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Educational attainment (EduYears), a heritable trait often used as a proxy 
for cognitive ability, is associated with various health and social outcomes. 
Previous genome-wide association studies (GWASs) on EduYears have 
been focused on samples of European (EUR) genetic ancestries. Here we 
present the first large-scale GWAS of EduYears in people of East Asian 
(EAS) ancestry (n = 176,400) and conduct a cross-ancestry meta-analysis 
with EduYears GWAS in people of EUR ancestry (n = 766,345). EduYears 
showed a high genetic correlation and power-adjusted transferability 
ratio between EAS and EUR. We also found similar functional enrichment, 
gene expression enrichment and cross-trait genetic correlations between 
two populations. Cross-ancestry fine-mapping identified refined credible 
sets with a higher posterior inclusion probability than single population 
fine-mapping. Polygenic prediction analysis in four independent EAS and 
EUR cohorts demonstrated transferability between populations. Our study 
supports the need for further research on diverse ancestries to increase our 
understanding of the genetic basis of educational attainment.

Educational attainment (EduYears: years of education as a continuous 
phenotype) is a behavioural trait that has been studied extensively and 
linked to various social, economic and health-related outcomes1–3. 
While EduYears is an important trait studied in behavioural genetics, it 
has also been a topic of interest in epidemiology and medical research 
owing to its phenotypic and genetic correlation with various diseases, 
including cardiovascular diseases4, metabolic diseases5, psychiatric 
disorders6, Alzheimer’s disease7 and cognitive function8. As educational 
attainment can be easily measured through self-report within large 
population samples (as opposed to disease status such as schizophrenia 
and Alzheimer’s disease), it is considered a useful proxy phenotype for 
characterizing related health outcomes9,10.

EduYears has been shown to be moderately heritable with a  
heritability of ~40% from twin studies and a single-nucleotide polymor-
phism (SNP)-based heritability of ~20% from genome-wide association 
studies (GWASs)11. The genetic study of EduYears thus offers insights 
into the factors contributing to its observed variation across popu-
lations. Previous GWAS meta-analyses and replication studies have 
identified genetic variants associated with EduYears11–14. Notably, the 
largest GWAS meta-analysis for EduYears, which included approxi-
mately 3 million individuals of European (EUR) genetic ancestries, has 
identified 3,952 independent genome-wide significant loci10. However, 
previous studies investigated the genetic architecture of EduYears 
solely focused on samples of EUR genetic ancestries, and the evidence 
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Heterogeneity of genetic effects within EAS population
Given that the ALDH2 region on chromosome 12 showed a significant 
association with EduYears exclusively in KoGES but not in TWB, we 
conducted further investigation to explore potential underlying 
factors driving this observed heterogeneity. Firstly, we examined 
the phenome-wide association study results for the ALDH2 region in 
KoGES and demonstrated that total alcohol consumption exhibited 
the most significant association with this locus19 (Supplementary 
Table 5). Based on this finding, we estimated the genetic correlation 
(rg) between alcohol drinking and EduYears in KoGES, both globally 
and locally. We identified a significant negative global genetic corre-
lation between alcohol drinking and EduYears (rg = −0.193; s.e. 0.063; 
P = 0.002). Moreover, specifically within the ALDH2 region, we observed 
a substantial local genetic correlation (ρ = −0.82, P = 7.4 × 10-6). In addi-
tion, we conducted a stratified GWAS for EduYears, segregating KoGES 
participants into groups of drinkers and non-drinkers. Remarkably, in 
the drinker group, the ALDH2 region displayed a significant associa-
tion with EduYears (P = 2.4 × 10−22), while in the non-drinker group, the 
association was not significant (P = 0.032) (Supplementary Fig. 7). 
These findings suggest that the observed heterogeneity in the ALDH2 
region is probably attributed to potential shared genetic component 
and gene–environment interactions between alcohol drinking and 
EduYears, particularly in KoGES.

Potential biological mechanisms underlying EduYears in EAS
To elucidate the underlying biological mechanisms of EduYears  
in the EAS population, we first applied expression quantitative  
trait loci (eQTL) mapping and MAGMA gene-set analysis20,21 imple-
mented in FUMA v1.3.7 (ref. 22) to identify potentially causal genes 
and gene sets. For eQTL mapping, we identified 13 genes mapped  
to the EAS EduYears loci through cis-eQTL using 13 brain tissue types 
from the Genotype-Tissue Expression (GTEx) v8 dataset23 (Supple-
mentary Table 6). Notably, the lead SNP rs12936234 was mapped to  
three genes, namely DCAKD, NMT1 and C1QL1 in ten brain tissues. 
We did not identify any significant gene-set association after multi-
ple comparison correction, while the amyloid β metabolic process  
was the most significant Gene Ontology pathway (P = 3.59 × 10−5;  
Supplementary Table 7).

Second, we employed a stratified LDSC24,25 with 97 baseline linkage 
disequilibrium (LD) annotations26 for our EAS GWAS summary statistics 
and EUR summary statistics by Lee et al.14. Among the 97 stratified LDSC 
annotations, we observed significant enrichments for EduYears in the 
EAS population in six annotations, including H3K4me1 peaks (false 
discovery rate (FDR) <5%; Supplementary Fig. 8 and Supplementary 
Table 8). In the EUR population, 17 annotations, including the con-
served primate phastCons46way annotation, representing genomic 
regions conserved across primate species, showed significant enrich-
ment for EduYears (FDR <5%; Supplementary Table 9). Furthermore, 
ten MAF binary annotations were included to model MAF-dependent 
architectures within the set of 97 annotations. Of these ten MAF bins, 
five (more common MAF bins) exhibited significant enrichments for 
EduYears in both EAS and EUR populations.

Third, to determine the tissues and cell types associated with 
EduYears, we conducted LDSC applied to specifically expressed genes 
(LDSC-SEG) analysis25. For analysis across multiple tissues, we used 
gene expression data from the GTEx, Franke laboratory and Cahoy 
et al. (see Uniform Resource Locators (URLs)). In the EAS population, 
EduYears-associated SNPs were strongly enriched in the brain, pari-
etal lobe and putamen of the central nervous system at an FDR <5% 
threshold (Supplementary Fig. 9a and Supplementary Table 10), which 
is consistent with previously published LDSC-SEG results in EUR14. 
We also used chromatin data from the Roadmap Epigenomics and 
ENCODE projects for the LDSC-SEG analysis. In the EAS population, SNP 
heritability was significantly enriched in the central nervous system, 
including the foetal brain, dorsolateral prefrontal cortex and inferior 

for the generalizability of the findings to non-EUR populations is  
limited. The lack of diversity in genetic studies on EduYears could lead 
to social and health disparities due to inadequate comprehension of 
EduYears and its impact on socioeconomic and health outcomes in 
understudied populations15.

In this Article, we conducted the first large-scale EduYears GWAS 
in the East Asian (EAS) population, followed by a cross-ancestry GWAS 
meta-analysis for EduYears between EAS and EUR populations. The  
primary objectives of this study were to (1) identify genomic loci for 
EduYears in cross-population samples, (2) investigate the biological  
basis of EduYears in the EAS population, (3) examine whether the 
genetic architecture of EduYears is shared between EAS and EUR  
populations, and (4) demonstrate the advantages of cross-population 
analysis in polygenic prediction and fine-mapping of causal variants. 
With public sharing our summary results, our findings will facilitate 
future studies on diverse genetic ancestries and enhance our knowl-
edge of the genetic basis for educational attainment.

Results
EduYears genome-wide associations in EAS population
Self-reported educational attainment (EduYears) and genome-wide 
genotype data for 107,493 and 72,294 samples were obtained from 
the Taiwan Biobank (TWB)16 and Korean Genome and Epidemiology 
Study (KoGES)17, respectively. After stringent quality control (QC) 
and genotype imputation, we performed a GWAS for EduYears with 
7,470,871 variants in 104,722 TWB samples and 8,064,004 variants in 
71,678 KoGES samples (Supplementary Figs. 1a,b and 2a,b and Supple-
mentary Table 1). We then performed an EAS genome-wide fixed-effect 
meta-analysis for EduYears between TWB and KoGES, which retained 
the association results for 6,951,085 autosomal variants with an imputa-
tion quality score (INFO) >0.6 and minor allele frequency (MAF) >0.5% 
in both cohorts (Fig. 1a, Supplementary Fig. 1c and Supplementary  
Table 1). The results of the EAS GWAS meta-analysis were similar to  
those of the TWB and KoGES separately, except for one locus on chro-
mosome 12 near ALDH2 that showed significant heterogeneity (Supple-
mentary Fig. 3). Genome-wide associations in the TWB, KoGES and their 
meta-analysis were consistent with the highly polygenic architecture of 
educational attainment and did not indicate inflation due to potential 
population stratification (linkage disequilibrium score regression 
(LDSC)18 intercept ranged from 1.029 to 1.046). The λGC ranged from 
1.165 to 1.320 in EAS and was 2.094 for EUR based on publicly avail-
able data14 (n = 766,345) and 2.807 for EUR as reported by Lee et al.14 
(n = 1,131,881; Supplementary Figs. 1a–c and Supplementary Table 2). 
In total, we identified seven genome-wide significant loci (P < 5 × 10−8), 
including 11 independent SNPs, from the GWAS meta-analysis for  
EduYears in EAS (Fig. 1a, Table 1 and Supplementary Table 3). All  
these 11 independent SNPs were previously reported (SNPs located 
within ±500 kb of the 3,952 lead SNPs reported by Okbay et al.10).

We used several approaches to examine the consistency of genetic 
effects for EduYears between the TWB and KoGES. At the genome-wide 
level, we first showed that the SNP-based heritability for EduYears was 
estimated to be 9.7% in TWB, 8.7% in KoGES and 9.0% in the EAS GWAS 
meta-analysis, and the genome-wide genetic correlation for EduYears 
between TWB and KoGES was 0.871 (standard error (s.e.) 0.073) using 
LDSC18 (Fig. 2a and Supplementary Table 2). In addition, the mean 
of genome-wide fixation index (Fst) between TWB and KoGES was 
0.005, which suggests small population differences due to genetic 
background (Supplementary Table 4). At the individual locus level, we 
observed that the direction of genetic effects was consistent between 
TWB and KoGES for most genome-wide significant SNPs, except for 
the genome-wide significant locus on chromosome 12 (Supplemen-
tary Figs. 4a,b and 5a–g and Supplementary Table 3). The effect allele 
frequency also showed high consistency between TWB and KoGES for 
the variants included in the GWAS meta-analysis in the EAS population 
(Supplementary Fig. 6).
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temporal lobe after FDR correction (Supplementary Fig. 9b and Sup-
plementary Table 11), which is also consistent with previous results 
in EUR14. By using the Cahoy dataset27 to examine the enrichment in 
three brain cell types (neurons, astrocytes and oligodendrocytes), 

we identified that EduYears-associated SNPs were more enriched in 
neurons than astrocytes or oligodendrocytes in the EAS population 
(Supplementary Table 12). The enrichment in neurons was also found 
in previous EUR studies10,14.
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Fig. 1 | Gene discovery through common variant associations for EduYears 
in EAS and EUR populations. a, Manhattan plot of genome-wide meta-analysis 
for EduYears in EAS. b, Manhattan plot of cross-population genome-wide meta-
analysis for EduYears in EAS and EUR. c, Manhattan plot of MAMA for EduYears 
in EAS. The x axis represents chromosomal position, and the y axis represents 
the −log10(P value) for the association of variants with EduYears. Reported P 

values are two-sided and not corrected for multiple testing. Independent SNPs 
are highlighted in green, and previously unreported SNPs are highlighted with 
a red diamond. The horizontal pink line marks the threshold for genome-wide 
significance (P = 5 × 10−8), and the horizontal blue line marks the threshold for 
suggestive genome-wide significance (P = 1 × 10−5).
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Finally, we conducted pathway enrichment analysis using the 
Gene Set Analysis-Single-Nucleotide-Polymorphism-2 (GSA-SNP2)28 to 
explore potential biological pathways associated with EduYears. Based 
on the GWAS summary statistics from EAS and EUR populations, we 
aimed to identify pathways significantly associated with EduYears in 
each population and subsequently compare the results to determine 
shared or distinct pathways between two populations. In total, 16 and 
27 pathways were identified as significantly associated with EduYears 
in EAS and EUR populations, respectively (Fig. 2c). Among these sig-
nificantly enriched pathways, 14 pathways were common across both 
populations, while 2 and 13 pathways exhibited significant enrichment 
exclusively in EAS and EUR populations, respectively.

Cross-ancestry GWAS meta-analysis for EduYears
To maximize the power of gene discovery, we conducted a cross-ancestry 
meta-analysis with EduYears GWAS summary statistics in EAS and EUR 
using METAL29. We obtained the publicly available summary statistics of 
EUR, including 766,345 samples and 10,101,242 variants from a previous 
large-scale GWAS performed by Lee et al.14. In total, 942,745 samples 
and 12,232,310 variants were included in the meta-analysis. We identi-
fied 315 lead SNPs at 102 genome-wide significant loci associated with 
EduYears (Fig. 1b and Supplementary Fig. 1d), all of which have been 
previously reported in EUR ancestry GWASs (313 variants in ref. 14 and 
rs9257925 and rs7224296 in ref. 10).

Additionally, we performed multi-ancestry meta-analysis 
(MAMA)30, a GWAS meta-analysis method, which models differences 
in effect sizes, allele frequencies and LD patterns between popula-
tions and provides population-specific meta-analysis results. Using 
MAMA, we identified 94 independent genome-wide significant  
SNPs with EAS-specific meta-analysis (Fig. 1c and Supplementary  
Table 13), 2 of which were previously unreported for EduYears 
(rs2881903 and rs16930687); they were located beyond ±500 kb of 
the lead SNPs reported in previous EduYears GWAS (Supplementary 
Figs. 10 and 11)10,14. The MAMA EUR-specific meta-analysis found  
357 independent genome-wide significant SNPs; however, all of 
them had been previously reported to be associated with EduYears10  
(Supplementary Fig. 12 and Supplementary Table 14).

To determine whether the genetic effects for EduYears were 
similar in two different populations (EAS and EUR), we estimated 
cross-ancestral genetic correlation using S-LDXR31. The genetic cor-
relation across the EAS and EUR populations was 0.873 (s.e. 0.042).

Assessment of transferability between EAS and EUR
We investigated the transferability of EduYears genomic loci identified 
in the EUR population to the EAS population with the power-adjusted 

transferability (PAT) ratio32. To consider differences in LD patterns, we 
first generated credible sets for the 246 genetic loci associated with 
EduYears from Lee et al.14 study (n = 766,345). Based on the credible 
sets, the PAT ratio for EduYears for EUR to EAS was 0.62 (number of 
observed transferable loci divided by number of expected transferable 
loci in the EAS population = 95/153). This result indicates a relatively 
high transferability of GWAS loci associated with EduYears between 
EAS and EUR populations.

Cross- and within-population fine-mapping for EduYears
To further refine the seven genetic loci identified in the EAS GWAS 
meta-analysis, we performed within-population and cross-population 
fine-mapping in EAS and EUR populations using SuSiEx33 with the 1000 
Genomes (1KG) Project phase 3 samples as the LD reference panel. 
From the seven associated loci, we identified 8 credible sets in the EAS 
GWAS fine-mapping and 13 credible sets in the cross-population GWAS 
fine-mapping, with each credible set representing an independent asso-
ciation signal (Fig. 3, Tables 1 and 2, Supplementary Figs. 13–18 and Sup-
plementary Tables 15–17). The potential causal variants often showed 
a higher posterior inclusion probability (PIP) in cross-population 
fine-mapping than in EAS population fine-mapping. For example, we 
fine-mapped one credible set for the locus on chromosome 17 from the 
GWAS meta-analysis of EAS (Fig. 3a), in which the variant with the maxi-
mum PIP was rs12936234 (PIP 0.20; gene NMT1) (Fig. 3c). We observed 
two different credible sets from the GWAS meta-analysis for EduYears 
in EUR population: rs2867316 (PIP 0.87; intergenic) and rs11871429 (PIP 
0.51; gene HIGD1B) (Fig. 3b,d). In the cross-population fine-mapping, we 
identified three credible sets in which the variants with the maximum 
PIP were rs2867316 (PIP 0.90; gene MAP3K14), rs12948326 (PIP 0.71; 
gene NMT1 and PLCD3) and rs11871429 (PIP 0.51; gene HIGD1B) (Fig. 3e). 
The maximum PIP in the credible set on chromosome 17 near 43.18 Mb 
was considerably larger in cross-population fine-mapping than in EAS 
population fine-mapping. The SNP rs11871429 was reported as a lead 
SNP in GWAS meta-analysis for EduYears in EUR population, and these 
three SNPs were located within ±500 kb of the 1,271 lead SNPs of GWAS 
meta-analysis for EduYears in EUR population14.

We note that using external reference panels, whose LD patterns 
do not perfectly match LD in the discovery GWAS samples, may bias  
the results for fine-mapping. We therefore assessed the LD consist-
ency of each locus between discovery and reference samples in EAS  
population using diagnostic tools provided by SuSiE-RSS34. The  
s values from SuSiE-RSS ranged from 0.007 to 0.027 across fine- 
mapped loci, and the diagnostic plots demonstrated high consistency 
of LD between the summary statistics and reference panel (Supple-
mentary Fig. 19a–g).

Table 1 | Genome-wide significant loci for EduYears in EAS population

Chr Start End Credible 
set ID

Credible 
set size

Total 
PIP

N of 
significant 
variantsa

SNP with 
maximum  
PIP

Maximum 
PIP

A1 Effect 
size

A1 Freq Marginal  
P value

Gene Annotation

2 161,721,597 162,351,261 1 6 0.96 6 rs10930013 0.26 A −0.021 0.42 7.80 × 10−10 TANK Intron

4 180,613,679 181,136,169 1 4 0.95 4 rs2871133 0.36 C −0.020 0.53 3.54 × 10−9 NA NA

5 93,838,858 94,392,030 1 20 0.95 19 rs255347 0.11 T 0.022 0.73 5.70 × 10−9 MCTP1 Intron

5 106,947,725 107,455,182 1 2 0.96 2 rs7708343 0.62 A −0.021 0.32 4.46 × 10−9 FBXL17 Intron

6 27,515,505 29,611,229 1 13 0.95 3 rs9461540 0.47 G −0.027 0.17 6.19 × 10−10 GABBR1 Upstream 
gene

6 27,515,505 29,611,229 2 6 0.96 6 rs16893804 0.40 G −0.028 0.22 5.62 × 10−12 NA NA

10 103,385,878 104,057,295 1 27 0.96 18 rs11191157 0.60 A −0.023 0.22 2.34 × 10−8 C10orf76 Intron

17 42,899,988 43,438,117 1 10 0.95 10 rs12936234 0.20 C 0.020 0.47 4.28 × 10−9 NMT1 Intron

Abbreviations: A1 Freq, frequency of A1; A1, effect allele; Chr, chromosome; N, number; NA, not available. Gene symbols are italicized. aNumber of genome-wide significant variants with  
P value of a two-sided test <5 × 10−8. Base pair position is based on the human genome assembly GRCh37 (hg19). ‘Credible set ID’: the ID of credible sets used to identify different credible sets 
in the same region. ‘Gene’: the genes affected by the variant using the Variant Effect Predictor tool. ‘Annotation’: the consequence of variants on the protein sequence using the Variant Effect 
Predictor tool.
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Genetic correlation with other traits
To explore the genetic relationship between EduYears and other 
socioeconomic and health-related traits, we used LDSC18 to estimate  
the genetic correlation between EduYears and 82 phenotypes for  
which GWAS summary statistics are available for the EAS population. 
We examined the genetic relationships between EduYears and the 82 
phenotypes within each population and then checked the consist-
ency across populations. We identified 12 phenotypes with significant 

pairwise genetic correlations with EduYears (FDR <5%) in the EAS  
population (Fig. 2b and Supplementary Table 18). In EAS, income 
showed the strongest positive genetic correlation with EduYears 
(rg = 0.93, P = 9.87 × 10−25) and pulse pressure showed the strongest 
negative genetic correlation with EduYears (rg = −0.24, P = 6.20 × 10−6). 
We obtained GWAS summary statistics from EUR samples for 64 phe-
notypes. By applying LDSC, EduYears showed the strongest positive 
genetic correlation with income (rg = 0.80, P = 2.33 × 10−700) and the 
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EduYears in TWB (N = 93,570), KoGES (N = 71,662), EAS populations (N = 165,232) 
and EUR populations (N = 766,345). The x axis represents the population, and 
the y axis represents the SNP-based heritability. Bars indicate the estimates of 
SNP-based heritability for each population. Error bars (black line) indicate the 
95% confidence intervals of the estimated SNP-based heritability. Bottom: we 
also performed the LDSC to estimate the genetic correlations between TWB, 
KoGES, EAS populations and EUR populations. The pairwise genetic correlations 
between TWB, KoGES, EAS populations and EUR populations are shown in red 
to yellow gradient. That is, colour close to red indicates a higher correlation, 

and colour close to yellow indicates a lower correlation. b, SNP-based genetic 
correlation between EduYears and other phenotypes in EAS and EUR. We showed 
12 of 82 phenotypes with significant genetic correlation with EduYears (FDR <5%) 
in the EAS population. The x axis is the genetic correlation between EduYears and 
other traits. Bars indicate the estimates of genetic correlation between EduYears 
and each trait. Error bars (black line) indicate the 95% confidence intervals of the 
estimated genetic correlation. All results including the sample size of each trait 
are presented in Supplementary Table 18. c, Pathway enrichment for EduYears 
in EAS and EUR. We showed significantly enriched pathways with a q value <0.05 
for EAS and EUR populations. The x axis represents the Z-score, and the y axis 
represents each individual pathway.
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strongest negative genetic correlation with type 2 diabetes (rg = −0.33, 
P = 4.24 × 10−59) in the EUR population. We observed directional con-
sistency of genetic correlations for most of these phenotypes in  
both populations, further confirming a similar genetic architecture of 
EduYears between the EAS and EUR populations.

Polygenic prediction
To assess the predictive ability of polygenic scores (PGSs) for EduYears, 
we used our EAS summary statistics and the EUR summary statistics by 
Lee et al.14 to construct PGSs and tested their predictive performance 
in three independent testing cohorts of EAS ancestry, including the 
Epidemiology of Mild Cognitive Impairment study in Taiwan (EMCIT), 
a Korean-based cohort, and the Chinese sample in the UK Biobank 
(UKBB), and one testing cohort of EUR ancestry, which is the National 
Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s  
Disease (NIA-LOAD). After stringent QC, we included 395, 2,622, 1,747 
and 1,241 samples from the EMCIT, Korean-based cohort, UKBB and 
NIA-LOAD, respectively (Supplementary Table 1). We calculated the 
PGS for EduYears using two Bayesian polygenic prediction methods: 
PRS-CS35 and PRS-CSx36. PRS-CS was individually applied to EAS and 
EUR EduYears GWAS to derive a single-population PGS. Meanwhile, 
PRS-CSx was integrated both EAS and EUR EduYears GWAS to gener-
ate a cross-population PGS. The cross-population PGS from PRS-CSx 
explaining up to 4.0% of the phenotypic variance in EduYears in the 
EAS cohorts. However, the cross-population PGS explained 6.1% of the 

phenotypic variance in EduYears, equivalent to ancestry-matched PGS 
in the EUR cohort, possibly because it utilized a smaller GWAS of an 
unmatched population (Fig. 4 and Supplementary Table 19). Overall, the 
cross-population PGS from PRS-CSx showed better performance than 
the single-population PGS; the largest improvement was observed when 
applying PRS-CSx to the EAS testing cohorts. To investigate whether the 
improvement in predictive performance in the cross-population PGS 
was solely attributed to an increase in sample size or also influenced by 
ancestral diversity, we conducted an additional analysis by equating 
the sample sizes of EAS and EUR populations. Consistent with previ-
ous results, the cross-population PGS explained a greater proportion 
of phenotypic variance in EduYears than the EUR-derived PGS in the 
EAS cohorts (Supplementary Fig. 20 and Supplementary Table 20).

Discussion
We present the largest-so-far EduYears GWAS in the EAS population and 
cross-ancestry GWAS meta-analysis across EAS and EUR populations 
for EduYears, including 176,400 samples of EAS genetic ancestry from 
TWB and KoGES and 766,345 samples of EUR genetic ancestry from 
previous studies, which enabled us to examine and compare the genetic 
architecture of EduYears across populations. Although the previous 
GWAS for EduYears had already reached a sample size of approximately  
3 million, it was solely based on samples of EUR ancestry. Genetic studies  
of complex traits, including EduYears, have mostly been conducted 
in EUR population. This disparity is problematic because genomic 
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of maximum PIP in each credible set, and we used different colours to distinguish 
each credible set. For example, there are one (pink points), two (green points 
and blue points) and three (green points, pink points and blue points) credible 
sets identified from EAS populations, EUR populations and cross-population, 
respectively.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 8 | March 2024 | 562–575 568

Article https://doi.org/10.1038/s41562-023-01781-9

discoveries may not be transferable across populations, even though 
it is assumed that they share the underlying biological mechanisms37, 
and our study helps to fill this gap.

This study provides several important findings regarding the 
genetics of EduYears. First, we observed high positive genetic correla-
tions of EduYears within the EAS population (rg = 0.87) and between the 
EAS and EUR populations (rg = 0.87). This suggests a comparable degree 
of shared genetic component for EduYears within the EAS and between 
EAS and EUR. To benchmark the EAS–EUR cross-population rg for 
EduYears against other traits, we extracted EAS–EUR cross-population 
rg for 31 other traits from Shi et al.31 as a reference. Remarkably, the 
cross-population rg for EduYears closely aligns with the median of 
EAS–EUR cross-population rg across the 31 traits (median rg = 0.88; 
range 0.342–1.05). While the EAS–EUR cross-population rg for Edu-
Years is lower than that for schizophrenia (EAS–EUR cross-population 
rg = 0.945), it is considerably higher than major depressive disorder 
(EAS–EUR cross-population rg = 0.342) and comparable to other 
physiological traits (EAS–EUR cross-population rg = 0.897 for height) 
and molecular phenotypes (EAS–EUR cross-population rg = 0.875 for 
haemoglobin A1c). The SNP-based heritability was similar within the 
EAS population (9.7 ± 0.8%) for TWB and (8.7 ± 0.9%) for KoGES and 
between EAS (9.0 ± 0.6%) and EUR (10.7 ± 0.3%) populations14. The 
larger s.e. of heritability estimates in the EAS reflected the smaller EAS 
GWAS sample sizes relative to the EUR GWAS. The direction of genetic 
effects showed consistency between TWB and KoGES for genome-wide 
significant loci identified in both studies, and there was no substantial 
difference in the allele frequency between TWB and KoGES, except for 
one locus (near ALDH2) on chromosome 12. We have confirmed that 
the observed heterogeneity in the ALDH2 region may be linked to pos-
sible shared genetic component and gene-environment interaction 
between alcohol drinking and EduYears, in the Korean population. 
This finding suggests that studying diverse populations can bring 
insights in identifying gene–environment associations. To facilitate 
cross-population comparisons, we investigated the transferability of 
EduYears loci between EAS and EUR populations using the PAT ratio 
approach32, which considers the potential limitation of statistical 
power in the EAS population compared with EUR. Our findings indicate  
a relatively high transferability of EduYears loci identified in the  
EUR population to the EAS population.

Indeed, consistent with the high genetic correlation and transfer-
ability observed between EAS and EUR populations, our partitioned 
heritability and LDSC-SEG analyses24,25 showed similar results for 
both populations. Additionally, the pathway enrichment analysis 
demonstrated shared biological pathways between the EAS and EUR 
populations. We showed that 14 pathways were significantly associ-
ated with EduYears in both populations. These findings suggest the 
consistent involvement of specific biological pathways in the genetic 
basis of educational attainment, regardless of ancestry. Furthermore, 
these shared pathways underscore their potential importance in 
contributing to the association with educational attainment across 
diverse populations.

Our cross-ancestry meta-analysis identified genome-wide 
significant loci associated with EduYears that were not previously 
reported. We found 102 genome-wide significant loci for EduYears by 
cross-population meta-analysis using METAL29 and 94 independent 
SNPs in an EAS-specific cross-population meta-analysis using MAMA30, 
2 of which were not reported previously (rs2881903 and rs16930687). 
We check the MAF values for these two SNPs in EAS and EUR popula-
tions. The MAF values of rs2881903 and rs16930687 were 5.2% versus 
8.8% and 2.3% versus 0.7% in EAS and EUR14, respectively. The nearest 
gene for rs2881903 was FAM81B, and the nearest gene for rs16930687 
was a processed pseudogene (PR11-224P11.1). Both genes have not been 
reported to be associated with other traits in GWAS. Further studies of 
the function of these genes will help elucidate their biological mecha-
nisms for EduYears.Ta
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Previous studies have found that population diversity may 
improve fine-mapping resolution38,39 by capitalizing on increased 
GWAS sample sizes and LD differences across ancestries. Our study 
provided compelling evidence to support this hypothesis by demon-
strating that cross-population fine-mapping substantially increased 
the maximum PIP compared with within-population fine-mapping. 
An example from this study is the genome-wide significant locus 
near 43.18 Mb on chromosome 17. While an association signal was 
not found in the EUR population, the maximum PIP in the credible 
sets increased from 0.201 in EAS population fine-mapping to 0.708 in 
cross-population fine-mapping.

Okbay et al. investigated the genetic correlation of EduYears with 
14 traits and found positive genetic correlations between EduYears and 
intracranial volume, bipolar disorder, schizophrenia, cognitive perfor-
mance, and height and negative genetic correlations between EduYears 
and Alzheimer’s disease, neuroticism and body mass index in the EUR 
population9. In this study, we expanded the investigation to a total of 
82 socioeconomic and health-related traits for which GWAS summary 
statistics were available for the EAS population. The effect directions 
of genetic correlations between EduYears and socioeconomic and 
health-related traits were consistent between EUR and EAS popula-
tions. EduYears showed significant genetic correlations with 12 out of 
the 82 traits in the EAS population, all of which were also significant 
in the EUR population with concordant directions. This result further 
supports a similar genetic architecture for EduYears between the two 
ancestries and highlights the shared genetic components between 
EduYears and various socioeconomic and health-related outcomes.

Finally, we evaluated the predictive performance of ancestry- 
specific and cross-population PGSs in EAS and EUR cohorts independ-
ent of the discovery GWAS. As expected, the EAS-specific PGS showed 
better prediction power than the EUR-specific PGS for three independ-
ent EAS testing cohorts. The performance of PGS for within popula-
tion prediction based on EAS GWAS is comparable to that based on 
EUR GWAS (n = 117,922) with a similar sample size (EAS EduYears PGS 
R2 = 1.5–3.4% in the EMCIT and the Korean-based cohort (EAS target 
sample) versus EUR EduYears PGS R2 = 2.6–2.8% in the National Longi-
tudinal Study of Adolescent to Adult Health and the Health and Retire-
ment Study (EUR target sample)10,40). In the UKBB Chinese samples, 

which are genetically EAS but may be environmentally close to EUR, 
both the EUR-based PGS and EAS-based PGS showed lower predictive 
power than in other EAS cohorts in our study or previous studies10,14.  
The best predictive performance in the EAS testing cohorts was 
achieved by the cross-population PGS derived from PRS-CSx. This 
result replicated previous studies showing that multi-ancestry PGS 
demonstrated an improved prediction performance relative to 
ancestry-matched PGSs41,42. However, the NIA-LOAD cohort, compris-
ing EUR individuals, showed equivalent explanatory power between 
EUR-specific PGS and cross-population PGS because the gain from 
leveraging a smaller GWAS in an unmatched population may be limited. 
Even with the same sample size, the cross-population PGS consistently 
outperformed the EUR-derived PGS in the EAS testing cohorts. This 
observation suggests that population diversity enhanced predictive 
performance. Through PGS analyses, we explored the transferability 
of PGS between EAS and EUR populations, which is critical informa-
tion regarding the utility of PGS. Furthermore, our PGS analyses also 
indicated the advantages of ancestral diversity over a single population 
in PGS construction36.

This study had several limitations. One limitation is that the edu-
cation level as measured in our study may not be equal to the actual 
education years. Instead of collecting the number of years of education, 
EduYears were usually collected using a self-reported questionnaire 
of educational attainment. Regardless of whether the participants 
graduated from a specific educational level, they might be classified 
into the same category. For example, the elementary school category 
in TWB indicates whether the participants had attended or graduated 
from elementary school, but the actual number of years of education 
they received may range from 0 to 6 years. On the other hand, the dif-
ference in the years of compulsory education, described in detail in 
Supplementary Note, required in Taiwan and South Korea might limit 
the phenotypic variation in EduYears. Another limitation might be 
the relatively small EAS sample size compared with GWAS in the EUR 
population. To mitigate this limitation, we conducted a meta-analysis 
of two cohorts of EAS ancestry to increase the power of the EduYears 
GWAS for EAS. Indeed, we obtained more genomic signals from GWAS 
meta-analysis in EAS than GWAS in either TWB or KoGES. However, 
compared with the largest GWAS for EduYears in EUR, considerably 
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Fig. 4 | Polygenic prediction of EduYears in the EMCIT (n = 395; EAS), Korean-
based cohort (n = 2,622; EAS), Chinese samples in the UKBB (n = 1,747; EAS), 
and the NIA-LOAD (n = 1,241; EUR). The x axis shows the testing cohort, and the 
y axis is the partial R2 for the PGS. Bars indicate the partial R2 for the PGS of each 
cohort. Error bars (black line) indicate the 95% confidence intervals of the partial 
R2 for PGS. PGSs were derived from the GWAS meta-analysis for EduYears in EAS 
by using PRS-CS (discovery GWAS in EAS), the GWAS meta-analysis for EduYears 

in EUR by using PRS-CS (discovery GWAS in EUR), and both GWAS meta-analysis 
for EduYears, including EAS and EUR, by using PRS-CSx (discovery GWAS in EAS 
and discovery GWAS in EUR). We adjusted for the birth year, sex, birth year by 
sex interaction, and top ten PCs in all models. The two-sided P value of the partial 
R2 was derived from a likelihood ratio test comparing the goodness of fit of the 
models with and without PGS, which were annotated above the error bars.
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fewer genomic loci in EAS were identified (7 loci in EAS versus 3,952 
loci in EUR) and all 7 loci reported in EAS were previously reported 
in the EUR GWAS. The absence of previously unreported loci in the 
EduYears GWAS in EAS compared with previous EUR GWAS reflects the 
lower power for gene discovery with the current sample size in TWB 
and KoGES. However, we expect to obtain more insight into the genetic 
basis of EduYears in the EAS population as the sample size increases 
with more samples from TWB and KoGES, as well as the inclusion of 
more EAS cohorts.

As previous studies and our results suggest, EduYears shows phe-
notypic correlations and shares genetic components with multiple 
traits and diseases relevant to medical research, including cognitive 
function, neurodegeneration and psychiatric disorders43–46, and find-
ings on genetic overlaps between EduYears and health outcomes may 
shed light on the genetic basis of these relevant health outcomes. 
However, the link between EduYears and these health outcomes varies 
with context (such as nationality)47,48 and the impact of EduYears on 
health outcomes is probably via complex mechanisms like mediation 
and interaction between genetic and environmental factors47. To this 
point, we would like to highlight that while understanding the genetic 
basis of EduYears (as a proxy phenotype) may improve our insights  
of other relevant health outcomes, our results do not support any 
immediate medical or clinical applications, such as polygenic predic-
tion in direct-to-consumer services49,50.

In conclusion, our study, as the first large-scale educational attain-
ment GWAS in EAS, provides insights into the genetic architecture 
and biological mechanisms of EduYears across EAS and EUR popu-
lations through gene discovery, SNP-based heritability and genetic 
correlation analysis, functional analysis and pathway enrichment 
analysis. Furthermore, we demonstrated that cross-population GWAS 
improved fine-mapping resolution and PGS prediction performance 
in the context of educational attainment. These results underscore 
the importance of combining diverse population cohorts in genetic 
studies. As the largest previous GWAS of EduYears was limited to the 
EUR population, our EduYears GWAS in EAS and cross-population 
GWAS meta-analysis enhance our comprehension of the genetic basis 
of EduYears and facilitate the transfer of genetic insights for EduYears 
across populations.

Methods
Study selection
This study has been approved by the ethics committee of National 
Health Research Institutes, Taiwan (TWB; EC1090402-E and 
EC1110608-E) and Seoul National University Bundang Hospital, South 
Korea (KoGES; X-2107-699-902).

TWB. TWB is a population-based prospective cohorts study, which was 
planned to recruit 200,000 volunteers between 20 and 70 years of age 
with no prior diagnosis of cancer from 29 recruitment centres across 
Taiwan16 (see URLs). In total, TWB has recruited 159,195 participants 
since 2012. Baseline characteristic data were collected from structured 
interviews, physical measurements, biomarkers and genetic data.  
We obtained genome-wide genotype data from two customized  
chips, including 27,719 samples in the TWB v1 custom array and  
81,236 samples in the TWB v2 custom array. The TWB v1 custom 
array (batch 1) was designed on the basis of the Thermo Fisher Axiom 
Genome-Wide CHB Array with customized contents in 2011, and  
the TWB v2 custom array (batch 2) was designed by Thermo Fisher 
Scientific in 2017 on the basis of whole-genome sequencing data from 
946 TWB samples with customized contents51.

KoGES. The KoGES is a large prospective cohort study initiated by the 
National Institute of Health, South Korea. KoGES provides epidemio-
logical and genetic data from three population-based cohorts: Ansan/
Ansung, Health Examinee and the Cardiovascular Disease Association 

study. Ansan/Ansung is a community-based cohort that recruited 
10,030 individuals aged 40–69 years living in Ansan or Ansung. Health 
Examinee is an urban-based cohort study that recruited 173,208 indi-
viduals aged 40–79 years between 2004 and 2013 at a hospital health 
check-up centre. The Cardiovascular Disease Association study is a 
rural-based cohort conducted between 2005 and 2011 and recruited 
28,337 individuals aged 40–69 years. From these three cohorts, we 
obtained genome-wide genotype data from the Korea Biobank Array, 
which is a customized Korean-specific chip52,53. In total, 71,678 indi-
viduals with genotypic and phenotypic information were included 
in this study.

Genotype data QC and imputation
We conducted stringent pre-imputation QC, followed by the PBK geno-
type QC project pipeline (see URLs), for samples in TWB batch 1, TWB 
batch 2 and KoGES. First, we included samples with a call rate >0.98 and 
variants with a call rate >0.98. We then filtered out variants that were 
duplicated, monogenic or incorrectly mapped to a genomic position. 
Using a random forest model with the top six principal components 
(PCs) and the 1KG Project phase 3 data as ref. 54, we classified genetic 
ancestry and identified samples with a predicted probability of EAS 
ancestry >0.8. When we estimated the PCs with LD pruning at r2 = 0.1, we 
removed multi-allelic and strand ambiguous SNPs, SNPs with call rate 
<0.98, SNPs with MAF >5%, and SNPs located in long-range LD regions 
(chromosome 6: 25–35 Mb; chromosome 8: 7–13 Mb). We then excluded 
samples with mismatched genetic and self-reported sex, as well as sam-
ples with heterozygosity rates outside six standard deviations from the 
sample average. We also excluded population outliers by conducting 
in-sample PC analysis in three rounds. We excluded samples with any 
of the top ten PCs that were more than six standard deviations away 
from the sample average in each round of the in-sample PC analysis. 
Finally, we included homogeneous EAS samples and discarded variants 
with call rate <0.98 and Hardy–Weinberg equilibrium P-value <10−10. 
After pre-imputation QC, we performed imputation independently 
for TWB batch 1, TWB batch 2 and KoGES using Eagle v2.4 (ref. 55) for 
pre-phasing and Minimac4 for genotype imputation, with the 1KG 
Project phase 3 EAS data as the reference panel56.

Phenotype: EduYears
The education system in Taiwan is similar to that in South Korea (for 
cohort details, see Supplementary Note). EduYears was collected from 
different questionnaires using a multiple-choice question in the TWB 
and KoGES when the participant was 30 years old or older. To ensure 
comparability across cohorts, including TWB, KoGES and cohorts in 
GWAS meta-analysis in EUR population, we mapped each category in 
these questions to the International Standard Classification of Educa-
tion (ISCED) category. We then imputed each ISCED category to the 
number of years of schooling, which is referred to as EduYears. We have 
summarized the questions and results of mapping from the ISCED Level 
to EduYears in Supplementary Table 21.

Genetic association analysis
We performed genetic association analyses on EduYears using post-QC 
imputed genotype data and a two-step whole-genome regression 
model implemented in Regenie v2.2.4 (ref. 57), which accounts for 
sample relatedness and population structure. We excluded dupli-
cate samples by randomly removing one sample from each pair in the 
two-step whole-genome regression models for TWB and KoGES. We 
adjusted for the birth year (BY), BY2, BY3, sex, BY by sex interaction, BY2 
by sex interaction, BY3 by sex interaction, and the top ten PCs, based 
on previous GWAS for EduYears14. The top ten PCs were included as 
covariates to control for population stratification. We used the GWAS 
summary statistics derived from Regenie57 as the main result and uti-
lized them for all downstream analyses, except for the analyses using 
LDSC18 and LDSC-based methods such as S-LDXR31 and stratified LDSC.
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For analyses using LDSC-based methods (for example, LDSC, 
S-LDXR, stratified LDSC and so on), we separately performed asso-
ciation analyses using linear regression implemented in PLINK v2.0  
(ref. 58) in unrelated samples of TWB and KoGES. We estimated genetic 
relatedness to check for family relationships using PLINK58 with  
kinship coefficients of 0.0884 and 0.354 as thresholds for second- 
degree relations and duplicate samples, respectively. We randomly 
excluded one sample from each pair of second-degree or more closely 
related relatives within TWB batch 1, TWB batch 2 and KoGES inde-
pendently. Across batches in TWB, we also excluded batch 2 samples 
from each pair of duplicated samples. We then performed association 
tests adjusted for BY, BY2, BY3, sex, BY by sex interaction, BY2 by sex 
interaction, BY3 by sex interaction, and the top ten PCs on the remain-
ing unrelated individuals for TWB batch 1, TWB batch 2 and KoGES.

GWAS meta-analyses in EAS population
Before performing the following meta-analyses, we first filtered the 
variants in individual biobank association summary statistics (TWB 
batch 1, TWB batch 2 and KoGES) by imputation INFO >0.6 and MAF 
>0.5% for Regenie whole-genome linear regression analyses and by 
imputation INFO >0.8 and MAF >1% for PLINK linear regression analy-
ses. We first synthesized TWB batch 1 and TWB batch 2 GWASs using 
an inverse-variance-weighted (IVW) fixed-effect model implemented 
in METAL 2020-05-05 (ref. 29). We conducted a GWAS meta-analysis 
of EduYears in EAS population, including TWB and KoGES, using an 
IVW fixed-effect model. In the meta-analyses of EduYears, we used the 
ID obtained from imputation56 as unique identifiers for each variant, 
and we checked the heterogeneity in effect size using Cochran’s Q test 
implemented in METAL29. We estimated Fst between TWB and KoGES 
to measure population differentiation due to genetic structure59. We 
removed variants with inconsistent allele on the same strand. We also 
removed variants that were not included in both biobanks. Subse-
quently, we annotated the reference SNP with the dbSNP build 155 
data from the National Center for Biotechnology Information Search 
database60 using SnpSift v4_3t_core61.

Heterogeneity of genetic effects within EAS population
To identify underlying factors contributing to heterogeneity between 
TWB and KoGES, we performed the following procedures.

Phenome-wide association study lookup. To investigate the pleio-
tropic effects of variants showing heterogeneity, we conducted a search 
in the KoGES PheWeb (see URLs).

Global and local genetic correlation analyses. To explore the rela-
tionship between alcohol-related traits and EduYears, we performed 
global and local genetic correlation analyses using KoGES data. The 
global genetic correlation was estimated using LDSC v1.0.1 (ref. 18), 
while the local genetic correlation within specific genomic regions was 
assessed using LAVA62. The details are summarized in Supplementary 
Note.

Stratified GWAS analysis. In KoGES, individuals were classified as 
drinkers if they had a history of past or current alcohol consump-
tion, and non-drinkers if they had no history of alcohol consumption. 
We then performed genetic association analyses for EduYears using  
Regenie v2.2.4 (ref. 57), adjusting for BY, BY2, BY3, sex, BY by sex interac-
tion, BY2 by sex interaction, BY3 by sex interaction, and the top ten PCs.

Heritability and genetic correlation analyses
We performed LDSC v1.0.1 (ref. 18) to estimate the SNP-based herit-
ability of EduYears in the TWB, KoGES, EAS and EUR populations14 
using population-specific LD scores based on the 1KG Project phase 3 
data. We applied LDSC18 and S-LDXR v0.3-beta31 to estimate the genetic 
correlations for within-EAS and cross-population genetic correlations 

between EAS and EUR populations, respectively. We used the default 
LD scores for the EAS and EUR populations provided by S-LDXR31 as 
reference panels to estimate the cross-ancestral genetic correlation. 
For comparability and unbiased estimation, we used GWAS summary 
statistics derived from linear regression models implemented in PLINK 
to perform LDSC18 and S-LDXR31, which excluded strand ambiguous 
SNPs and variants with imputation INFO <0.8 and MAF <1%.

eQTL analysis
To investigate the influence on gene regulation of SNPs associated 
with EduYears, we performed an eQTL analysis using gene expression 
data implemented in FUMA v1.3.7 (ref. 22) with brain tissue expression 
data from the GTEx v8 database. We then performed gene mapping for 
significant SNP-gene pairs with an FDR <5%.

Gene-based and gene set enrichment analyses
Gene-based and gene set analyses were performed using MAGMA 
gene-property analyses20,21 implemented in FUMA v1.3.7 (ref. 22) to 
identify the genes and gene sets related to EduYears. Gene-based analy-
sis was performed by mapping SNPs to 18,123 protein-coding genes 
using the SNP-wide mean model. Next, gene set analysis was conducted 
with 10,678 gene sets, including curated gene sets and GO terms from 
MsigDB v6.2. We employed a competitive test to determine whether 
genes in a gene set were more strongly associated with EduYears than 
the other genes. We then applied a Bonferroni correction to all tested 
genes and gene sets to account for multiple comparisons. MAGMA 
gene property analysis was performed using test statistics obtained 
from gene-based and gene set analyses.

Partitioned heritability analysis
Based on GWAS summary statistics of EAS samples, we used LDSC-SEG 
v1.0.1 (ref. 25) to prioritize tissues and cell types relevant to EduYears. 
We partitioned genome-wide SNP heritability into 97 baseline-LD 
annotations introduced by Gazal et al.26 and 9 tissue-specific catego-
ries as specified by Finucane et al.24. We used LD scores for the EAS 
and EUR populations using the 1KG Project phase 3 data provided by  
LDSC GitHub repository as a reference (see URLs).

Pathway enrichment analyses in EAS and EUR populations
We applied GSA-SNP2 (ref. 28) based on all P values from both EAS and 
EUR GWAS to detect biological pathways associated with EduYears. 
GSA-SNP2 employs the Z-statistics of the random set model, assessing 
pathways by combining adjusted gene scores for SNP counts in each 
gene using a monotone cubic spline trend curve. We evaluated gene 
set enrichment using the MSigDB C5 collection v5.2 database63,64. For 
the detailed options regarding the genes and pathways in the analysis, 
the race was selected as ancestry-matched (EUR or EAS), the reference  
genome version was set as GRCh37 (hg19), the padding size for 
genes was set to 20 kb, and the pathway size window was chosen as 
10–200. Significantly enriched pathways were defined as those with  
q value <0.05.

Cross-ancestry GWAS meta-analyses in EAS and EUR 
populations
We obtained summary statistics for all variants that passed QC filters 
in the GWAS meta-analysis for EduYears in EUR population from all 
discovery cohorts except 23andMe14, which included 766,345 par-
ticipants of EUR ancestry with 10.1 million genetic variants. Next, we 
conducted a cross-ancestry GWAS meta-analysis to synthesize EUR and 
EAS data using an IVW fixed-effect model implemented in METAL29, 
in which genomic control correction was applied to the EUR and EAS 
data. To evaluate the effect size heterogeneity between the two popu-
lations, we examined Cochran’s Q statistic implemented in METAL29. 
We applied MAMA30 to account for potential differences between  
the EAS and EUR populations in effect size, allele frequency and LD. 
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We used the 1KG Project phase 3 data as a reference panel54 to calculate 
the LD score for the EAS and EUR populations. Next, we filtered out 
variants with MAF <0.5%, and the remaining options for running the 
meta-analysis were set to default values. Okbay et al.10 reported an 
updated meta-analysis of EduYears in a sample of 3,037,499 individuals 
in 2022, which was nearly three times larger than that reported by Lee 
et al. in 2018 (n = 1,131,881)14. However, there is an access limitation to 
publicly released data for both GWAS results. The sample size in the 
publicly released data from Lee et al. (n = 766,345) was slightly larger 
than that reported by Okbay et al. (n = 765,283); therefore, we used the 
GWAS results from Lee et al. in this study.

Assessment of transferability
To assess the transferability of EduYears-associated loci between EAS 
and EUR populations, we employed the PAT ratio approach32. We ini-
tiated the analysis with 246 loci identified from publicly available 
EUR summary statistics (n = 766,345) by Lee et al.14. For each locus, 
we generated credible sets, incorporating lead SNPs and proxy SNPs, 
using the same criteria of the study by Huang et al.32. Specifically, we 
included SNPs within a 50-kb window of the lead SNP with r2 ≥ 0.8 and 
P < 100 × Plead using the 1KG Project phase 3 EUR data as the reference 
panel. A locus was considered ‘transferable’ if at least one variant within 
its credible set exhibited an association with EduYears in EAS (P < 0.05) 
and demonstrated the same effect direction as observed in EUR. To 
estimate statistical power, we used the default parameter (α = 0.05) 
and the summed-up power estimates for all published loci to obtain the 
expected number of transferable loci. Finally, by dividing the observed 
number of loci by the expected number of loci, we calculated the  
PAT ratio to estimate the transferability of EduYears loci between the 
EAS and EUR populations.

Fine-mapping analysis
We used the SuSiEx approach33, which builds on the Sum of Single 
Effects model, to perform within-EAS fine-mapping for EduYears in 
genome-wide significant loci and cross-population fine-mapping 
integrating EAS and EUR EduYears GWAS14. The GWAS summary statis-
tics in EAS population were derived from the two-step whole-genome 
regression models implemented in Regenie57, which filtered out vari-
ants with imputation INFO <0.6 and MAF <0.5%. The 1KG Project phase 
3 data were used as the reference panel to calculate the LD matrix in the 
corresponding populations. We extended the region of a significant 
locus, identified through FUMA22, by adding 250 kb to each side, if 
the region was less than 1 Mb. We then identified a 95% credible set in 
each region with the maximum number of the causal signals set to 10 
and the default settings in the remaining options. We showed regional 
plots for these genome-wide significant loci in both EAS and EUR popu-
lations using LocusZoom v0.9.6 (ref. 65). We also showed plots of 
PIPs in all credible sets identified from within- and cross-population 
fine-mapping, after filtering out variants with P > 5 × 10−8. Moreover, 
as the mismatch of the LD patterns between the reference panel and 
the GWAS discovery sample may bias the results for fine-mapping, we 
applied the SuSiE-RSS model34 to evaluate the consistency of the LD 
using the susieR package v0.12.10 implemented in R v4.2.1 (ref. 66).  
A larger ‘s’ metric from SuSiE-RSS implies a strong inconsistency 
between GWAS summary statistics and the LD matrix from the  
reference panel. We also constructed diagnostic plots to compare the 
observed z-scores against the expected z-scores for SNPs included in 
the fine-mapping.

Genetic correlation analysis with other traits
We estimated the cross-trait genetic correlation between EduYears and 
other traits by using LDSC v1.0.1 (refs. 18,67). We used publicly avail-
able GWAS summary statistics of socioeconomic and health-related 
traits for the EAS and EUR populations. A full list of GWAS summary 
statistics used in the analysis can be found in Supplementary Table 18. 

For both populations, we downloaded LD scores calculated from the 
1KG Project phase 3 data via the LDSC GitHub repository (see URLs). We 
then applied FDR correction to control for false positive discoveries.

Polygenic prediction
We assessed the predictive ability of PGSs derived from the current 
EAS genome-wide meta-analysis for EduYears and the EUR GWAS for 
EduYears14 by using three testing cohorts of EAS ancestry, which are 
the EMCIT, a Korean-based cohort and the Chinese samples in UKBB, 
and one testing cohort of EUR ancestry, which is the NIA-LOAD. These 
testing cohorts are summarized in Supplementary Note.

We constructed PGSs for EduYears using two Bayesian poly-
genic prediction methods, PRS-CS v1.0.0 (ref. 35) and PRS-CSx v1.0.0  
(ref. 36). The advantages of PRS-CS are robustness to varying genetic 
architectures, accurate LD modelling and computational efficiency. 
The posterior SNP effect sizes in PRS-CS were inferred from the EAS and 
EUR GWAS meta-analysis for EduYears. PRS-CSx can be considered as 
an extension of PRS-CS, which improves cross-population polygenic 
prediction by integrating GWAS summary statistics from multiple 
ancestry groups. The posterior SNP effect sizes in PRS-CSx were inferred 
from both the EAS and EUR GWAS meta-analyses for EduYears14. We 
then synthesized the SNP effect sizes across populations using an IVW 
meta-analysis of population-specific posterior effect size estimates. 
The 1KG Project phase 3 samples (EAS (n = 504), EUR (n = 503)) that 
matched the ancestry of the discovery samples were used as external LD 
reference panels. We fixed the global shrinkage parameter to be 0.01 in 
both PRS-CS and PRS-CSx, which is suitable for highly polygenic traits.

We evaluated the prediction accuracy of PGS using the partial R2 
in each testing cohort, which was implemented in R v4.2.1. We adjusted 
for BY, sex, and BY by sex interaction, and the top ten PCs in all models. 
The P value of the partial R2 was derived from a likelihood ratio test 
comparing the goodness of fit of the models with and without PGS. To 
infer confidence intervals, we used the boot package68 in R with 1,000 
bootstrap replicates over samples.

The details for the analyses under the same sample sizes are  
summarized in Supplementary Note.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
A detailed description of the availability and application process of the 
individual-level TWB data can be found at https://www.biobank.org.
tw/english.php. Briefly, TWB made available the individual-level data 
and biological samples from the participants of the prospective cohort 
study in 2014. Available data include questionnaire surveys, physical 
measures, blood and urine tests, biological samples and genomic 
data (whole-genome sequencing, whole-genome genotyping, DNA 
methylation, human leukocyte antigen typing and blood metabolome). 
Researchers interested in obtaining TWB individual-level data for 
research purposes would need to submit an application that includes a 
detailed research proposal and an institutional review board approval 
to TWB (contact email: biobank@gate.sinica.edu.tw). The applica-
tion will undergo scientific and ethical reviews by external experts in 
relevant scientific fields and the TWB ethical governance committee 
(EGC). Once approved, researchers will be able to access the data for 
the approved research projects during the approved time period. For 
international researchers outside of Taiwan, an additional international 
data transfer agreement needs to be filed to the Ministry of Health and 
Welfare of Taiwan to enable sharing of the TWB individual-level data 
and any derived data. Access to KoGES data, including phenotypes and 
genotypes, is granted upon approval from the Institutional Review 
Board of the Korean National Institute of Health. Comprehensive details 
on KoGES data distribution can be found at the Korea Biobank Project 
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website (https://www.kdca.go.kr/contents.es?mid=a30326000000). 
Data from the UKBB are available on application to their site (UKBB, 
https://www.ukbiobank.ac.uk). Data from the NIA-LOAD can be 
accessed from dbGaP under accession number phs000168.v1.p1. Sum-
mary statistics of EUR GWAS for EduYears by Lee and colleagues14 are 
publicly available at the Social Science Genetic Association Consortium 
(SSGAC, https://www.thessgac.org/). The full summary statistics of EAS 
GWAS and cross-ancestry GWAS are publicly available at the NHGRI-EBI 
GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads) with accession  
numbers GCST90296498 and GCST90296499, respectively.

Code availability
Previously developed pipelines were used to produce the results  
of the current study. No custom code was developed. Please see  
Supplementary Information for the list of URLs of the software and 
data utilized in this study.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Previously developed pipelines were used to produce the results of the current study. No custom code was developed. LocusZoom v0.9.6, 
https://my.locuszoom.org/; PBK genotype QC project, https://github.com/Annefeng/PBK-QC-pipeline; UK Biobank quality control 
documentation, https://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/imputation_documentation_May2015.pdf; LDSC v1.0.1, https://
github.com/bulik/ldsc; Regenie v2.2.4, https://rgcgithub.github.io/regenie/; PLINK v2.0,https://www.cog-genomics.org/plink/2.0/; METAL 
2020-05-05, https://github.com/statgen/METAL; SnpSift v4_3t_core, https://pcingola.github.io/SnpEff/; S-LDXR v0.3-beta, https://
huwenboshi.github.io/s-ldxr/; FUMA v1.3.7, https://fuma.ctglab.nl/; SuSiEx v1.0.0, https://github.com/getian107/SuSiEx/; R v4.2.1, https://
www.r-project.org/; susieR package v0.12.10, https://stephenslab.github.io/susieR/index.html; PRS-CS v1.0.0, https://github.com/getian107/
PRScs; PRS-CSx v1.0.0, https://github.com/getian107/PRScsx/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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A detailed description of the availability and application process of the individual-level TWB data can be found at https://www.biobank.org.tw/english.php. Briefly, 
TWB made available the individual-level data and biological samples from the participants of the prospective cohort study in 2014. Available data include 
questionnaire surveys, physical measures, blood and urine tests, biological samples and genomic data (whole-genome sequencing, whole-genome genotyping, DNA 
methylation, HLA typing, and blood metabolome). Researchers interested in obtaining TWB individual-level data for research purposes would need to submit an 
application that includes a detailed research proposal and an institutional review board (IRB) approval to TWB (contact email: biobank@gate.sinica.edu.tw). The 
application will undergo scientific and ethical reviews by external experts in relevant scientific fields and the TWB ethical governance committee (EGC). Once 
approved, researchers will be able to access the data for the approved research projects during the approved time period. For international researchers outside of 
Taiwan, an additional international data transfer agreement needs to be filed to the Ministry of Health and Welfare of Taiwan to enable sharing of the TWB 
individual-level data and any derived data. Access to KoGES data, including phenotypes and genotypes, is granted upon approval from the Institutional Review 
Board of the Korean National Institute of Health. Comprehensive details on KoGES data distribution can be found at the Korea Biobank Project website (https://
www.kdca.go.kr/contents.es?mid=a30326000000). Data from the UKBB is available on application to their site (UK Biobank, https://www.ukbiobank.ac.uk). Data 
from the NIA-LOAD can be accessed from dbGaP under accession number (phs000168.v1.p1). Summary statistics of EUR GWAS for EduYears by Lee and colleagues 
are publicly available at the Social Science Genetic Association Consortium (SSGAC, https://www.thessgac.org/). The full summary statistics of EAS GWAS and cross-
ancestry GWAS are publicly available at the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads) with accession numbers GCST90296498 and 
GCST90296499, respectively.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Sex was used as a covariate in the GWAS of educational attainment (EduYears) in East Asian. In total, 63,531 males (36%) and 
112,879 (64%) females were included in the East Asian GWAS.

Population characteristics For meta-analysis in East Asian population: 
104,722 individuals (37,766 males, the birth year ranged from 1939-1989) in Taiwan Biobank (TWB) and 71,678 individuals 
(25,755 males, the birth year ranged from 1918-1973) in Korean Genome and Epidemiology Study (KoGES). More population 
characteristics were described in Supplementary Table 1.

Recruitment Researchers in this study were not involved in the participant recruitment.

Ethics oversight This study has been approved by the ethics committee of National Health Research Institutes, Taiwan (TWB; EC1090402-E 
and EC1110608-E) and Seoul National University Bundang Hospital, South Korea (KoGES; X-2107-699-902). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a genome-wide association study (GWAS) for EduYears in East Asian population, followed by a cross-population GWAS meta-
analysis for EduYears between East Asian and European populations. The phenotype data is quantitative.

Research sample The total sample size was 942,745, consisting of 176,400 East Asian samples from two nation-wide biobanks (TWB and KoGES) and 
766,345 individuals of European genome-wide summary statistics. Both TWB and KoGES are population-based prospective cohorts 
by recruiting volunteers. The mean age was 49.9 ± 10.9 years for TWB samples and 54.1 ± 8.3 years for KoGES samples. There were 
more females than males in both cohorts. Please find the detail information for TWB and KoGES in Supplementary Table 1. In this 
study, we present the largest-to-date EduYears GWAS in East Asian population and cross-ancestry GWAS meta-analysis across East 
Asian and European populations for EduYears. 
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Sampling strategy Both TWB and KoGES are population-based prospective cohorts by recruiting volunteers. We did not perform sample size calculation; 

instead, we conducted an international collaborative study to maximize the sample size of East Asian for GWAS on educational 
attainment. 

Data collection In this observational study, data was collected independently in each cohort. Baseline characteristic data were collected from 
interviews, physical measurements, biomarkers, and genetic data in both TWB and KoGES. Blinding is not applicable as the paper 
reports a genome-wide association study for an observed variable with no experimental manipulation.

Timing TWB recruited participants from 2012 to 2020, and KoGES recruited participants from 2001 to 2013.

Data exclusions After stringent quality control (QC), we excluded 2,771 samples from TWB and 616 samples from KoGES in the EAS GWAS.

Non-participation No participants dropped out or declined participation.

Randomization This genome-wide association study (GWAS) is an observational study. Randomization is not applicable in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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