Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A social-semantic working-memory account for two canonical language areas

Abstract

Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Social meaning drives sentence effects in the left vTPJ and lATL (Experiment 1).
Fig. 2: Replicating the findings of Experiment 1 using longer and more natural sentential stimuli (Experiment 2).
Fig. 3: Persistent social-semantic-selective neural activity during the delay period (Experiment 3).
Fig. 4: Persistent social-semantic-selective neural activity during the processing of successive sentences (Experiment 4).
Fig. 5: The left vTPJ and lATL are sensitive to the socialness of non-linguistic stimuli (Experiment 5).
Fig. 6: The left vTPJ and lATL have stronger intrinsic connectivity to the social-semantic-processing areas than to the sentence-processing areas (Experiment 6).

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from Psychological Science Bank (https://doi.org/10.57760/sciencedb.psych.00138).

Code availability

Custom code that supports the findings of this study is available from Psychological Science Bank (https://doi.org/10.57760/sciencedb.psych.00138).

References

  1. de Villiers, J. The interface of language and theory of mind. Lingua 117, 1858–1878 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Richardson, H. et al. Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language. Nat. Commun. 11, 3246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scott, S. K. From speech and talkers to the social world: the neural processing of human spoken language. Science 366, 58–62 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunbar, R. I. M. Gossip in evolutionary perspective. Rev. Gen. Psychol. 8, 100–110 (2004).

    Article  Google Scholar 

  5. Bzdok, D. et al. Left inferior parietal lobe engagement in social cognition and language. Neurosci. Biobehav. Rev. 68, 319–334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mar, R. A. The neural bases of social cognition and story comprehension. Annu. Rev. Psychol. 62, 103–134 (2011).

    Article  PubMed  Google Scholar 

  7. Mellem, M. S., Jasmin, K. M., Peng, C. & Martin, A. Sentence processing in anterior superior temporal cortex shows a social–emotional bias. Neuropsychologia 89, 217–224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diveica, V., Koldewyn, K. & Binney, R. J. Establishing a role of the semantic control network in social cognitive processing: a meta-analysis of functional neuroimaging studies. NeuroImage 245, 118702 (2021).

    Article  PubMed  Google Scholar 

  9. Schurz, M. et al. Toward a hierarchical model of social cognition: a neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychol. Bull. 147, 293–327 (2021).

    Article  PubMed  Google Scholar 

  10. Binney, R. J. & Ramsey, R. Social semantics: the role of conceptual knowledge and cognitive control in a neurobiological model of the social brain. Neurosci. Biobehav. Rev. 112, 28–38 (2020).

    Article  PubMed  Google Scholar 

  11. Pexman, P. M., Diveica, V. & Binney, R. J. Social semantics: the organization and grounding of abstract concepts. Phil. Trans. R. Soc. B 378, 20210363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arioli, M., Gianelli, C. & Canessa, N. Neural representation of social concepts: a coordinate-based meta-analysis of fMRI studies. Brain Imaging Behav. 15, 1912–1921 (2021).

    Article  PubMed  Google Scholar 

  13. Lin, N. et al. Dissociating the neural correlates of the sociality and plausibility effects in simple conceptual combination. Brain Struct. Funct. 225, 995–1008 (2020).

    Article  PubMed  Google Scholar 

  14. Zhang, G., Hung, J. & Lin, N. Coexistence of the social semantic effect and non-semantic effect in the default mode network. Brain Struct. Funct. 228, 321–339 (2023).

    Article  PubMed  Google Scholar 

  15. Zahn, R. et al. Social concepts are represented in the superior anterior temporal cortex. Proc. Natl Acad. Sci. USA 104, 6430–6435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tamir, D. I., Thornton, M. A., Contreras, J. M. & Mitchell, J. P. Neural evidence that three dimensions organize mental state representation: rationality, social impact, and valence. Proc. Natl Acad. Sci. USA 113, 194–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Contreras, J. M., Banaji, M. R. & Mitchell, J. P. Dissociable neural correlates of stereotypes and other forms of semantic knowledge. Soc. Cogn. Affect. Neurosci. 7, 764–770 (2012).

    Article  PubMed  Google Scholar 

  18. Saxe, R. & Wexler, A. Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia 43, 1391–1399 (2005).

    Article  PubMed  Google Scholar 

  19. Lin, N., Bi, Y., Zhao, Y., Luo, C. & Li, X. The theory-of-mind network in support of action verb comprehension: evidence from an fMRI study. Brain Lang. 141, 1–10 (2015).

    Article  PubMed  Google Scholar 

  20. Lin, N. et al. Fine subdivisions of the semantic network supporting social and sensory–motor semantic processing. Cereb. Cortex 28, 2699–2710 (2018).

    Article  PubMed  Google Scholar 

  21. Spunt, R. P., Kemmerer, D. & Adolphs, R. The neural basis of conceptualizing the same action at different levels of abstraction. Soc. Cogn. Affect. Neurosci. 11, 1141–1151 (2016).

    Article  PubMed  Google Scholar 

  22. Lin, N. et al. Coin, telephone, and handcuffs: neural correlates of social knowledge of inanimate objects. Neuropsychologia 133, 107187 (2019).

    Article  PubMed  Google Scholar 

  23. Dronkers, N. F. et al. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004).

    Article  PubMed  Google Scholar 

  24. Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pallier, C., Devauchelle, A.-D. & Dehaene, S. Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malik-Moraleda, S. et al. An investigation across 45 languages and 12 language families reveals a universal language network. Nat. Neurosci. 25, 1014–1019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaccarella, E., Schell, M. & Friederici, A. D. Reviewing the functional basis of the syntactic Merge mechanism for language: a coordinate-based activation likelihood estimation meta-analysis. Neurosci. Biobehav. Rev. 80, 646–656 (2017).

    Article  PubMed  Google Scholar 

  28. Fedorenko, E. & Thompson-Schill, S. L. Reworking the language network. Trends Cogn. Sci. 18, 120–126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Labache, L. et al. A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Struct. Funct. 224, 859–882 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Matchin, W., Brodbeck, C., Hammerly, C. & Lau, E. The temporal dynamics of structure and content in sentence comprehension: evidence from fMRI-constrained MEG. Hum. Brain Mapp. 40, 663–678 (2019).

    Article  PubMed  Google Scholar 

  31. Humphries, C., Binder, J. R., Medler, D. A. & Liebenthal, E. Syntactic and semantic modulation of neural activity during auditory sentence comprehension. J. Cogn. Neurosci. 18, 665–679 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Price, C. J. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci. 1191, 62–88 (2010).

    Article  PubMed  Google Scholar 

  33. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124 (2017).

    Article  PubMed  Google Scholar 

  34. D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).

    Article  PubMed  Google Scholar 

  35. Fuster, J. M. Network memory. Trends Neurosci. 20, 451–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Postle, B. R. Working memory as an emergent property of the mind and brain. Neuroscience 139, 23–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Cowan, N. Attention and Memory: An Integrated Framework (Oxford Univ. Press, 1998); https://doi.org/10.1093/acprof:oso/9780195119107.001.0001

  38. Potter, M. C., Kroll, J. F., Yachzel, B., Carpenter, E. & Sherman, J. Pictures in sentences: understanding without words. J. Exp. Psychol. Gen. 115, 281–294 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Potter, M. C. Very short-term conceptual memory. Mem. Cogn. 21, 156–161 (1993).

    Article  CAS  Google Scholar 

  40. Potter, M. Conceptual short term memory in perception and thought. Front. Psychol. 3, 113 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang, G., Xu, Y., Zhang, M., Wang, S. & Lin, N. The brain network in support of social semantic accumulation. Soc. Cogn. Affect. Neurosci. 16, 393–405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuhnke, P. et al. The role of the angular gyrus in semantic cognition: a synthesis of five functional neuroimaging studies. Brain Struct. Funct. 228, 273–291 (2023).

    Article  PubMed  Google Scholar 

  44. Townsend, J. T. & Ashby, F. G. Stochastic Modeling of Elementary Psychological Processes (Cambridge Univ. Press, 1983).

  45. Paunov, A. M. et al. Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and theory of mind (ToM) brain networks. Neurobiol. Lang. 3, 413–440 (2022).

    Article  Google Scholar 

  46. Hagoort, P. & Indefrey, P. The neurobiology of language beyond single words. Annu. Rev. Neurosci. 37, 347–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Heard, M. & Lee, Y. S. Shared neural resources of rhythm and syntax: an ALE meta-analysis. Neuropsychologia 137, 107284 (2020).

    Article  PubMed  Google Scholar 

  48. Sreenivasan, K. K. & D’Esposito, M. The what, where and how of delay activity. Nat. Rev. Neurosci. 20, 466–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Postle, B. R. The cognitive neuroscience of visual short-term memory. Cogn. Control 1, 40–46 (2015).

    Google Scholar 

  50. Manoach, D. S. et al. Prefrontal cortex fMRI signal changes are correlated with working memory load. NeuroReport 8, 545–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Rottschy, C. et al. Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage 60, 830–846 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Druzgal, T. J. & D’Esposito, M. Activity in fusiform face area modulated as a function of working memory load. Cogn. Brain Res. 10, 355–364 (2001).

    Article  CAS  Google Scholar 

  53. Meyer, M. L., Taylor, S. E. & Lieberman, M. D. Social working memory and its distinctive link to social cognitive ability: an fMRI study. Soc. Cogn. Affect. Neurosci. 10, 1338–1347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu, Y. & Chun, M. M. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440, 91–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, R. C., Wu, D., Freedman, M., Jackson, E. F. & Lesch, M. An event-related fMRI investigation of phonological versus semantic short-term memory. J. Neurolinguistics 16, 341–360 (2003).

    Article  Google Scholar 

  56. Song, J.-H. & Jiang, Y. Visual working memory for simple and complex features: an fMRI study. NeuroImage 30, 963–972 (2006).

    Article  PubMed  Google Scholar 

  57. Thornton, M. A. & Conway, A. R. A. Working memory for social information: chunking or domain-specific buffer? NeuroImage 70, 233–239 (2013).

    Article  PubMed  Google Scholar 

  58. Zhao, Y., Kuai, S., Zanto, T. P. & Ku, Y. Neural correlates underlying the precision of visual working memory. Neuroscience 425, 301–311 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Amft, M. et al. Definition and characterization of an extended social–affective default network. Brain Struct. Funct. 220, 1031–1049 (2015).

    Article  PubMed  Google Scholar 

  60. Wang, Y. et al. A large-scale structural and functional connectome of social mentalizing. NeuroImage 236, 118115 (2021).

    Article  PubMed  Google Scholar 

  61. Oosterhof, N. N. & Todorov, A. The functional basis of face evaluation. Proc. Natl Acad. Sci. USA 105, 11087–11092 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Olson, I. R., McCoy, D., Klobusicky, E. & Ross, L. A. Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc. Cogn. Affect. Neurosci. 8, 123–133 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dunbar, R. I. M., Marriott, A. & Duncan, N. D. C. Human conversational behavior. Hum. Nat. 8, 231–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Branco, P., Seixas, D. & Castro, S. L. Mapping language with resting-state functional magnetic resonance imaging: a study on the functional profile of the language network. Hum. Brain Mapp. 41, 545–560 (2020).

    Article  PubMed  Google Scholar 

  65. Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E. & Saxe, R. Language processing in the occipital cortex of congenitally blind adults. Proc. Natl Acad. Sci. USA 108, 4429–4434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferstl, E. C., Neumann, J., Bogler, C. & von Cramon, D. Y. The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Hum. Brain Mapp. 29, 581–593 (2008).

    Article  PubMed  Google Scholar 

  67. Hagoort, P. The neurobiology of language beyond single-word processing. Science 366, 55–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Lin, N. et al. Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension. Cogn. Affect. Behav. Neurosci. 18, 273–283 (2018).

    Article  PubMed  Google Scholar 

  69. Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    Article  PubMed  Google Scholar 

  70. Feng, W., Yu, H. & Zhou, X. Understanding particularized and generalized conversational implicatures: is theory-of-mind necessary? Brain Lang. 212, 104878 (2021).

    Article  PubMed  Google Scholar 

  71. Lewis, P. A., Rezaie, R., Brown, R., Roberts, N. & Dunbar, R. I. M. Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage 57, 1624–1629 (2011).

    Article  PubMed  Google Scholar 

  72. Samson, D., Apperly, I. A., Chiavarino, C. & Humphreys, G. W. Left temporoparietal junction is necessary for representing someone else’s belief. Nat. Neurosci. 7, 499–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Dynamic neural architecture for social knowledge retrieval. Proc. Natl Acad. Sci. USA 114, E3305–E3314 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rapp, A. M., Mutschler, D. E. & Erb, M. Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies. NeuroImage 63, 600–610 (2012).

    Article  PubMed  Google Scholar 

  75. Yang, H. & Bi, Y. From words to phrases: neural basis of social event semantic composition. Brain Struct. Funct. 227, 1683–1695 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang, X., Wang, B. & Bi, Y. Close yet independent: dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe. Hum. Brain Mapp. 40, 4759–4776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dingemanse, M. et al. Beyond single-mindedness: a figure–ground reversal for the cognitive sciences. Cogn. Sci. 47, e13230 (2023).

    Article  PubMed  Google Scholar 

  78. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Redcay, E., Velnoskey, K. R. & Rowe, M. L. Perceived communicative intent in gesture and language modulates the superior temporal sulcus. Hum. Brain Mapp. 37, 3444–3461 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Weisberg, J., Hubbard, A. L. & Emmorey, K. Multimodal integration of spontaneously produced representational co-speech gestures: an fMRI study. Lang. Cogn. Neurosci. 32, 158–174 (2017).

    Article  PubMed  Google Scholar 

  81. Hassabis, D. et al. Imagine all the people: how the brain creates and uses personality models to predict behavior. Cereb. Cortex 24, 1979–1987 (2014).

    Article  PubMed  Google Scholar 

  82. Van Overwalle, F., Ma, N. & Baetens, K. Nice or nerdy? The neural representation of social and competence traits. Soc. Neurosci. 11, 567–578 (2016).

    Article  PubMed  Google Scholar 

  83. Thornton, M. A. & Mitchell, J. P. Theories of person perception predict patterns of neural activity during mentalizing. Cereb. Cortex 28, 3505–3520 (2018).

    Article  PubMed  Google Scholar 

  84. Martin, R. C., Ding, J., Hamilton, A. C. & Schnur, T. T. Working memory capacities neurally dissociate: evidence from acute stroke. Cereb. Cortex Commun. 2, tgab005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yue, Q., Martin, R. C., Hamilton, A. C. & Rose, N. S. Non-perceptual regions in the left inferior parietal lobe support phonological short-term memory: evidence for a buffer account? Cereb. Cortex 29, 1398–1413 (2019).

    Article  PubMed  Google Scholar 

  86. Yue, Q. & Martin, R. C. Maintaining verbal short-term memory representations in non-perceptual parietal regions. Cortex 138, 72–89 (2021).

    Article  PubMed  Google Scholar 

  87. Meyer, M. L. & Collier, E. Theory of minds: managing mental state inferences in working memory is associated with the dorsomedial subsystem of the default network and social integration. Soc. Cogn. Affect. Neurosci. 15, 63–73 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bemis, D. K. & Pylkkänen, L. Simple composition: a magnetoencephalography investigation into the comprehension of minimal linguistic phrases. J. Neurosci. 31, 2801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bemis, D. K. & Pylkkänen, L. Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cereb. Cortex 23, 1859–1873 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Graves, W. W. et al. Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct. Funct. 228, 255–271 (2023).

    Article  PubMed  Google Scholar 

  91. Hung, J., Wang, X., Wang, X. & Bi, Y. Functional subdivisions in the anterior temporal lobes: a large scale meta-analytic investigation. Neurosci. Biobehav. Rev. 115, 134–145 (2020).

    Article  PubMed  Google Scholar 

  92. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Seghier, M. L. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19, 43–61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Price, A. R., Bonner, M. F., Peelle, J. E. & Grossman, M. Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J. Neurosci. 35, 3276–3284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schell, M., Zaccarella, E. & Friederici, A. D. Differential cortical contribution of syntax and semantics: an fMRI study on two-word phrasal processing. Cortex 96, 105–120 (2017).

    Article  PubMed  Google Scholar 

  96. Chinese Linguistic Data Consortium (Tsinghua University, State Key Laboratory of Intelligent Technology and Systems, and Chinese Academy of Sciences, Institute of Automation, 2003).

  97. Lin, N., Yu, X., Zhao, Y. & Zhang, M. Functional anatomy of recognition of Chinese multi-character words: convergent evidence from effects of transposable nonwords, lexicality, and word frequency. PLoS ONE 11, e0149583 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vernon, R. J. W., Sutherland, C. A. M., Young, A. W. & Hartley, T. Modeling first impressions from highly variable facial images. Proc. Natl Acad. Sci. USA 111, E3353–E3361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao, W. et al. The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 38, 149–161 (2008).

    Article  Google Scholar 

  100. The CAS-PEAL Face Database (ICT-ISVISION Joint Research & Development Laboratory for Face Recognition, 2008); http://www.jdl.link/peal/home.htm

  101. Free Stock Video Footage (Videvo Team, 2021); https://www.videvo.net/free-stock-footage/

  102. Yan, C. & Zang, Y. DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010).

    Google Scholar 

  103. Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339–351 (2016).

    Article  PubMed  Google Scholar 

  104. Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).

    Article  PubMed  Google Scholar 

  105. Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).

    Article  PubMed  Google Scholar 

  106. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Yan, C.-G. et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage 76, 183–201 (2013).

    Article  PubMed  Google Scholar 

  108. Blank, I. A. & Fedorenko, E. No evidence for differences among language regions in their temporal receptive windows. NeuroImage 219, 116925 (2020).

    Article  PubMed  Google Scholar 

  109. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models using 'Eigen' and S4 (version 1.1-30) R package (2007).

  110. R Core Team. R: A Language and Environment for Statistical Computing (version 4.2.1) R Foundation for Statistical Computing (2020).

  111. Morey, R. & Rouder, J. N. BayesFactor. R package v.0.9.12-4.3 (2015).

  112. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374 (2012).

    Article  Google Scholar 

  113. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. NeuroImage 19, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Meyer, D. et al. E1071: Misc Functions of the Department of Statistics, TU Wien (version 1.7-11) R package (2022).

  115. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (grant no. 31871105 to N.L.); the Scientific Foundation of the Institute of Psychology, Chinese Academy of Sciences (grant no. E2CX3625CX to X.W. and N.L.); the Scientific Foundation of the Institute of Psychology, Chinese Academy of Sciences (grant no. E1CX4725CX to X.W.); the National Science and Technology Innovation 2030 Major Program (grant no. 2021ZD0204104 to Y.B.); and the National Natural Science Foundation of China (grant no. 31925020 to Y.B.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper. Experiment 4 in this paper used the CAS-PEAL-R1 face database collected under the sponsor of the Chinese National Hi-Tech Program and ISVISION Tech. Co. Ltd. We thank X. Wang, H. Yang, H. Wen and W. Zhou for assistance in performing the MVPA and DCM analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and N.L. conceived the study. G.Z., N.L. and W.S. developed the methods. G.Z. performed the investigation and the data analysis. N.L. supervised the work. G.Z. and N.L. wrote the initial draft. All authors reviewed and edited the paper.

Corresponding author

Correspondence to Nan Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Moritz Wurm, David Kemmerer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Tables 1–26 and description of the methods and results of the location-based analyses of Neurosynth and the methods and results of the behavioural analysis.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xu, Y., Wang, X. et al. A social-semantic working-memory account for two canonical language areas. Nat Hum Behav 7, 1980–1997 (2023). https://doi.org/10.1038/s41562-023-01704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01704-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing