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Scaffolding cooperation in human groups 
with deep reinforcement learning

Kevin R. McKee    1 , Andrea Tacchetti1, Michiel A. Bakker1, Jan Balaguer1, 
Lucy Campbell-Gillingham1, Richard Everett1 & Matthew Botvinick1,2

Effective approaches to encouraging group cooperation are still an open 
challenge. Here we apply recent advances in deep learning to structure 
networks of human participants playing a group cooperation game. We 
leverage deep reinforcement learning and simulation methods to train a 
‘social planner’ capable of making recommendations to create or break 
connections between group members. The strategy that it develops 
succeeds at encouraging pro-sociality in networks of human participants 
(N = 208 participants in 13 groups) playing for real monetary stakes. Under 
the social planner, groups finished the game with an average cooperation 
rate of 77.7%, compared with 42.8% in static networks (N = 176 in 11 groups). 
In contrast to prior strategies that separate defectors from cooperators 
(tested here with N = 384 in 24 groups), the social planner learns to take a 
conciliatory approach to defectors, encouraging them to act pro-socially by 
moving them to small highly cooperative neighbourhoods.

Cooperation is contagious. Social contact and interaction can spread 
pro-sociality from one person to another1–3. This property can cause 
cascades of cooperation in community settings, catalysing the accu-
mulation of amity within groups and networks4,5. However, antisocial 
behaviour is also contagious6. Social networks thus have a correspond-
ing tendency to propagate selfishness and other negative phenomena7,8. 
Such contagion dynamics pervade both personal social networks and 
contemporary social media9,10, where an increasing amount of inter-
personal interactions unfold11–13. Social planners face a challenge: how 
can one structure a community to scaffold and support cooperation, 
while mitigating the risk that defection will take hold?

Assortative mixing—a network phenomenon in which coopera-
tors connect preferentially with other cooperators, and defectors 
with other defectors—is central to many prior solutions. For example, 
Rand, Arbesman and Christakis14 provided individuals with random 
opportunities to make or break links to other community members, 
showing that link updates cause clustering among individuals sharing 
the same strategy and mitigate the natural decline in group coopera-
tion. Similarly, Shirado and Christakis15 embedded cooperative ‘bots’ 
throughout networks to foster homophilic clusters and promote coop-
eration. This line of research contends that assortative mixing prevents 

antisocial contagion from corrupting altruistic behaviour by partition-
ing cooperators from defectors. It also frames assortment mecha-
nisms in terms of punishment or ostracism: specifically, assortment 
threatens defectors with exclusion from the benefits of cooperative 
relationships14–17. In combination, these effects are believed to protect 
existing cooperators and punish defectors to incentivize changes to 
their behaviour. Indeed, studies of modern hunter–gatherer tribes 
indicate that cooperative assortment may trace back to early epochs 
of human evolutionary history18,19.

Several recent research efforts propose using machine learning to 
identify novel solutions to social challenges (for example, refs. 20,21). 
Artificial intelligence (AI) and machine learning systems increasingly 
suffuse everyday social processes22, so it seems natural to ask how 
they might support beneficial outcomes for human communities. 
For network-based problems, the application of machine learning is 
especially fitting: algorithms play a key role mediating the structure of 
online social networks23–25. Algorithms make recommendations to con-
nect users, thus changing the structure of the underlying social graph.

In this Article, bringing these lines of research together, we aim 
to construct a social planner with deep learning that maximizes coop-
eration among human participants in a network cooperation game 
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•	 In the ‘random recommendations’ condition, on each turn the 
social planner randomly samples 30% of the graph’s possible edges 
and recommends that they be changed, creating edges if they 
are not active and breaking edges if they are already established  
(ref. 14; N = 208 participants across 13 groups).

•	 Finally, in the ‘cooperative clustering’ condition, the social planner 
uses a rule-based system to cluster cooperators (N = 176 partici-
pants across 11 groups). On each turn, the cooperative-clustering 
social planner makes recommendations that first disengage defec-
tors from cooperators, and secondarily that connect cooperators 
with other cooperators15. Following prior implementation, the 
cooperative-clustering planner selects an additional 5% of the 
graph’s possible edges at random and recommends that they be 
changed.

Across the GraphNet planner condition and all baseline conditions, 
we recruit N = 768 participants in 48 groups. Each group consists of 
16 participants playing 15 rounds of the cooperative network game 
for real monetary stakes.

Results
Following past studies14–16,28, we employ generalized linear mixed mod-
els to analyse cooperation decisions at the individual level, with random 
effects for participants nested in groups. To evaluate all other group 
outcomes, we make use of group-level linear models. For both sets 
of models, visual inspections of residual and quantile–quantile plots 
suggest no practical issues with assuming normality and equal vari-
ances29. Detailed model specifications are provided in Supplementary 
Information and within our analysis scripts available at ref. 30.

Across all four conditions, groups began the game with an average 
cooperation rate of 69.5%. As expected, cooperation degrades substan-
tially in the static network condition (generalized linear mixed model; 
coefficient −0.24, 95% confidence interval (CI) −0.27 to −0.20, P < 0.001; 
Fig. 2a). Without the opportunity to update their connections, groups 
quickly succumb to the tragedy of the commons: cooperation levels 
decline to 42.8% by the time the game ends in round 15. The random 
recommendation baseline (coefficient −0.13, 95% CI −0.16 to −0.10, 
P < 0.001; Fig. 2b) and cooperative-clustering baseline (coefficient 
−0.07, 95% CI −0.10 to −0.04, P < 0.001; Fig. 2c) mitigate the initial 
decline of cooperation, concluding the game with higher cooperation 
rates than observed on static networks. Nonetheless, cooperation still 
declines over time, ending at 57.0% with random recommendations 
and 61.2% with cooperative clustering.

In contrast, under the GraphNet social planner, cooperation rates 
increase significantly over the course of the game (coefficient 0.04, 95% 
CI 0.01 to 0.07, P = 0.007; Fig. 2d). Groups conclude the game in round 
15 with a cooperation rate of 77.7%. Comparing directly against the 
other rewiring strategies, the GraphNet planner supports significantly 
higher rates of cooperation than static networks (z = 13.0, P < 0.001), 
random recommendations (z = 8.3, P < 0.001) and cooperative cluster-
ing (z = 5.4, P < 0.001), respectively (two-tailed comparisons, adjusted 
for multiple testing; Supplementary Fig. 6). To help illustrate the 
divergent outcomes fostered by the GraphNet and baseline planners,  
Fig. 2e provides graphical illustrations of networks from each condi-
tion. With the support of the GraphNet planner, groups enjoy high 
levels of capital relative to the other conditions (Extended Data Fig. 1),  
as well as minimal inequality (Fig. 2f; see also Extended Data Fig. 1).

To better understand the GraphNet planner’s strategy, we analyse 
each planner’s recommendations by valence (connect or disconnect) 
and by the cooperation decisions of the players involved (cooper-
ate–cooperate, cooperate–defect or defect–defect). The random 
recommendation planner is not designed to take player choices into 
account when generating recommendations. Indeed, its behaviour 
in the actual groups provides no empirical evidence that participant 
choice affects its recommendations (χ2(2) = 0.9, P = 0.639; likelihood 

(Fig. 1a; refs. 14,15; see also Supplementary Information Section A).  
Players are positioned on the vertices of a graph; edges represent 
active interpersonal links between players (Supplementary Fig. 1). 
Players accumulate (or lose) capital through turn-based interactions 
with their neighbours. On each turn, players choose to cooperate 
or defect. Cooperation exacts a constant cost c = 0.05 per linked 
neighbour from a player’s capital. Each neighbour receives a constant 
benefit b = 0.1, generating net benefits for the neighbourhood at 
personal cost to the cooperator. Thus, group welfare is highest when 
everyone cooperates, but for each group member it is tempting to 
free-ride on the pro-sociality of others. Every turn, the social planner 
observes the graph structure and the players’ most recent decisions 
(that is, their choice to cooperate or defect in the previous round). 
The planner then makes recommendations to the players as to which 
edges should be established or broken. Players decide whether to 
accept or reject the recommendations, resulting in changes to the 
graph connectivity. Subsequently, another turn begins. The game 
imposes no constraints on graph structure aside from precluding 
self-loops: with the right circumstances and recommendations, a 
social planner can produce outcomes as extreme as network isolates 
or fully connected graphs.

Here we leverage deep reinforcement learning and simulation 
methods to develop a new social planner capable of scaffolding coop-
eration among groups of interacting humans. The deep neural network 
tunes its parameters through repeated simulations of the cooperation 
game. Through this ‘training’ stage, the network refines its ‘policy’: a 
mapping from the state of the game (for example, the connectivity 
between players and their recent choices) to a probability distribution 
over actions for the planner to take (for example, recommendations 
to make to players). The policy starts out as a random mapping at the 
beginning of training, with the planner making random recommenda-
tions to players. Through reinforcement learning—and in particular, 
optimization through trial and error in simulation—the policy itera-
tively improves until the social planner is able to maintain cooperation 
at high levels in games with real human participants (the ‘evaluation’ 
stage). Neural networks can learn through interaction with real human 
groups, but the amount of trial-and-error experience needed for deep 
reinforcement learning takes a generally prohibitive amount of time 
to accumulate. Interactions with simulated human groups enable our 
social planning agent to gain a large amount of experience in a short 
period of time.

In specific terms, we construct a reinforcement learning agent with 
a graph neural network (a ‘GraphNet’26). GraphNets explicitly encode 
graph structure into their computations (Fig. 1b,c). On a given turn of 
the network cooperation game, the GraphNet computes policy logits 
(representing a probability distribution over possible actions to take) 
and a value estimate (representing a prediction of future reward, given 
the current state of the game). Our reinforcement learning agent uses 
advantage actor–critic 27 as its learning algorithm.

The GraphNet-based agent trains to make rewiring recommenda-
tions by repeatedly playing as the social planner in simulation. Through 
games with simulated human players, the agent learns to effectively 
scaffold group cooperation. Across different random initializations 
of its neural network, the agent reliably converges to a high level of 
performance by the end of training (Supplementary Fig. 5). We select 
one of these high-performing agents to evaluate in 16-player games 
with human participants (the ‘GraphNet social planner’ condition; 
N = 208 participants across 13 groups).

To better contextualize the capabilities and behaviour of the 
GraphNet social planner, we compare its performance against several 
baseline strategies:

•	 In the ‘static network’ condition, the social planner never rec-
ommends any changes to the graph (N = 176 participants across  
11 groups).

http://www.nature.com/nathumbehav
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ratio test). The cooperative-clustering planner, in contrast, explicitly 
incorporates player choices into its planning algorithm: empirically, 
participant choices exert a significant influence on its recommendation 
patterns (χ2(2) = 92.0, P < 0.001).

We empirically find that the GraphNet planner learns a conditional 
approach to its recommendations, taking into account the coopera-
tion decisions of the participants involved on each edge (χ2(2) = 3451.8, 
P < 0.001; Fig. 3). A representation analysis31,32 provides convergent 
evidence that the social planner learns to encode and track the coop-
erativeness of the human participants in its neural network (Supple-
mentary Fig. 7 and Supplementary Information Section F2).

The GraphNet planner virtually always recommends establish-
ing links between cooperators (P = 0.99, 95% credible interval (CrI) 
0.99 to 1.00), and rarely suggests removing them (P = 0.03, 95% CrI 
0.03 to 0.03; Fig. 3a). The planner avoids creating new connections 
between defectors (P = 0.00, 95% CrI 0.00 to 0.00), and—unlike the 
cooperative-clustering baseline—recommends breaking existing links 
between defectors (P = 1.00, 95% CrI 0.99 to 1.00; Fig. 3c). This approach 
diminishes clustering among defectors. Defectors rarely connect with 
one another under the GraphNet planner, as exemplified in Fig. 2e.  
The GraphNet planner also suggests a mix of making connections 

(P = 0.58, 95% CrI 0.56 to 0.60) and breaking connections (P = 0.50, 
95% CrI 0.49 to 0.52) involving one cooperator and one defector  
(Fig. 3b). The nuance of these cooperate–defect link recommendations 
becomes clearer when examining the planner’s strategy over time. The 
GraphNet planner discovers a strategy that initially takes a conciliatory 
stance towards defectors, establishing a number of cooperate–defect 
links at the beginning of the game (Fig. 3d). As the game progresses, the 
GraphNet planner grows increasingly protective of cooperators, rec-
ommending a greater number of deletions for cooperate–defect links 
(Fig. 3e). The planner sends the average defector 1.4 recommendations 
(interdecile range 0–4) to connect with cooperators in each of the first 
four rounds, compared with 0.9 recommendations (interdecile range 
0–3) in each of the last four rounds.

This conciliatory approach produces distinct patterns of network 
assortativity compared with the other conditions (Fig. 4a,b). In particu-
lar, the GraphNet planner induces near-zero assortment between coop-
erators and defectors (linear model; β = −0.06, 95% CI −0.14 to 0.02, 
P = 0.142; Fig. 4a). In contrast, and as expected, cooperative clustering 
induces positive choice assortativity by the end of the game, reflect-
ing a positive tendency for cooperators to cluster with cooperators 
and defectors to cluster with defectors (β = 0.10, 95% CI 0.01 to 0.19, 
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Fig. 1 | Overview of the network cooperation game and our social-planning 
agent. a, In this cooperation game, players are connected on a network and 
decide to cooperate with or defect from their neighbours. A social planner 
observes the players’ decisions and the network structure, and then recommends 
changes to the network. Players choose to accept or reject the recommendations 
to their connections, and then a new turn begins. b, Our agent learns to act as the 
social planner and makes rewiring recommendations through a graph neural 
network (a ‘GraphNet’). We optimize the GraphNet through reinforcement 
learning, producing a value function ω(s) and policy function π(s). c, GraphNets 

explicitly encode graph structure in their computations. In this cooperation 
game, social planners observe the entire network of players and their 
cooperation decisions from the most recent round. The GraphNet in our social 
planning agent observes this information and processes the graph’s global 
features (u), node features (V) and edge features (E) with a sequence of multilayer 
perceptrons (MLPs) and summation functions (ρs), producing policy logits (E′) 
and a value estimate (u′). For more detail, see Supplementary Information 
Section E.
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P = 0.029). These patterns are robust to multiple specifications for 
calculating assortative mixing (Supplementary Information Section 
F2 and Extended Data Fig. 2). Remarkably, the GraphNet planner’s 
non-assortative strategy does not blunt the connectivity of coopera-
tors (linear model; β = 6.2, 95% CI 5.3 to 7.2, P < 0.001; Fig. 4b). The rela-
tive degree for cooperators under the GraphNet planner significantly 
exceeds the levels seen on static networks (t(44) = 9.0, P < 0.001) under 
the random recommendations planner (t(44) = 5.5, P < 0.001) and under 
the cooperative-clustering planner (t(44) = 5.4, P < 0.001), respectively 
(two-tailed comparisons, adjusted for multiple testing). Under the 
GraphNet planner, participants enjoy non-assortative interactions, 
with cooperators exerting an outsize influence throughout the graph.

These patterns—non-assortativity and high connectivity for a 
subset of nodes in a graph—are characteristic of a core–periphery struc-
ture33. Consequently, we investigate the possibility that the GraphNet 
planner organizes communities into core–periphery networks. To 

do so, we estimate the degree to which networks in each condition 
manifest a core–periphery structure (ref. 34; see also Supplementary 
Information Section F2). Groups receiving the GraphNet planner’s 
recommendations exhibit significant levels of core–periphery struc-
ture (linear model; β = 0.46, 95% CI 0.35 to 0.58, P < 0.001). Within the 
GraphNet planner condition, cooperators account for on average 96.7% 
of the network core, and defectors 61.2% of the periphery. This pattern 
is extremely unlikely to emerge by chance (P < 0.001; permutation 
test). Rather than punish defectors with exclusion, the planner rec-
ommends they move into small, highly cooperative neighbourhoods  
(Fig. 4c). Visual inspection of networks formed by the different groups 
of participants underscores how consistently this core–periphery  
pattern emerges (Supplementary Fig. 8).

This approach represents a substantial departure from prior stud-
ies, in which ‘decentralized ostracism’ reduces the relative payoffs 
for defectors and—as the argument goes—incentivizes them to begin 
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Fig. 2 | Group outcomes fostered across different conditions. Bold dotted  
lines represent the mean level across groups. Solid lines reflect the levels in 
individual groups. a, Cooperation levels tend to devolve in static networks.  
b, Random recommendations mitigate the decline of cooperation. c, Similarly, 
the cooperative-clustering social planner stabilizes cooperation levels. d, In 
contrast, the GraphNet social planner strengthens cooperation above starting 
levels. e, These networks illustrate representative games from round 10 of each 

condition. Node colour represents the participant’s previous choice (blue, 
cooperate; red, defect). Node size reflects cumulative cooperative capital (larger 
nodes indicate a greater amount of capital). f, The GraphNet planner induces 
high levels of group equality. These Lorenz curves display the cumulative share of 
capital held by the group in the final round of the game, with the dashed 45° line 
reflecting perfect equality.
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cooperating14,15,28. For example, cooperative clustering decreases the 
mean payoff for defectors over time, causing the relative payoff advan-
tage of defection to gradually disappear. In contrast, under the Graph-
Net social planner, the average payoff for defectors never declines 
below the average payoff for cooperation (Supplementary Fig. 9). In 
spite of this payoff gap, the planner is still able to maintain cohesive 
group cooperation, with minimal group inequality relative to the other 
conditions (measured through the Gini coefficient; Fig. 2f). Our appli-
cation of deep reinforcement learning breaks from prior approaches 
and converges on an encouraging approach towards defectors.

Deep learning methods are often criticized for their lack of ‘inter-
pretability’ (refs. 35,36; but see also ref. 37). In particular, it is difficult 
to know what exactly drives the behaviour of deep neural networks, 
given the inherent complexity, opacity, and high non-linearity of the 
solutions they learn (the ‘black box’ problem). We test whether the 
conciliatory patterns we observe are sufficient to explain the Graph-
Net planner’s performance. Alternatively, its success may stem from 
the black box of deep learning—that is, from a mechanism more dif-
ficult for us to interpret. To test these alternatives, we construct a new 
‘encouragement’ social planner based on our analysis of the GraphNet 
planner’s policy (that is, the patterns depicted in Fig. 3). In contrast 

with the GraphNet planner’s complex, opaque computations, the 
encouragement planner makes recommendations as a simple function 
of player cooperation choices and the round number (Supplementary 
Tables 7–9). For example, when faced with a connection between a 
cooperator and a defector in round 1, the encouragement planner 
will recommend removing the link with 4.8% probability; faced with 
a similar pair in the final round, it will recommend removing the link 
with 72.2% probability.

A follow-up study with human groups (N = 224 participants across 
14 groups) validates the effectiveness of the conciliatory approach 
we observe from the GraphNet planner. The encouragement planner 
significantly improves group cooperation levels over the course of 
the game (generalized linear mixed model; coefficient 0.04, 95% CI 
0.00 to 0.06, P = 0.005; Fig. 5a). A direct comparison shows that the 
encouragement approach significantly outperforms static networks 
(z = 13.4, P < 0.001), random recommendations (z = 8.4, P < 0.001) and 
cooperative clustering (z = 5.4, P < 0.001) at supporting group coop-
eration, respectively (two-tailed comparisons, adjusted for multiple 
testing; Supplementary Fig. 10). The encouragement planner enhances 
group cooperation to a similar extent as the GraphNet planner 
(z = −0.3, P = 1.000) and exerts similar effects on network assortativity  
(Fig. 5b), consistently engineering a core–periphery structure for groups  
(Fig. 5c; see also Supplementary Fig. 12).

The recommendations from both the GraphNet planner and the 
encouragement planner produce networks with notably high density, 
especially relative to the baseline conditions (Extended Data Fig. 1). 
Under the GraphNet planner, for example, several groups reached full 
networked connectivity (Supplementary Fig. 8). To evaluate the pos-
sibility that high density alone drives the success of these planners—
without the need for an encouraging approach—we run two additional 
follow-up studies (N = 400 participants across 25 groups). First, we build 
a ‘neutral’ social planner that aims to recreate the connectivity dynam-
ics observed under the GraphNet planner, without regard for player’s 
choices (that is, dispensing with the encouraging approach to defectors; 
N = 192 participants across 12 groups). As intended, this planner gener-
ates levels of network connectivity to a similar extent as the GraphNet 
planner (t(80) = −1.93, P = 0.468; two-tailed comparison). Nonetheless, 
its choice-agnostic approach degrades group cooperation significantly 
over time (generalized linear mixed model; coefficient −0.17, 95% CI 
−0.19 to −0.14, P < 0.001). As a further test of whether network density 
drives the high cooperation rates seen with the GraphNet planner, we 
construct another social planner that seeks to maximize network con-
nectivity as much as possible (N = 208 participants across 13 groups). 
This strategy generates levels of network density that significantly 
exceed those produced by the GraphNet planner (t(80) = 5.34, P < 0.001; 
two-tailed comparison). However, this also causes a precipitous decline 
in cooperation (coefficient −0.51, 95% CI −0.55 to −0.46, P < 0.001). On 
its own, network density does not offer a compelling explanation for the 
high cooperation rates supported by the GraphNet planner.

Overall, these three follow-up studies help to validate the value 
and sufficiency of an encouraging approach to defectors.

Discussion
How can a social planner best support group cooperation and miti-
gate the spread of defection? Prior methods focus on increasing the 
assortment of strategy types within a networked group. This approach 
protects cooperators from antisocial contagion and simultaneously 
punishes defectors for their selfishness.

We build a social planner that learns for itself how to scaffold coop-
eration, through deep reinforcement learning and repeated trial and 
error in simulation. Our social planner proves capable of not only stabi-
lizing, but also enhancing cooperation over time. The planner’s strategy 
validates several characteristics of prior approaches, including a ten-
dency for cooperators to connect with other cooperators. It does not, 
however, partition defectors away from cooperators (‘decentralized 
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ostracism’14,15,28). Instead, the planner recommends a core–periphery 
structure for the community. Though defecting participants move to 
the periphery of the graph, they remain well connected to cooperators. 
This encouraging, conciliatory approach fosters pro-social contagion 
while minimizing the spread of defection. Echoing dynamics observed 
in collective action38, a critical mass of cooperative individuals can draw 
cynical outsiders into the fold.

Prior studies in this domain emphasize higher relative payoffs for 
cooperation as central to incentivizing players to abandon defection28,39. 
Our social planner succeeds at encouraging group cooperation, but 
unexpectedly, the networks that it engineers consistently reward defec-
tors more than cooperators. This discrepancy indicates that short-term 
utility calculus can provide only a partial explanation for participants’ 
behaviour in this network game. Future studies should draw inspiration 
from psychology research to better understand participants’ motiva-
tion and thinking. Non-economic factors such as preferences for fair-
ness40 and conformity41,42 probably contribute to the contagiousness 
of cooperation. Overall, deep reinforcement learning discovers a novel 
approach to the challenge of scaffolding community cooperation.

Our social planner learns to make its recommendations through 
a graph neural network. Multiple experiments demonstrate the effec-
tiveness of graph neural networks in solving physical problems (for 
example, refs. 43–45). Notably, social scientists have long argued that 
social systems are well modelled through physics (‘social physics’46). 
This consonance may explain the GraphNet planner’s effectiveness, and 
additionally suggests that our approach may prove applicable to other 
graphical games47 modelling community dilemmas. The combination 
of graph neural networks, reinforcement learning, and simulation 
could uncover novel solutions to challenges such as resource sharing48 
and efficient innovation and discovery49,50.

Developments in machine learning indicate several promising 
directions for future research. The design of graph neural networks 
allows them to generalize to large-scale problems. Several teams, for 
example, have applied graph neural networks to so-called ‘web-scale’ 
challenges, involving millions of nodes and potentially billions of 
edges51,52. These successes hint at a path to scaffolding cooperation in 
expansive networks: can an encouraging approach support community 
cohesion at large scales? Another potential path concerns interpret-
ability. Recent work demonstrates that large language models (for 

example, refs. 53,54) may be capable of generating explanations for 
algorithmic decision making55. With the support of a language model, 
our social planner could explain its policy to group members in natural 
language, helping them to understand the possible consequences of 
any choices that they might make.

Ethicists and policymakers emphasize human autonomy as a cen-
tral value for the development and deployment of AI56,57. Nonetheless, 
modern AI research does not always afford human participants much 
control or power within the context of their interaction with AI systems. 
In our experiments, our agent’s actions are entirely recommendation 
based: participants have the option to accept or reject the decisions 
that the agent makes. These decisions to accept or reject system advice 
reflect a revealed preference within human–AI interaction58. In addition 
to recommendation-based approaches, future interaction research can 
support autonomy through other revealed-preference frameworks, per-
haps including the choice of entirely opting out of interactions with the 
agent in question (an ‘exit option’59). The deployment of agents to assist 
with social planning raises additional questions concerning consent and 
governance. Which stakeholders should direct, steer and fund AI systems 
in this domain? The application of participatory and democratic methods 
will be particularly important for such technology60,61. It is imperative that 
technologists preserve the ability of communities that will be affected by 
AI to engage with it on their own terms—whether that is to withdraw from, 
contribute to, steer or potentially resist the deployment of these systems.

AI increasingly infuses everyday life. As a result, people enjoy 
a growing range of relationships with AI systems, forming ‘hybrid 
societies’ of human and algorithmic actors62,63. Some applications of 
AI technology call for a physical, embodied presence to interact with 
humans15,64,65. Others, like the algorithmic social planner in our study, 
may be less visible to the communities with which they interact, yet no 
less influential. Both categories merit expanded research and study. 
Overall, our results contribute to a growing body of evidence that 
agents trained with deep reinforcement learning can enhance col-
laboration and cooperation20,21,66–68. AI can prove a positive, beneficial 
force to support human communities.

Methods
Our research complies with all relevant ethical regulations. The experi-
mental protocol underwent independent ethical review and received 
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Fig. 4 | Mixing patterns induced by the different social planners. Plots present 
effect estimates from linear models. Error bars indicate 95% CIs. a, Network 
rigidity and cooperative clustering produce significant choice assortativity 
(visualized here at the end of the game, with n = 48 groups over all conditions). 
Cooperators tend to connect with cooperators, and defectors with defectors. 
The GraphNet planner, in contrast, induces non-assortativity between 
cooperators and defectors. b, The GraphNet planner maximizes the relative 
connectivity of cooperators in the network game, as measured by the difference 
in the average degree of cooperating participants and defecting participants 

(that is, the mean degree bias towards cooperators; visualized for the final round, 
with n = 48 groups over all conditions). c, The mixing patterns engineered by 
the GraphNet precipitate drastically different experiences for cooperators 
and defectors. On expectation, cooperators inhabit large neighbourhoods 
with a mix of cooperators and defectors. In contrast, defectors experience 
small neighbourhoods with virtually only cooperators. The neighbourhoods 
here depict the median cooperator and defector counts for cooperators’ and 
defectors’ neighbourhoods partway through the game, on round 10.
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a favourable opinion from the Human Behavioural Research Ethics 
Committee at Google DeepMind (#19/004).

We trained an artificial agent to act as a social planner in the 
cooperative network game through reinforcement learning and 
simulation methods. The agent comprised a graph neural network 
(a ‘GraphNet’26) with two message-passing steps (Fig. 1c). The archi-
tecture was non-recurrent. The agent optimized for a combination of 
capital level and recommendation quality (Supplementary Information  
Section E3), and used advantage actor–critic27 as its learning algorithm 
over a distributed framework69. For more detail on the agent design and 
parameterization, see Supplementary Information Section E.

We constructed bots to simulate human cooperation and recom-
mendation acceptance decisions for the agent’s training. Each bot i 
randomly sampled a cooperative disposition parameter, θi ∼ 𝒩𝒩𝒩μθ,σθ), 
upon its initialization. Bots made cooperation choices through two 
logistic functions, conditional on the current round number t. In the 
initial round, when a bot had no information about the behaviour of 
its neighbours, it randomly sampled an action (cooperate or defect) 
as a logistic function of its disposition parameter θi and two parameters 
shared by all bots: β′0 and β′1. In subsequent rounds, the bot chose to 
cooperate as a logistic function of its current neighbourhood size xs, 
its current number of cooperating neighbours xn, the current rate of 
cooperation in its neighbourhood xr, its disposition parameter θi, and 
four parameters shared by all bots: β0, β1, β2 and β3:

Pcooperate 𝒩t, i) =
⎧
⎨
⎩

1

1+e−(β
′
0+β′1 ⋅θi)

if t = 1

1
1+e−(β0+β1 ⋅xs+β2 ⋅xn+β3 ⋅xr+θi)

otherwise

The bot accepted or rejected recommendations from the social 
planner as a function of the recommendation valence aSP(i, j) ∈ {−1  
to 1} (where −1 signifies ‘break link’ and 1 reflects ‘make link’) and the 
referent neighbour’s previous cooperation decision a0

j ∈ {0, 1} (where 
0 denotes defection and 1 represents cooperation):

Paccept (aSP𝒩i, j),a0
j ) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

φ0 if aSP𝒩i, j) = −1 and if a0
j = 0

φ1 if aSP𝒩i, j) = −1 and if a0
j = 1

φ2 if aSP𝒩i, j) = 1 and if a0
j = 0

φ3 if aSP𝒩i, j) = 1 and if a0
j = 1

To select the μθ, σθ, β and φ parameters for the bots, we fit models 
to behavioural data collected in the baseline conditions of the group 
experiments. For fitted values and more information on the bot design, 
see Supplementary Information Section E5.

We trained 30 replicates of the agent for a maximum of 5 × 107 
simulated game rounds, using a different random initialization for 
the neural network in each replicate. Across multiple random network 
initializations, the social planner learned qualitatively and quantita-
tively similar policies that scaffolded high levels of cooperation with 
simulated groups. We selected one of these high-performing policies 
to evaluate with human participants.

We recruited participants from Prolific70 for our group experi-
ments. All participants provided informed consent before joining the 
study. In addition to the summary provided here, see Supplementary 
Information Section C for full details of the study design. The experi-
ments employed a between-participants design: that is, participants 
joined a single group (with no participant experiencing multiple con-
ditions). The experiments were also incentive compatible: that is, 
participants (knowingly) made decisions in the cooperative network 
game for real monetary stakes. Participants first read detailed study 
and game instructions, played a short tutorial round, and subsequently 
completed a comprehension test on the game rules. We required partic-
ipants to answer all three questions correctly to continue. The majority 
(74.2%) passed the test and were randomly sorted into groups of n = 16 
participants each. We provided the remainder a show-up payment for 
their time. The final sample comprised N = 1,392 participants (mean 
age of 36.7 years, standard deviation 12.7 years; 44.9% female, 52.6% 
male and 1.4% non-binary, trans, genderqueer, demigender, agender, 
asexual and aromantic). For the demographics of the baseline condi-
tions (N = 560), the evaluation condition (N = 208) and the validation 
conditions (N = 624), see Supplementary Information Sections D2, F1 
and G2, respectively.

Each group consisted of 16 participants and played 15 rounds 
of the cooperative network game (Supplementary Figs. 29–35). To 
avoid end-game effects, participants were not told how many rounds 
to expect. Each stage of the game (for example, choosing to cooper-
ate or receiving recommendations from the planner) waited a pre-set 
amount of time for participant input. Participants that did not respond 
were removed from the experiment. We subsequently provided these 
participants with a debrief questionnaire including questions about any 
technical problems they may have encountered. The tutorial explicitly 
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Fig. 5 | Group cooperation levels and network structure cultivated by the 
‘encouragement’ social planner. Based on our analysis of the GraphNet 
planner’s conciliatory approach to defectors, the encouragement planner 
makes recommendations as a simple function of player cooperation choices 
and the round number. a, The encouragement planner stabilizes cooperation 
levels among human groups. The bold dotted line indicates the mean level 
across groups. Solid lines depict the levels in individual groups. b, The 

encouragement planner reproduces the patterns of assortativity engineered 
by the GraphNet planner (visualized here for the final round, with n = 27 groups 
over both conditions). Plots present effect estimates from linear models. 
Error bars indicate 95% CIs. c, This network shows a representative game 
under the encouragement planner in round 10. Like the GraphNet planner, the 
encouragement planner tends to recommend a core–periphery structure for 
groups.
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detailed these rules for participants, and the main game interface 
displayed a timer at the bottom of every page counting down the time 
remaining for the current choice. Empirically, the groups experienced 
a very low dropout rate among participants, ending with a mean of 14.6 
participants (median 15). After completing the game, participants com-
pleted a short questionnaire and then received their compensation for 
the study. Participants completed the study in an average of 26.5 min 
and earned an average overall payment of US$11.79 for participating.

We processed data from the group experiments using Python 
3.9.15 and conducted data analysis using R 4.1.3.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data necessary for reproducing all analyses and figures are avail-
able at https://osf.io/8ahkg/.

Code availability
The analysis scripts necessary for reproducing all analyses and figures 
are available at https://osf.io/8ahkg/.
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Extended Data Fig. 1 | Group outcomes over time. Bold dotted lines represent 
the mean level across sessions. Solid lines reflect the levels in individual sessions. 
a, Group cooperation rate is calculated as the fraction of the group choosing to 
cooperate. b, Group connectivity is calculated as the fraction of group members 

linked to one another, relative to the total number of possible connections. c, 
Group capital level is calculated as the average accumulated capital level across 
all group members. d, Group inequality is calculated as the Gini coefficient of 
accumulated capital levels across all group members.
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Extended Data Fig. 2 | Network outcomes over time. Bold dotted lines 
represent the mean level across sessions. Solid lines reflect the levels in individual 
sessions. a, Assortative mixing between cooperators and defectors is calculated 
as the assortativity coefficient for cooperation choices across the network. 
b, Disassortative separation between defectors is calculated as the difference 
between the fraction of defector–defector links in the network expected under 
a random permutation of cooperation choices (estimated over 10,000 random 

replicates) and the actual observed fraction. c, Relative degree of cooperators is 
calculated as the mean degree of cooperators less the mean degree of defectors 
across the network. d, Core-periphery structure is calculated as the correlation 
between the adjacency matrix of the actual network structure and the idealized 
core-periphery adjacency matrix (based on the best-fitting classification of 
group members into core and periphery).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We collected data using custom code. The code runs a platform combining standard questionnaire functionality with the ability to run games 
for both human participants and AI systems.

Data analysis We processed data using Python 3.9.15 and analyzed data using R 4.1.3. Analysis scripts are publicly available via an OSF repository at https://
osf.io/8ahkg/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We asked participants to report their gender identity if they felt comfortable providing this information, for the purpose of 
understanding the representativeness of our sample. Our sample included comparable proportions of men and women, as 
well as a number of participants with other gender identities. See information in "Research sample" below.

Population characteristics See information in "Research sample" below.

Recruitment We recruited participants online, through the Prolific platform (https://prolific.co/). We published a study with the following 
inclusion criteria: residence in the U.S.; completion of at least 20 previous studies; approval rate of 95% or more on previous 
studies. Any Prolific participant who met those criteria could join our study. 
 
One possible self-selection bias is toward extroverted or social individuals. We provided potential participants with an 
upfront description of the group nature of our study: "In this study, you will make decisions while interacting with other 
participants."

Ethics oversight The Human Behavioural Research Ethics Committee (HuBREC) at Google DeepMind conducted independent review and 
oversight for our research. HuBREC is an ethics review board that provides independent review and oversight for human-
participant research, staffed and chaired by academics from outside of Google DeepMind.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study used an experimental, between-participant design and collected quantitative outcome data. After participants completed 
an instructional tutorial and passed a comprehension test, we randomly assigned them into groups of 16 to play a cooperative 
network game. Each group played the game with one of seven "social planners." We measured various individual and group 
outcomes during the game, including cooperation choices, to compare the effectiveness of different social planners at encouraging 
cooperation.

Research sample We recruited participants from the online platform Prolific, with the inclusion criteria of residence in the U.S. and completion of at 
least 20 previous studies with an approval rate of 95% or more. We collected demographic data on age, gender identity, and 
education. Based on the prior papers that established the experimental protocol for this study (Rand et al., 2011; Shirado et al., 
2013), we aimed to recruit around 200 participants per condition. All participants provided informed consent before joining the 
study. The final sample comprised N = 1392, participants (mean age of 36.7, sd = 12.7; 44.9% female, 52.6% male, and 1.4% non-
binary, trans, genderqueer, demigender, agender, asexual, and aromantic).

Sampling strategy The study used convenience sampling from Prolific, an online recruitment platform. We determined sample size per condition based 
on the prior papers that established the experimental protocol for this study (Rand et al., 2011; Shirado et al., 2013), aiming to 
recruit around 200 participants per condition.

Data collection Participants completed the study online, through a browser-based interface. The researchers were not blind to the study conditions, 
but—aside from providing troubleshooting information to participants with technical issues—did not interact with participants while 
they completed the study.

Timing We collected data from May 19-24, 2021, Apr 7-25, 2022, and Mar 27, 2023.

Data exclusions No participants were excluded from analysis.

Non-participation On average, 1.4 participants dropped out of each study session of 16 participants (median = 1 drop-out per session). Participants 
dropped out automatically after failing to respond for a set amount of time during the study. 

Randomization Participants were randomly allocated to study sessions.
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