturale, 2005).

  45. de Sonneville-Bordes, D. L’évolution du Paléolithique supérieur en Europe occidentale et sa signification. Bull. Soc. Préhist. Française 63, 3–34 (1966).

    Google Scholar 

  46. Hahn, J. Aurignacien, das ältere Jungpaläolithikum in Mittel-und Osteuropa Vol. 9 (Böhlau, 1977).

  47. Teyssandier, N. L’émergence du Paléolithique supérieur en Europe: mutations culturelles et rythmes d’évolution. PALEO https://doi.org/10.4000/paleo.702 (2007).

  48. Zilhão, J. & d’Errico, F. The Chronology of the Aurignacian and of the Transitional Technocomplexes. Dating, Stratigraphies, Cultural Implications (Instituto Português de Arqueologia, 2003).

  49. Calvo, A. & Arrizabalaga, A. Piecing together a new mosaic: Gravettian lithic resources and economic territories in the Western Pyrenees. Archaeol. Anthropol. Sci. 12, 282 (2020).

    Article  Google Scholar 

  50. Conard, N. J. & Moreau, L. Current research on the Gravettian of the Swabian Jura. Mitt. Ges. Urgesch. 13, 29–57 (2004).

    Google Scholar 

  51. Marreiros, J. & Bicho, N. Lithic technology variability and human ecodynamics during the Early Gravettian of Southern Iberian Peninsula. Quat. Int. 318, 90–101 (2013).

    Article  Google Scholar 

  52. Moreau, L. Geißenklösterle. The Swabian Gravettian in its European context: Geißenklösterle. Das schwäbische Gravettien im europäischen Kontext. Quartär 57, 79–93 (2010).

    Google Scholar 

  53. Polanská, M., Hromadová, B. & Sázelová, S. The Upper and Final Gravettian in Western Slovakia and Moravia. Different approaches, new questions. Quat. Int. 581–582, 205–224 (2021).

    Article  Google Scholar 

  54. Vignoles, A. et al. Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32–28 ky cal. BP) in France. Quat. Sci. Rev. 253, 106766 (2021).

  55. Delporte, H. L’image de la femme dans l’art préhistorique. Rev. Archeol. Centre France 18, 183–184 (1979).

  56. Tripp, A. in Cultural Phylogenetics: Concepts and Applications in Archaeology (ed. Mendoza Straffon, L.) 179–202 (Springer, 2016).

  57. Zilhão, J. & Trinkaus, E. (eds) Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo Do Lagar Velho and Its Archaeological Context (Min. da Cultura, 2002).

  58. Klaric, L., Guillermin, P. & Aubry, T. Des armatures variées et des modes de production variable. Réflexions à partir de quelques exemples issus du Gravettien d’Europe occidentale (France, Portugal, Allemagne). Gall. Prehist. 51, 113–154 (2009).

    Article  Google Scholar 

  59. Laville, H. & Rigaud, J.-P. The Perigordian V industries in Périgord: typological variations, stratigraphy and relative chronology. World Archaeol. 4, 330–338 (1973).

    Article  Google Scholar 

  60. Rigaud, J.-P., Dibble, H. & Monte-White, A. in Upper Pleistocene Prehistory of Western Eurasia (eds Dibble, H. L. & Monte-White, A.) 387–396 (Univ. Pennsylvania Museum of Archaeology and Anthropology, 1988).

  61. Hoffecker, J. F. The Eastern Gravettian ‘Kostenki culture’ as an Arctic adaptation. Anthropol. Pap. Univ. Alsk. 2, 115–136 (2002).

    Google Scholar 

  62. Johnson, R. J., Lanaspa, M. A. & Fox, J. W. Upper Paleolithic figurines showing women with obesity may represent survival symbols of climatic change. Obesity 29, 11–15 (2021).

    Article  PubMed  Google Scholar 

  63. Weber, G. W. et al. The microstructure and the origin of the Venus from Willendorf. Sci. Rep. 12, 2926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bradtmöller, M., Marreiros, J., Pereira, T. & Bicho, N. Lithic technological adaptation within the Gravettian of the Iberian Atlantic region: results from two case studies. Quat. Int. 406, 3–24 (2016).

    Article  Google Scholar 

  65. Kozłowski, J. K. in The Lithic Raw Material Sources and the Interregional Human Contacts in the Northern Carpathian Regions (ed. Mester, Z.) 63–85 (Polish Academy of Arts and Sciences, Institute of Archaeological Sciences of the Eotvos Lorand University Budapest, 2013).

  66. d’Errico, F. et al. Zhoukoudian Upper Cave personal ornaments and ochre: rediscovery and reevaluation. J. Hum. Evol. 161, 103088 (2021).

    Article  PubMed  Google Scholar 

  67. Kassam, A. Traditional ornament: some general observations. Kenya Past Present https://hdl.handle.net/10520/AJA02578301_68 (1988).

  68. Fernández, E. A. La explotación de los moluscos marinos en la Cornisa Cantábrica durante el Gravetiense: primeros datos de los niveles E y F de La Garma A (Omoño, Cantabria). Zephyrvs https://revistas.usal.es/uno/index.php/0514-7336/article/view/5567 (2007).

  69. d’Errico, F. & Rigaud, S. Crache perforée dans le Gravettien du sire (Mirefleurs, Puy-de-Dôme). PALEO https://doi.org/10.4000/paleo.2172 (2011).

  70. d’Errico, F. & Vanhaeren, M. in Death Shall Have No Dominion: The Archaeology of Mortality and Immortality, a Worldwide Perspective (eds Renfrew, C. et al.) 35–48 (Cambridge Univ. Press, 2012).

  71. Taborin, Y. in Hunters of the Golden Age. The Mid Upper Palaeolithic of Eurasia 30,000–20,000 BP (eds Roebroeks, W. et al.) 135–142 (Cambridge Univ. Press, 2000).

  72. Lisá, L. et al. The role of abiotic factors in ecological strategies of Gravettian hunter–gatherers within Moravia, Czech Republic. Quat. Int. 294, 71–81 (2013).

    Article  Google Scholar 

  73. Wilczyński, J. et al. Population mobility and lithic tool diversity in the Late Gravettian – the case study of Lubná VI (Bohemian Massif). Quat. Int. 587, 103–126 (2021).

    Article  Google Scholar 

  74. Chapais, B. in Mind the Gap (eds Kappeler, P. & Silk, J.) https://doi.org/10.1007/978-3-642-02725-3_2 19-51 (Springer, 2010).

  75. Walker, R. S., Hill, K. R., Flinn, M. V. & Ellsworth, R. M. Evolutionary history of hunter–gatherer marriage practices. PLoS ONE 6, e19066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beresford-Jones, D. et al. Rapid climate change in the Upper Palaeolithic: the record of charcoal conifer rings from the Gravettian site of Dolní Vĕstonice, Czech Republic. Quat. Sci. Rev. 30, 1948–1964 (2011).

    Article  Google Scholar 

  77. Haws, J. et al. Human adaptive responses to climate and environmental change during the Gravettian of Lapa do Picareiro (Portugal). Quat. Int. 587588, 4–18 (2020).

  78. Maier, A. Population and settlement dynamics from the Gravettian to the Magdalenian. Mitt. Ges. Urgesch. 26, 83–101 (2017).

    Google Scholar 

  79. Bradley, R. The destruction of wealth in later prehistory. Man 17, 108–122 (1982).

  80. Testart, A. Des Dons et des Dieux. Anthropologie Religieuse et Sociologie Comparative (ERRANCE1, 2006).

  81. Riel-Salvatore, J. & Gravel-Miguel, C. in The Oxford Handbook of the Archaeology of Death and Burial (eds Stutz, L. N. & Tarlow, S.) Ch. 17 (Oxford Univ. Press, 2013).

  82. Oliva, M. Palaeolithic and Mesolithic Moravia Vol. 11 (Moravian Museum, 2005).

  83. Kacki, S. et al. Complex mortuary dynamics in the Upper Paleolithic of the decorated Grotte de Cussac, France. Proc. Natl Acad. Sci. USA 117, 14851–14856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duarte, C. et al. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Natl Acad. Sci. USA 96, 7604–7609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Einwögerer, T. et al. Upper Palaeolithic infant burials. Nature 444, 285 (2006).

    Article  PubMed  Google Scholar 

  86. Sinitsyn, A. A. Earliest Upper Palaeolithic layers at Kostenki 14 (Markina gora): preliminary results of the 1998–2001 excavations. BAR Int. Ser. 1240, 181–190 (2004).

    Google Scholar 

  87. Wilczyński, J. et al. A mid Upper Palaeolithic child burial from Borsuka Cave (southern Poland). Int. J. Osteoarchaeol. 26, 151–162 (2016).

    Article  Google Scholar 

  88. Abramovitch, H. Death, anthropology of. Int. Encycl. Soc. Behav. Sci. https://doi.org/10.1016/B978-0-08-097086-8.12052-5 (2015).

  89. Formicola, V., Pontrandolfi, A. & Svoboda, J. The Upper Paleolithic triple burial of Dolní Věstonice: pathology and funerary behavior. Am. J. Phys. Anthropol. 115, 372–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Grosman, L., Munro, N. D. & Belfer-Cohen, A. A 12,000-year-old Shaman burial from the southern Levant (Israel). Proc. Natl Acad. Sci. USA 105, 17665–17669 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaufman, S. R. & Morgan, L. M. The anthropology of the beginnings and ends of life. Annu. Rev. Anthropol. 34, 317–341 (2005).

    Article  Google Scholar 

  92. Petru, S. Identity and fear–burials in the Upper Palaeolithic. Doc. Praehist. 45, 6–13 (2018).

    Article  Google Scholar 

  93. Formicola, V. & Buzhilova, A. P. Double child burial from Sunghir (Russia): pathology and inferences for Upper Paleolithic funerary practices. Am. J. Phys. Anthropol. 124, 189–198 (2004).

    Article  PubMed  Google Scholar 

  94. Trinkaus, E. & Buzhilova, A. P. Diversity and differential disposal of the dead at Sunghir. Antiquity 92, 7–21 (2018).

    Article  Google Scholar 

  95. Bicho et al. Early Upper Paleolithic colonization across Europe: time and mode of the Gravettian diffusion. PLoS ONE 12, e0178506 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bocquet-Appel, J.-P., Demars, P.-Y., Noiret, L. & Dobrowsky, D. Estimates of Upper Palaeolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).

    Article  Google Scholar 

  97. Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. Radiocarbon evidence for the Lateglacial human recolonisation of northern Europe. Proc. Prehist. Soc. 63, 25–54 (1997).

  98. Ramsey, C. B. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article  Google Scholar 

  99. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article  CAS  Google Scholar 

  100. Dubin, L. S. The History of Beads: From 30,000 B.C. to the Present (Thames and Hudson, 1987).

  101. Erikson, J. M. The Universal Bead (W.W. Norton, 1969).

  102. Taborin, Y. La parure en coquillage au Palaéolithique. Gall. Prehist. https://www.persee.fr/doc/galip_0072-0100_1993_sup_29_1 (1993).

  103. Whallon, R. & Brown, J. Essays on Archaeological Typology (Center for American Archaeology Press, 1982).

  104. Adams, W. Y. & Adams, E. W. Archaeological Typology and Practical Reality: A Dialectical Approach to Artefact Classification and Sorting (Cambridge Univ. Press, 1991).

  105. Whittaker, J. C., Caulkins, D. & Kamp, K. A. Evaluating consistency in typology and classification. J. Archaeol. Method Theory 5, 129–164 (1998).

    Article  Google Scholar 

  106. Lartet, E. & Christy, H. Cavernes du Périgord: Objets Gravés et Sculptés des Temps Pré-historiques dans L’europe Occidentale (Revue Archéologique, 1864).

  107. Riviere, É. Note sur l’homme fossile des cavernes de Baoussé-Roussé (Italie), dites grottes de Menton. Bull. Mem. Soc. Anthropol. Paris 7, 584–589 (1872).

  108. d’Errico, F. & Villa, P. Holes and grooves: the contribution of microscopy and taphonomy to the problem of art origins. J. Hum. Evol. 33, 1–31 (1997).

    Article  PubMed  Google Scholar 

  109. Liiv, I. Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. 3, 70–91 (2010).

    Article  Google Scholar 

  110. Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 4 (2001).

    Google Scholar 

  111. Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Anderson, M. J. Permutational Multivariate Analysis of Variance (Department of Statistics, Univ. Auckland, 2005).

  113. McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

  114. Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579 (1901).

    Google Scholar 

  115. Rogers, D. S. & Ehrlich, P. R. Natural selection and cultural rates of change. Proc. Natl Acad. Sci. USA 105, 3416–3420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shennan, S. J. & Bentley, R. A. in Cultural Transmission and Archaeology: Issues and Case Studies (ed. O'Brien, M. J.) 164–177 (Society for American Archaeology, 2008).

  117. Ricotta, C., Podani, J. & Pavoine, S. A family of functional dissimilarity measures for presence and absence data. Ecol. Evol. 6, 5383–5389 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bathke, A. C. et al. Testing mean differences among groups: multivariate and repeated measures analysis with minimal assumptions. Multivar. Behav. Res. 53, 348–359 (2018).

    Article  Google Scholar 

  119. Gower, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).

    Article  Google Scholar 

  120. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  121. Evans, J. D., Cann, J. R., Renfrew, A. C., Cornwall, I. W. & Western, A. C. Excavations in the Neolithic settlement of Knossos, 1957-60. Part I. Annu. Br. Sch. Athens 59, 132–240 (1964).

    Article  Google Scholar 

  122. Collard, M., Shennan, S. J., Buchanan, B. & Bentley, R. A. in Handbook of Archaeological Theories (eds Bentley, R. A. et al.) 203–223 (Altamira Press, 2008).

  123. Gray, R. D., Greenhill, S. J. & Ross, R. M. The pleasures and perils of Darwinizing culture (with phylogenies). Biol. Theory 2, 360–375 (2007).

    Article  Google Scholar 

  124. Steele, J., Jordan, P. & Cochrane, E. Evolutionary approaches to cultural and linguistic diversity. Phil. Trans. R. Soc. B 365, 3781–3785 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gray, R. D., Bryant, D. & Greenhill, S. J. On the shape and fabric of human history. Phil. Trans. R. Soc. B 365, 3923–3933 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Greenhill, S. J., Currie, T. E. & Gray, R. D. Does horizontal transmission invalidate cultural phylogenies? Proc. R. Soc. B 276, 2299–2306 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bryant, D. & Moulton, V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Bryant, D., Filimon, F. & Gray, R. D. in The Evolution of Cultural Diversity (eds Mace, R. et al.) 77–93 (Routledge, 2016).

  129. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Holland, B. R., Huber, K. T., Dress, A. & Moulton, V. δ plots: a tool for analyzing phylogenetic distance data. Mol. Biol. Evol. 19, 2051–2059 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Meirmans, P. G. The trouble with isolation by distance. Mol. Ecol. 21, 2839–2846 (2012).

    Article  PubMed  Google Scholar 

  132. Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 

  133. Borcard, D. & Legendre, P. Is the Mantel correlogram powerful enough to be useful in ecological analysis? A simulation study. Ecology 93, 1473–1481 (2012).

    Article  PubMed  Google Scholar 

  134. Hammer, Ø. Spectral analysis of a Plio-Pleistocene multispecies time series using the Mantel periodogram. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 373–377 (2007).

    Article  Google Scholar 

  135. Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80, 107–138 (1989).

    Article  Google Scholar 

  136. Gallardo-Cruz, J. A., Meave, J. A., Pérez-García, E. A. & Hernández-Stefanoni, J. L. Spatial structure of plant communities in a complex tropical landscape: implications for β-diversity. Community Ecol. 11, 202–210 (2010).

    Article  Google Scholar 

  137. Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (CRC Press, 2015).

  138. Legendre, P. Comparison of permutation methods for the partial correlation and partial Mantel tests. J. Stat. Comput. Simul. 67, 37–73 (2000).

    Article  Google Scholar 

  139. Smouse, P., Long, J. & Sokal, R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).

    Article  Google Scholar 

  140. Baker, J., Rigaud, S., Vanhaeren, M. & d’Errico, F. Cro-Magnon personal ornaments revisited. PALEO 32, 40–73 (2022).

  141. Zilhão, J. et al. Revisiting the Middle and Upper Palaeolithic archaeology of Gruta do Caldeirão (Tomar, Portugal). PLoS ONE 16, e0259089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. QGIS Geographic Information System (QGIS.org., 2020).

  143. ETOPO 2022 15 Arc-Second Global Relief Model (NOAA National Centers for Environmental Information, accessed 25 August 2023); https://doi.org/10.25921/fd45-gt74

  144. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Barraquand and F. Santos for useful advice regarding the statistical analyses. This work was supported by the French National Research Agency under the IDEX Bordeaux NETAWA Emergence project No. ANR-10-IDEX-03-02 ‘Out of the Core: Exploring social NETworks at the dawn of Agriculture in Western Asia 10,000 years ago’ (S.R., D.P.), the CNRS Momentum Project (S.R., D.P.), the ERC Synergy QUANTA (Grant No. 951388) (F.d’E., L.A.C.), the University of Bordeaux ‘Grand Programme de Recherche’ ‘Human Past’ (F.d’E., S.R., D.P.), the Research Council of Norway through its Centres of Excellence funding scheme, SFF Centre for Early Sapiens Behaviour (SapienCE), project number 262618 (F.d’E.), the Talents Programme (Grant No. 191022_001) (F.d’E.) and the ‘Projet Collectif de Recherche’ ‘Gravettien’ (J.B., S.R., F.d’E.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.B., S.R. and F.d’E. wrote the paper. J.B., S.R., D.P., L.A.C. and F.d’E. conceived and designed the experiments. J.B., D.P. and L.A.C. performed the experiments. J.B., S.R., D.P., L.A.C. and F.d’E. analysed the data.

Corresponding author

Correspondence to Jack Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map showing the locations of Gravettian occupation and burial sites containing personal ornaments.

a) Geographical distribution of the Gravettian burials yielding personal ornaments. BS1, Krems-Wachtberg; BS2, Lagar Velho; BS3, Paviland; BS4, Arene Candide; BS5, Kostenki 14; BS6, Ostuni; BS7, Fanciulli; BS8, Paglicci; BS9, Dolni Vestonice; BS10, Brno; BS11, Cro-Magnon; BS12, Baousso da Torre; BS13, Barma Grande; BS14, Grotta del Caviglione; BS15, Veneri Parabita; BS16, Predmosti; BS17, Borsuka Cave. b) Geographical distribution of the Gravettian occupation sites yielding personal ornaments in Europe with the Dordogne region enlarged at the bottom right (c). S1, Poiana Ciresului-Piatra Neamt; S2, Kostenki 17; S3, Foradada Cave; S4, Riparo Mochi; S5, Franchthi Cave; S6, Mitoc-Malu Galben; S7, Brinzeni Cave; S8, Duruitoarea Veche Cave; S9, Cosauti; S10, Climauti; S11, Molodova V; S12, Gargas Cave; S13, Brillenhohle; S14, Geisenklosterle; S15, Hohle Fels; S16, Ollersdorf/Heidenberg; S17, Mainz-Linsenberg; S18, Nerja Cave; S31, Isturitz Cave; S32, Abri des Pecheurs; S33, Baume Perigaud; S34, Pushkari; S35, Grotta della Serratura; S36, Vale Boi; S37, El Cuco; S38, Sire; S39, Tibrinu; S40, Gura Cheii-Rasnov Cave; S41, Garma A; S42, Cova Gran de Santa Linya; S43, La Grotte du Figuier; S44, Cova de les Cendres; S45, Cova del Comte; S47, Grub-Kranawetberg; S48, Grotte du Renne; S49, Krakow Spadzista; S50, Grotte du Pape; S52, Kostenki 21; S53, Kostenki 8; S54, Kostenki 4; S55, Aitzbitarte; S56, Amiens-Renancourt; S57, Mollet; S58, Arbreda Cave; S59, Jaksice; S60, Les Bossats; S61, La Bergerie; S62, Lapa do Picareiro; S63, La Fuente del Salin; S66, Krems-Wachtberg; S67, Willendorf; S70, Buran-Kaya; S71, Weinberghohlen; S72, Krems-Hundsteig; S73, Obere Klause; S74, Betche-aux-Rotches de Spy; S75, Goyet; S77, Dolni Vestonice 1; S80, Le Blot; S81, Pavlov; S82, Oblazowa Cave; S83, Ciaoarei Cave; S84, Reclau Viver Cave; S85, Paviland; S86, La Vina; S87, Cueto de la Mina; S88, Cueva Morin; S89; Bolinkoba; S90, Amalda; S91, Alkerdi; S92, Antolinako Koba; S93, Abric Romani; S94, Cueva de Ardales; S95, Gruta do Caldeirao; S96, Cova Beneito; S97, Zajara; S98, Los Morceguillos. c) Geographical distribution of the Gravettian occupation sites yielding personal ornaments from the Dordogne region. S19, Le Facteur; S21, Labattut; S20, Le Flageolet; S22, Laussel; S23, Le Poisson; S24, Les Rochers de l’Acier; S25, Le Roque-Saint-Christophe; S26, Le Ruth-Pages; S27, Grotte de Tourtoirac; S28, Abri Laraux; S29, Grotte de Pair-non-Pair; S30, Le Roc de Gavaudun; S46, Le Fourneau du Diable; S51, La Gravette; S64, Les Vachons; S65, La Ferrassie; S68, Le Petit-Puyrousseau; S69, Abri Pataud; S78, Laugerie-Haute; S79, Masnaigre. Maps created on QGIS using ETOPO1 Global Relief Model data with a modern and Gravettian coastline at −100 m142.

Extended Data Fig. 2 Two-tailed Mantel correlogram established for the bead-type associations recorded at Gravettian occupation sites.

(a), and burial sites (b). Unit of geographic distance for a1 and b1: 500 km, a2 and b2: 250 km, a3 and b3: 100 km. Black squares indicate significant P-values, white squares non-significant P-values.

Extended Data Fig. 3 Boxplot of radiocarbon ages associated with Gravettian occupation and burial sites yielding personal ornaments in different regions of Europe.

Maximum value = 36,280.5 years, Minimum = 23,525 years. Dark grey = occupation sets, light grey = burial sets. The box extends from the lower to upper quartile, with the whisker variability indicating outside the upper and lower quartiles. ‘eastern Europe’ = N = 8, ‘south Iberia’ = N = 8, ‘northwestern Europe’ = N = 4, ‘north Iberia’ = N = 8, ‘Central Europe’ = N = 9, ‘eastern (Burials)’ = N = 9, ‘north Italy (Burials)’ = N = 11, ‘south Italy (Burials)’ = N = 6. Total = N = 63.

Extended Data Table 1 Results of the two-tailed Mantel tests calculated for the bead-type associations recorded at Gravettian occupations and burial sites
Extended Data Table 2 Results of the two-tailed Partial Mantel tests calculated for the bead-type associations recorded at Gravettian burial sites
Extended Data Table 3 Results of the two-tailed Mantel tests calculated for the bead-type associations recorded at Gravettian burial sites in western and eastern Europe

Supplementary information

Supplementary Information

Supplementary Results 1 and 2, Figs. 1–5 and Tables 1–6.

Reporting Summary

Supplementary Table 1

Bead coding. An excel spreadsheet containing each of the discrete bead types and the code used for each.

Supplementary Table 2

All datasets. An excel spreadsheet containing 7 separate worksheets.

Supplementary Table 3

Occupation Table. An excel spreadsheet containing the attributes and personal ornaments of the occupation sites.

Supplementary Table 4

Burial Table. An excel spreadsheet containing the attributes and personal ornaments of the buried individuals.

Supplementary Table 5

All distance matrices. An excel spreadsheet containing 14 separate worksheets.

Supplementary Table 6

All datasets used for the Mantel test modelling. An excel spreadsheet containing 5 separate worksheets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, J., Rigaud, S., Pereira, D. et al. Evidence from personal ornaments suggest nine distinct cultural groups between 34,000 and 24,000 years ago in Europe. Nat Hum Behav 8, 431–444 (2024). https://doi.org/10.1038/s41562-023-01803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01803-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing