Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits

Abstract

Positive correlations between mates can increase trait variation and prevalence, as well as bias estimates from genetically informed study designs. While past studies of similarity between human mating partners have largely found evidence of positive correlations, to our knowledge, no formal meta-analysis has examined human partner correlations across multiple categories of traits. Thus, we conducted systematic reviews and random-effects meta-analyses of human male–female partner correlations across 22 traits commonly studied by psychologists, economists, sociologists, anthropologists, epidemiologists and geneticists. Using ScienceDirect, PubMed and Google Scholar, we incorporated 480 partner correlations from 199 peer-reviewed studies of co-parents, engaged pairs, married pairs and/or cohabitating pairs that were published on or before 16 August 2022. We also calculated 133 trait correlations using up to 79,074 male–female couples in the UK Biobank (UKB). Estimates of the 22 mean meta-analysed correlations ranged from rmeta = 0.08 (adjusted 95% CI = 0.03, 0.13) for extraversion to rmeta = 0.58 (adjusted 95% CI = 0.50, 0.64) for political values, with funnel plots showing little evidence of publication bias across traits. The 133 UKB correlations ranged from rUKB = −0.18 (adjusted 95% CI = −0.20, −0.16) for chronotype (being a ‘morning’ or ‘evening’ person) to rUKB = 0.87 (adjusted 95% CI = 0.86, 0.87) for birth year. Across analyses, political and religious attitudes, educational attainment and some substance use traits showed the highest correlations, while psychological (that is, psychiatric/personality) and anthropometric traits generally yielded lower but positive correlations. We observed high levels of between-sample heterogeneity for most meta-analysed traits, probably because of both systematic differences between samples and true differences in partner correlations across populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Point estimates of the mean meta-analysed random-effects partner correlations and UKB partner correlations for comparable traits.
Fig. 2: The UKB partner correlation point estimates for 133 traits grouped by category.

Similar content being viewed by others

Data availability

Studies included in the meta-analysis are listed in Supplementary Tables 1 and 2 and cited in Table 1, as well as in the supplementary note; studies excluded from the meta-analysis are listed in Supplementary Table 3. Raw data from the UK Biobank are not publicly available, but summary statistics for most traits are available on the UK Biobank website at https://biobank.ndph.ox.ac.uk/showcase/search.cgi. Note that there is no longer a Field ID corresponding to the co-location variable in the UKB and that the putative partner dataset we created cannot be publicly shared. As such, our UKB partner dataset cannot be directly used/recreated at this time. However, combinations of other variables (for example, inverse distance to the nearest major road) can potentially be used as proxies for co-location53, in conjunction with the code we have made available, to estimate partner pairs.

Code availability

The code for the UKB analyses can be found at https://github.com/JaredBalbona/UKB-AM-MetaAnalysis.

References

  1. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 52, 399–433 (1919).

    Article  Google Scholar 

  2. Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Eaves, L. The use of twins in the analysis of assortative mating. Heredity 43, 399–409 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Border, R. et al. Assortative mating biases marker-based heritability estimators. Nat. Commun. 13, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lavryashina, M. B. et al. Interethnic dynamics among the Indigenous Peoples of Southern Siberia (demographic aspect). Archaeol. Ethnol. Anthropol. Eurasia 41, 131–142 (2013).

    Article  Google Scholar 

  6. Blundell, R., Joyce, R., Norris Keiller, A. & Ziliak, J. P. Income inequality and the labour market in Britain and the US. J. Public Econ. 162, 48–62 (2018).

    Article  Google Scholar 

  7. Schwartz, C. R. Trends and variation in assortative mating: causes and consequences. Annu. Rev. Sociol. 39, 451–470 (2013).

    Article  Google Scholar 

  8. Luo, S. Assortative mating and couple similarity: patterns, mechanisms, and consequences. Soc. Pers. Psychol. Compass 11, e12337 (2017).

    Article  Google Scholar 

  9. Watson, D. et al. Match makers and deal breakers: analyses of assortative mating in newlywed couples. J. Pers. 72, 1029–1068 (2004).

    Article  PubMed  Google Scholar 

  10. Vandermeer, M. R. J., Kotelnikova, Y., Simms, L. J. & Hayden, E. P. Spousal agreement on partner personality ratings is moderated by relationship satisfaction. J. Res. Pers. 76, 22–31 (2018).

    Article  Google Scholar 

  11. Glicksohn, J. & Golan, H. Personality, cognitive style and assortative mating. Pers. Individ. Differ. 30, 1199–1209 (2001).

    Article  Google Scholar 

  12. Dufouil, C. & Alpérovitch, A. Couple similarities for cognitive functions and psychological health. J. Clin. Epidemiol. 53, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Feng, D. & Baker, L. Spouse similarity in attitudes, personality, and psychological well-being. Behav. Genet. 24, 357–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Burgess, E. W. & Wallin, P. Homogamy in social characteristics. Am. J. Sociol. 49, 109–124 (1943).

    Article  Google Scholar 

  15. Alford, J. R., Hatemi, P. K., Hibbing, J. R., Martin, N. G. & Eaves, L. J. The politics of mate choice. J. Polit. 73, 362–379 (2011).

    Article  Google Scholar 

  16. Jurj, A. L. et al. Spousal correlations for lifestyle factors and selected diseases in Chinese couples. Ann. Epidemiol. 16, 285–291 (2006).

    Article  PubMed  Google Scholar 

  17. Ask, H., Rognmo, K., Torvik, F. A., Røysamb, E. & Tambs, K. Non-random mating and convergence over time for alcohol consumption, smoking, and exercise: the Nord-Trøndelag Health Study. Behav. Genet. 42, 354–365 (2012).

    Article  PubMed  Google Scholar 

  18. Rawlik, K., Canela-Xandri, O. & Tenesa, A. Indirect assortative mating for human disease and longevity. Heredity 123, 106–116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Price, R. A. & Vandenberg, S. G. Spouse similarity in American and Swedish couples. Behav. Genet. 10, 59–71 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Stulp, G., Simons, M. J. P., Grasman, S. & Pollet, T. V. Assortative mating for human height: a meta-analysis. Am. J. Hum. Biol. 29, e22917 (2017).

    Article  PubMed  Google Scholar 

  21. Allison, D. B. et al. Assortative mating for relative weight: genetic implications. Behav. Genet. 26, 103–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Mascie-Taylor, C. G. N. Spouse similarity for IQ and personality and convergence. Behav. Genet. 19, 223–227 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Meyler, D., Stimpson, J. P. & Peek, M. K. Health concordance within couples: a systematic review. Soc. Sci. Med. 64, 2297–2310 (2007).

    Article  PubMed  Google Scholar 

  24. Stimpson, J. P. & Peek, M. K. Concordance of chronic conditions in older Mexican American couples. Prev. Chronic Dis. 2, A07 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. Jeong, S. & Cho, S.-I. Concordance in the health behaviors of couples by age: a cross-sectional study. J. Prev. Med. Public Health 51, 6–14 (2018).

    Article  PubMed  Google Scholar 

  26. Di Castelnuovo, A., Quacquaruccio, G., Donati, M. B., de Gaetano, G. & Iacoviello, L. Spousal concordance for major coronary risk factors: a systematic review and meta-analysis. Am. J. Epidemiol. 169, 1–8 (2009).

    Article  PubMed  Google Scholar 

  27. Hippisley-Cox, J. Married couples’ risk of same disease: cross sectional study. BMJ 325, 636 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Galbaud Du Fort, G., Bland, R. C., Newman, S. C. & Boothroyd, L. J. Spouse similarity for lifetime psychiatric history in the general population. Psychol. Med. 28, 789–802 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Peyrot, W. J., Robinson, M. R., Penninx, B. W. J. H. & Wray, N. R. Exploring boundaries for the genetic consequences of assortative mating for psychiatric traits. JAMA Psychiatry 73, 1189–1195 (2016).

    Article  PubMed  Google Scholar 

  30. McLeod, J. D. Social and psychological bases of homogamy for common psychiatric disorders. J. Marriage Fam. 57, 201–214 (1995).

    Article  Google Scholar 

  31. Maes, H. H. et al. Assortative mating for major psychiatric diagnoses in two population-based samples. Psychol. Med. 28, 1389–1401 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Mathews, C. A. & Reus, V. I. Assortative mating in the affective disorders: a systematic review and meta-analysis. Compr. Psychiatry 42, 257–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jiang, Y., Bolnick, D. I. & Kirkpatrick, M. Assortative mating in animals. Am. Nat. 181, E125–E138 (2013).

    Article  PubMed  Google Scholar 

  34. Botwin, M. D., Buss, D. M. & Shackelford, T. K. Personality and mate preferences: five factors in mate selection and marital satisfaction. J. Pers. 65, 107–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Eysenck, H. J. & Wakefield, J. A. Psychological factors as predictors of marital satisfaction. Adv. Behav. Res. Ther. 3, 151–192 (1981).

    Article  Google Scholar 

  36. McCrae, R. R. et al. Personality trait similarity between spouses in four cultures. J. Pers. 76, 1137–1164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Markey, P. M. & Markey, C. N. Romantic ideals, romantic obtainment, and relationship experiences: the complementarity of interpersonal traits among romantic partners. J. Soc. Pers. Relat. 24, 517–533 (2007).

    Article  Google Scholar 

  38. Stimpson, J. P., Masel, M. C., Rudkin, L. & Peek, M. K. Shared health behaviors among older Mexican American spouses. Am. J. Health Behav. 30, 495–502 (2006).

    Article  PubMed  Google Scholar 

  39. Al-Sharbatti, S. S., Abed, Y. I., Al-Heety, L. M. & Basha, S. A. Spousal concordance of diabetes mellitus among women in Ajman, United Arab Emirates. Sultan Qaboos Univ. Med. J. 16, e197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ober, C. et al. HLA and mate choice in humans. Am. J. Hum. Genet. 61, 497–504 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Keller, M. C., Medland, S. E. & Duncan, L. E. Are extended twin family designs worth the trouble? A comparison of the bias, precision, and accuracy of parameters estimated in four twin family models. Behav. Genet. 40, 377–393 (2010).

    Article  PubMed  Google Scholar 

  42. Cloninger, C. R. Interpretation of intrinsic and extrinsic structural relations by path analysis: theory and applications to assortative mating. Genet. Res. 36, 133–145 (1980).

    Article  Google Scholar 

  43. Robinson, M. R. et al. Genetic evidence of assortative mating in humans. Nat. Hum. Behav. 1, 0016 (2017).

    Article  Google Scholar 

  44. Yengo, L. et al. Imprint of assortative mating on the human genome. Nat. Hum. Behav. 2, 948–954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Border, R. et al. Assortative mating biases marker-based heritability estimators. Nat. Commun. 13, 660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coventry, W. L. & Keller, M. C. Estimating the extent of parameter bias in the classical twin design: a comparison of parameter estimates from extended twin-family and classical twin designs. Twin Res. Hum. Genet. 8, 214–223 (2005).

    Article  PubMed  Google Scholar 

  48. Hartwig, F. P., Davies, N. M. & Davey Smith, G. Bias in Mendelian randomization due to assortative mating. Genet. Epidemiol. 42, 608–620 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Di Castelnuovo, A. et al. Cardiovascular risk factors and global risk of fatal cardiovascular disease are positively correlated between partners of 802 married couples from different European countries. Thromb. Haemost. 98, 648–655 (2007).

    Article  PubMed  Google Scholar 

  50. Knuiman, M. W., Divitini, M. L., Bartholomew, H. C. & Welborn, T. A. Spouse correlations in cardiovascular risk factors and the effect of marriage duration. Am. J. Epidemiol. 143, 48–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Cobb, L. K. et al. The association of spousal smoking status with the ability to quit smoking: the Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 179, 1182–1187 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harrer, M., Cuijpers, P., Furukawa, T. A. & Ebert, D. D. Doing Meta-Analysis in R (Chapman & Hall/CRC Press, 2021).

  53. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cloninger, C. R., Rice, J. & Reich, T. Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance. Am. J. Hum. Genet. 31, 176–198 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Balbona, J. V., Kim, Y. & Keller, M. C. The estimation of environmental and genetic parental influences. Dev. Psychopathol. 34, 1876–1886 (2022).

    Article  Google Scholar 

  56. Reczek, C., Pudrovska, T., Carr, D., Thomeer, M. B. & Umberson, D. Marital histories and heavy alcohol use among older adults. J. Health Soc. Behav. 57, 77–96 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hill, C. T., Rubin, Z. & Peplau, L. A. Breakups before marriage: the end of 103 affairs. J. Soc. Issues 32, 147–168 (1976).

    Article  Google Scholar 

  58. Torvik, F. A., Gustavson, K., Røysamb, E. & Tambs, K. Health, health behaviors, and health dissimilarities predict divorce: results from the HUNT study. BMC Psychol. 3, 13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keller, M. C., Thiessen, D. & Young, R. K. Mate assortment in dating and married couples. Pers. Individ. Differ. 21, 217–221 (1996).

    Article  Google Scholar 

  60. Olderbak, S. & Figueredo, A. J. Shared life history strategy as a strong predictor of romantic relationship satisfaction. J. Soc. Evol. Cult. Psychol. 6, 111–131 (2012).

    Article  Google Scholar 

  61. Luo, S. & Klohnen, E. C. Assortative mating and marital quality in newlyweds: a couple-centered approach. J. Pers. Soc. Psychol. 88, 304–326 (2005).

    Article  PubMed  Google Scholar 

  62. Nemechek, S. & Olson, K. R. Five-factor personality similarity and marital adjustment. Soc. Behav. Pers. Int. J. 27, 309–318 (1999).

    Article  Google Scholar 

  63. Dyrenforth, P. S., Kashy, D. A., Donnellan, M. B. & Lucas, R. E. Predicting relationship and life satisfaction from personality in nationally representative samples from three countries: the relative importance of actor, partner, and similarity effects. J. Pers. Soc. Psychol. 99, 690–702 (2010).

    Article  PubMed  Google Scholar 

  64. Arránz Becker, O. Effects of similarity of life goals, values, and personality on relationship satisfaction and stability: findings from a two-wave panel study. Pers. Relatsh. 20, 443–461 (2013).

    Article  Google Scholar 

  65. Holway, G. V., Umberson, D. & Donnelly, R. Health and health behavior concordance between spouses in same-sex and different-sex marriages. Soc. Curr. 5, 319–327 (2018).

    Article  PubMed  Google Scholar 

  66. Schwartz, C. R. & Graf, N. L. Assortative matching among same-sex and different-sex couples in the United States, 1990–2000. Demogr. Res. 21, 843–878 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Verbakel, E. & Kalmijn, M. Assortative mating among Dutch married and cohabiting same-sex and different-sex couples. J. Marriage Fam. 76, 1–12 (2014).

    Article  Google Scholar 

  68. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kovalchik, S. RISmed: Download Content from NCBI Databases (CRAN, 2021).

  70. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

  71. Page, M. J. et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372, n160 (2021).

  72. Nordsletten, A. E. et al. Patterns of nonrandom mating within and across 11 major psychiatric disorders. JAMA Psychiatry 73, 354–361 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. polycor: Polychoric and Polyserial Correlations v.0.8-1 (R-Forge, 2022); https://rdrr.io/rforge/polycor/

  74. Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (CRAN, 2021).

  75. Liu, Z. et al. The normality assumption on between-study random effects was questionable in a considerable number of Cochrane meta-analyses. BMC Med. 21, 112 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Viechtbauer, W. metafor: Meta-Analysis Package for R (CRAN, 2022).

  77. Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65, 23–28 (2000).

    Article  Google Scholar 

  78. Ver Hoef, J. M. Who invented the delta method? Am. Stat. 66, 124–127 (2012).

    Article  Google Scholar 

  79. Huson, L. W. Performance of some correlation coefficients when applied to zero-clustered data. J. Mod. Appl. Stat. Methods 6, 530–536 (2007).

    Article  Google Scholar 

  80. Pain, O., Dudbridge, F. & Ronald, A. Are your covariates under control? How normalization can re-introduce covariate effects. Eur. J. Hum. Genet. 26, 1194–1201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Retnakaran, R. et al. Spousal concordance of cardiovascular risk factors in newly married couples in China. JAMA Netw. Open 4, e2140578 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Blackaby, D. H., Carlin, P. S. & Murphy, P. D. A change in the earnings penalty for British men with working wives: evidence from the 1980’s and 1990’s. Labour Econ. 14, 119–134 (2007).

    Article  Google Scholar 

  83. Neidhöfer, G., Serrano, J. & Gasparini, L. Educational inequality and intergenerational mobility in Latin America: a new database. J. Dev. Econ. 134, 329–349 (2018).

    Article  Google Scholar 

  84. Dalmia, S. & Lawrence, P. G. An empirical analysis of assortative mating in India and the US. Int. Adv. Econ. Res. 7, 443–458 (2001).

    Article  Google Scholar 

  85. Kardum, I., Hudek-Knezevic, J. & Mehic, N. Similarity indices of the Dark Triad traits based on self and partner-reports: evidence from variable-centered and couple-centered approaches. Pers. Individ. Differ. 193, 111626 (2022).

    Article  Google Scholar 

  86. Zietsch, B. P., Verweij, K. J., Heath, A. C. & Martin, N. G. Variation in human mate choice: simultaneously investigating heritability, parental influence, sexual imprinting, and assortative mating. Am. Nat. 177, 605–616 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watkins, M. P. & Meredith, W. Spouse similarity in newlyweds with respect to specific cognitive abilities, socioeconomic status, and education. Behav. Genet. 11, 1–21 (1981).

    Article  CAS  PubMed  Google Scholar 

  88. Hugh-Jones, D., Verweij, K. J. H., St. Pourcain, B. & Abdellaoui, A. Assortative mating on educational attainment leads to genetic spousal resemblance for polygenic scores. Intelligence 59, 103–108 (2016).

    Article  Google Scholar 

  89. Gayle, G.-L., Golan, L. & Soytas, M. A. What is the source of the intergenerational correlation in earnings? J. Monet. Econ. 129, 24–45 (2022).

    Article  Google Scholar 

  90. Barban, N., De Cao, E., Oreffice, S. & Quintana-Domeque, C. The effect of education on spousal education: a genetic approach. Labour Econ. 71, 102023 (2021).

    Article  Google Scholar 

  91. Colagrossi, M., d’Hombres, B. & Schnepf, S. V. Like (grand)parent, like child? Multigenerational mobility across the EU. Eur. Econ. Rev. 130, 103600 (2020).

    Article  Google Scholar 

  92. Bingley, P., Cappellari, L. & Tatsiramos, K. Parental assortative mating and the intergenerational transmission of human capital. Labour Econ. 77, 102047 (2022).

    Article  Google Scholar 

  93. Cave, S. N., Wright, M. & von Stumm, S. Change and stability in the association of parents’ education with children’s intelligence. Intelligence 90, 101597 (2022).

    Article  Google Scholar 

  94. Carmelli, D., Swan, G. E., Hunt, S. C. & Williams, R. R. Cross-spouse correlates of blood pressure in hypertension-prone families in Utah. J. Psychosom. Res. 33, 75–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Miller, R. N. Educational assortative mating and time use in the home. Soc. Sci. Res. 90, 102440 (2020).

    Article  PubMed  Google Scholar 

  96. Mishra, V. & Smyth, R. Economic returns to schooling for China’s Korean minority. J. Asian Econ. 24, 89–102 (2013).

    Article  Google Scholar 

  97. Anderson, G. & Leo, T. W. An empirical examination of matching theories: the one child policy, partner choice and matching intensity in urban China. J. Comp. Econ. 41, 468–489 (2013).

    Article  Google Scholar 

  98. Liu, J.-T., Hammitt, J. K. & Jeng Lin, C. Family background and returns to schooling in Taiwan. Econ. Educ. Rev. 19, 113–125 (2000).

    Article  Google Scholar 

  99. Hu, A. & Qian, Z. Does higher education expansion promote educational homogamy? Evidence from married couples of the post-80s generation in Shanghai, China. Soc. Sci. Res. 60, 148–162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Johnson, W., Deary, I. J. & Iacono, W. G. Genetic and environmental transactions underlying educational attainment. Intelligence 37, 466–478 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xing, L., Campbell, C., Li, X., Noellert, M. & Lee, J. Education, class and assortative marriage in rural Shanxi, China in the mid-twentieth century. Res. Soc. Stratif. Mobil. 66, 100460 (2020).

    Google Scholar 

  102. Peek, M. K., Stimpson, J. P., Townsend, A. L. & Markides, K. S. Well-being in older Mexican American spouses. Gerontologist 46, 258–265 (2006).

    Article  PubMed  Google Scholar 

  103. Cronkite, R. C. & Moos, R. H. The role of predisposing and moderating factors in the stress–illness relationship. J. Health Soc. Behav. 25, 372–393 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Heath, A. C. et al. No decline in assortative mating for educational level. Behav. Genet. 15, 349–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Lykken, D. T. & Tellegen, A. Is human mating adventitious or the result of lawful choice? A twin study of mate selection. J. Pers. Soc. Psychol. 65, 56–68 (1993).

    Article  PubMed  Google Scholar 

  106. Kye, B. & Mare, R. D. Intergenerational effects of shifts in women’s educational distribution in South Korea: transmission, differential fertility, and assortative mating. Soc. Sci. Res. 41, 1495–1514 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ingoglia, S., Liga, F., Coco, A. L. & Inguglia, C. Informant discrepancies in perceived parental psychological control, adolescent autonomy, and relatedness psychological needs. J. Appl. Dev. Psychol. 77, 101333 (2021).

    Article  Google Scholar 

  108. Torvik, F. A. et al. Mechanisms linking parental educational attainment with child ADHD, depression, and academic problems: a study of extended families in The Norwegian Mother, Father and Child Cohort Study. J. Child Psychol. Psychiatry 61, 1009–1018 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shikishima, C. et al. A simple syllogism-solving test: empirical findings and implications for g research. Intelligence 39, 89–99 (2011).

    Article  Google Scholar 

  110. Ponzo, M. & Scoppa, V. Trading height for education in the marriage market. Am. J. Hum. Biol. 27, 164–174 (2015).

    Article  PubMed  Google Scholar 

  111. Procidano, M. E. & Rogler, L. H. Homogamous assortative mating among Puerto Rican families: intergenerational processes and the migration experience. Behav. Genet. 19, 343–354 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, H., Luo, S., Yue, G., Xu, D. & Zhaoyang, R. Do birds of a feather flock together in China? Pers. Relatsh. 16, 167–186 (2009).

    Article  Google Scholar 

  113. George, D. et al. Couple similarity on stimulus characteristics and marital satisfaction. Pers. Individ. Differ. 86, 126–131 (2015).

    Article  Google Scholar 

  114. Jacobs, J. A. & Furstenberg, F. F. Jr Changing places: conjugal careers and women’s marital mobility. Soc. Forces 64, 714–732 (1986).

    Article  Google Scholar 

  115. Hur, Y.-M. Assortative mating for personality traits, educational level, religious affiliation, height, weight, and body mass index in parents of a Korean twin sample. Twin Res. 6, 467–470 (2003).

    Article  PubMed  Google Scholar 

  116. Phillips, K., Fulker, D. W., Carey, G. & Nagoshi, C. T. Direct marital assortment for cognitive and personality variables. Behav. Genet. 18, 347–356 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Tambs, K., Sundet, J. M. & Berg, K. Correlations between identical twins and their spouses suggest social homogamy for intelligence in Norway. Pers. Individ. Differ. 14, 279–281 (1993).

    Article  Google Scholar 

  118. Cattell, R. B. & Willson, J. L. Contributions concerning mental inheritance: I. Of intelligence. Br. J. Educ. Psychol. 8, 129–149 (1938).

    Article  Google Scholar 

  119. Johnson, W. et al. Genetic and environmental influences on the Verbal-Perceptual-Image Rotation (VPR) model of the structure of mental abilities in the Minnesota study of twins reared apart. Intelligence 35, 542–562 (2007).

    Article  Google Scholar 

  120. Keller, M. C. et al. The genetic correlation between height and IQ: shared genes or assortative mating? PLoS Genet. 9, e1003451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nagoshi, C. T. & Johnson, R. C. The ubiquity of g. Pers. Individ. Differ. 7, 201–207 (1986).

    Article  Google Scholar 

  122. Jester, J. M. et al. Intergenerational transmission of neuropsychological executive functioning. Brain Cogn. 70, 145–153 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Vinkhuyzen, A. A. E., van der Sluis, S., Maes, H. H. M. & Posthuma, D. Reconsidering the heritability of intelligence in adulthood: taking assortative mating and cultural transmission into account. Behav. Genet. 42, 187–198 (2012).

    Article  PubMed  Google Scholar 

  124. Loehlin, J. C., Horn, J. M. & Willerman, L. Modeling IQ change: evidence from the Texas Adoption Project. Child Dev. 60, 993–1004 (1989).

    Article  CAS  PubMed  Google Scholar 

  125. Zonderman, A. B., Vandenberg, S. G., Spuhler, K. P. & Fain, P. R. Assortative marriage for cognitive abilities. Behav. Genet. 7, 261–271 (1977).

    Article  CAS  PubMed  Google Scholar 

  126. Eaves, L. et al. Comparing the biological and cultural inheritance of personality and social attitudes in the Virginia 30,000 study of twins and their relatives. Twin Res. 2, 62–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Leikas, S., Ilmarinen, V.-J., Verkasalo, M., Vartiainen, H.-L. & Lönnqvist, J.-E. Relationship satisfaction and similarity of personality traits, personal values, and attitudes. Pers. Individ. Differ. 123, 191–198 (2018).

    Article  Google Scholar 

  128. Martin, N. G. et al. Transmission of social attitudes. Proc. Natl Acad. Sci. USA 83, 4364–4368 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Feather, N. T. Family resemblances in conservatism: are daughters more similar to parents than sons are? J. Pers. 46, 260–278 (1978).

    Article  Google Scholar 

  130. Rozin, P. Family resemblance in food and other domains: the family paradox and the role of parental congruence. Appetite 16, 93–102 (1991).

    Article  CAS  PubMed  Google Scholar 

  131. Bell, E., Kandler, C. & Riemann, R. Genetic and environmental influences on sociopolitical attitudes: addressing some gaps in the new paradigm. Polit. Life Sci. 37, 236–249 (2018).

    Article  Google Scholar 

  132. Abrahamson, A. C., Baker, L. A. & Caspi, A. Rebellious teens? Genetic and environmental influences on the social attitudes of adolescents. J. Pers. Soc. Psychol. 83, 1392–1408 (2002).

    Article  PubMed  Google Scholar 

  133. Beer, J. M., Arnold, R. D. & Loehlin, J. C. Genetic and environmental influences on MMPI factor scales: joint model fitting to twin and adoption data. J. Pers. Soc. Psychol. 74, 818 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Koenig, L. B., McGue, M. & Iacono, W. G. Rearing environmental influences on religiousness: an investigation of adolescent adoptees. Pers. Individ. Differ. 47, 652–656 (2009).

    Article  Google Scholar 

  135. Ostermann, J., Sloan, F. A. & Taylor, D. H. Heavy alcohol use and marital dissolution in the USA. Soc. Sci. Med. 61, 2304–2316 (2005).

    Article  PubMed  Google Scholar 

  136. Grant, J. D. et al. Spousal concordance for alcohol dependence: evidence for assortative mating or spousal interaction effects? Alcohol. Clin. Exp. Res. 31, 717–728 (2007).

    Article  PubMed  Google Scholar 

  137. Al Rashid, K. et al. Spousal associations of serum metabolomic profiles by nuclear magnetic resonance spectroscopy. Sci. Rep. 11, 21587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pérusse, L., Leblanc, C. & Bouchard, C. Familial resemblance in lifestyle components: results from the Canada Fitness Survey. Can. J. Public Health Rev. 79, 201–205 (1988).

    Google Scholar 

  139. Leonard, K. E. & Das Eiden, R. Husband’s and wife’s drinking: unilateral or bilateral influences among newlyweds in a general population sample. J. Stud. Alcohol Suppl. 13, 130–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Clarke, T.-K. et al. Genetic and shared couple environmental contributions to smoking and alcohol use in the UK population. Mol. Psychiatry 26, 4344–4354 (2021).

    Article  PubMed  Google Scholar 

  141. Garn, S. M., Cole, P. E. & Bailey, S. M. Living together as a factor in family-line resemblances. Hum. Biol. 51, 565–587 (1979).

    CAS  PubMed  Google Scholar 

  142. Pyke, S. D., Wood, D. A., Kinmonth, A. L. & Thompson, S. G. Change in coronary risk and coronary risk factor levels in couples following lifestyle intervention. The British Family Heart Study. Arch. Fam. Med. 6, 354–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Venters, M. H., Jacobs, D. R. Jr, Luepker, R. V., Maimaw, L. A. & Gillum, R. F. Spouse concordance of smoking patterns: the Minnesota Heart Survey. Am. J. Epidemiol. 120, 608–616 (1984).

    Article  CAS  PubMed  Google Scholar 

  144. Maes, H. H. et al. Cross-cultural comparison of genetic and cultural transmission of smoking initiation using an extended twin kinship model. Twin Res. Hum. Genet. 21, 179–190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Boomsma, D. I., Koopmans, J. R., Van Doornen, L. J. & Orlebeke, J. F. Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents. Addiction 89, 219–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  146. Nakaya, N. et al. Spousal similarities in cardiometabolic risk factors: a cross-sectional comparison between Dutch and Japanese data from two large biobank studies. Atherosclerosis 334, 85–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Wilcox, M. A., Newton, C. S. & Johnson, I. R. Paternal influences on birthweight. Acta Obstet. Gynecol. Scand. 74, 15–18 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Gleiberman, L., Harburg, E., DiFranceisco, W. & Schork, A. Familial transmission of alcohol use: v. drinking patterns among spouses, Tecumseh, Michigan. Behav. Genet. 22, 63–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Sutton, G. C. Assortative marriage for smoking habits. Ann. Hum. Biol. 7, 449–456 (1980).

    Article  CAS  PubMed  Google Scholar 

  150. Cotch, M. F., Beaty, T. H. & Cohen, B. H. Path analysis of familial resemblance of pulmonary function and cigarette smoking. Am. Rev. Respir. Dis. 142, 1337–1343 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. Kalmijn, M. Intergenerational transmission of health behaviors in a changing demographic context: the case of smoking and alcohol consumption. Soc. Sci. Med. 296, 114736 (2022).

    Article  PubMed  Google Scholar 

  152. Bloch, K. V. et al. Socioeconomic aspects of spousal concordance for hypertension, obesity, and smoking in a community of Rio de Janeiro, Brazil. Arq. Bras. Cardiol. https://doi.org/10.1590/S0066-782X2003000200006 (2003).

    Article  PubMed  Google Scholar 

  153. Clark, A. E. & Etilé, F. Don’t give up on me baby: spousal correlation in smoking behaviour. J. Health Econ. 25, 958–978 (2006).

    Article  PubMed  Google Scholar 

  154. Ogden, M. W., Morgan, W. T., Heavner, D. L., Davis, R. A. & Steichen, T. J. National incidence of smoking and misclassification among the U.S. married female population. J. Clin. Epidemiol. 50, 253–263 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Espinosa, J. & Evans, W. N. Heightened mortality after the death of a spouse: marriage protection or marriage selection? J. Health Econ. 27, 1326–1342 (2008).

    Article  PubMed  Google Scholar 

  156. Wilson, S. E. The health capital of families: an investigation of the inter-spousal correlation in health status. Soc. Sci. Med. 55, 1157–1172 (2002).

    Article  PubMed  Google Scholar 

  157. Jackson, S. E., Steptoe, A. & Wardle, J. The influence of partner’s behavior on health behavior change: the English Longitudinal Study of Ageing. JAMA Intern. Med. 175, 385–392 (2015).

    Article  PubMed  Google Scholar 

  158. Homish, G. G. & Leonard, K. E. Spousal influence on smoking behaviors in a US community sample of newly married couples. Soc. Sci. Med. 61, 2557–2567 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Pai, C.-W., Godboldo-Brooks, A. & Edington, D. W. Spousal concordance for overall health risk status and preventive service compliance. Ann. Epidemiol. 20, 539–546 (2010).

    Article  PubMed  Google Scholar 

  160. Machado, M. P. A. et al. Alcohol and tobacco consumption concordance and its correlates in older couples in Latin America. Geriatr. Gerontol. Int. 17, 1849–1857 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kirillova, G. P., Vanyukov, M. M., Kirisci, L. & Reynolds, M. Physical maturation, peer environment, and the ontogenesis of substance use disorders. Psychiatry Res. 158, 43–53 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sakai, J. T. et al. Mate similarity for substance dependence and antisocial personality disorder symptoms among parents of patients and controls. Drug Alcohol Depend. 75, 165–175 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Rammstedt, B. & Schupp, J. Only the congruent survive—personality similarities in couples. Pers. Individ. Differ. 45, 533–535 (2008).

    Article  Google Scholar 

  164. Chopik, W. J. & Lucas, R. E. Actor, partner, and similarity effects of personality on global and experienced well-being. J. Res. Pers. 78, 249–261 (2019).

    Article  PubMed  Google Scholar 

  165. Watson, D., Beer, A. & McDade-Montez, E. The role of active assortment in spousal similarity. J. Pers. 82, 116–129 (2014).

    Article  PubMed  Google Scholar 

  166. Barelds, D. P. Self and partner personality in intimate relationships. Eur. J. Pers. 19, 501–518 (2005).

    Article  Google Scholar 

  167. van Scheppingen, M. A., Chopik, W. J., Bleidorn, W. & Denissen, J. J. A. Longitudinal actor, partner and similarity effects of personality on well-being. J. Pers. Soc. Psychol. 117, e51–e70 (2019).

    Article  PubMed  Google Scholar 

  168. Dijkstra, P. & Barelds, D. P. H. Self and partner personality and responses to relationship threats. J. Res. Pers. 42, 1500–1511 (2008).

    Article  Google Scholar 

  169. Mosca, I. & McCrory, C. Personality and wealth accumulation among older couples: do dispositional characteristics pay dividends? J. Econ. Psychol. 56, 1–19 (2016).

    Article  Google Scholar 

  170. Dubuis-Stadelmann, E., Fenton, B. T., Ferrero, F. & Preisig, M. Spouse similarity for temperament, personality and psychiatric symptomatology. Pers. Individ. Differ. 30, 1095–1112 (2001).

    Article  Google Scholar 

  171. Tambs, K., Sundet, J. M., Eaves, L., Solaas, M. H. & Berg, K. Pedigree analysis of Eysenck Personality Questionnaire (EPQ) scores in monozygotic (MZ) twin families. Behav. Genet. 21, 369–382 (1991).

    Article  CAS  PubMed  Google Scholar 

  172. Guttman, R. & Zohar, A. Spouse similarities in personality items: changes over years of marriage and implications for mate selection. Behav. Genet. 17, 179–189 (1987).

    Article  CAS  PubMed  Google Scholar 

  173. Eysenck, H. J. Personality, premarital sexual permissiveness, and assortative mating. J. Sex. Res. 10, 47–51 (1974).

    Article  Google Scholar 

  174. Patterson, C. H. The relationship of Bernreuter scores to parent behavior, child behavior, urban–rural residence, and other background factors in 100 normal adult parents. J. Soc. Psychol. 24, 3–49 (1946).

    Article  CAS  PubMed  Google Scholar 

  175. Terman, L. M. & Buttenwieser, P. Personality factors in marital compatibility: II. J. Soc. Psychol. 6, 267–289 (1935).

    Article  Google Scholar 

  176. Rushton, J. P. & Bons, T. A. Mate choice and friendship in twins: evidence for genetic similarity. Psychol. Sci. 16, 555–559 (2005).

    Article  PubMed  Google Scholar 

  177. Farley, F. H. & Davis, S. A. Arousal, personality, and assortative mating in marriage. J. Sex. Marital Ther. 3, 122–127 (1977).

    Article  CAS  PubMed  Google Scholar 

  178. Sutton, G. C. Do men grow to resemble their wives, or vice versa? J. Biosoc. Sci. 25, 25–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  179. Abdellaoui, A. et al. Associations between loneliness and personality are mostly driven by a genetic association with neuroticism. J. Pers. 87, 386–397 (2019).

    Article  PubMed  Google Scholar 

  180. Hoffeditz, E. L. Family resemblances in personality traits. J. Soc. Psychol. 5, 214–227 (1934).

    Article  Google Scholar 

  181. Donnellan, M. B., Conger, R. D. & Bryant, C. M. The Big Five and enduring marriages. J. Res. Pers. 38, 481–504 (2004).

    Article  Google Scholar 

  182. Lake, R. I., Eaves, L. J., Maes, H. H., Heath, A. C. & Martin, N. G. Further evidence against the environmental transmission of individual differences in neuroticism from a collaborative study of 45,850 twins and relatives on two continents. Behav. Genet. 30, 223–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Chopik, W. J. & Johnson, D. J. Modeling dating decisions in a mock swiping paradigm: an examination of participant and target characteristics. J. Res. Pers. 92, 104076 (2021).

    Article  Google Scholar 

  184. Sebro, R., Peloso, G. M., Dupuis, J. & Risch, N. J. Structured mating: patterns and implications. PLoS Genet. 13, e1006655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kim, H. C. et al. Spousal concordance of metabolic syndrome in 3141 Korean couples: a nationwide survey. Ann. Epidemiol. 16, 292–298 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Pennock-Román, M. Assortative marriage for physical characteristics in newlyweds. Am. J. Phys. Anthropol. 64, 185–190 (1984).

    Article  PubMed  Google Scholar 

  187. Staessen, J. et al. Familial aggregation of blood pressure, anthropometric characteristics and urinary excretion of sodium and potassium—a population study in two Belgian towns. J. Chronic Dis. 38, 397–407 (1985).

    Article  CAS  PubMed  Google Scholar 

  188. Katzmarzyk, P. T., Hebebrand, J. & Bouchard, C. Spousal resemblance in the Canadian population: implications for the obesity epidemic. Int. J. Obes. 26, 241–246 (2002).

    Article  CAS  Google Scholar 

  189. Wu, D.-M. et al. Familial resemblance of adiposity-related parameters: results from a health check-up population in Taiwan. Eur. J. Epidemiol. 18, 221–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Zahra, J., Jago, R. & Sebire, S. J. Associations between parenting partners’ objectively-assessed physical activity and Body Mass Index: a cross-sectional study. Prev. Med. Rep. 2, 473–477 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Longini, I. M. Jr, Higgins, M. W., Hinton, P. C., Moll, P. P. & Keller, J. B. Genetic and environmental sources of familial aggregation of body mass in Tecumseh, Michigan. Hum. Biol. 56, 733–757 (1984).

    PubMed  Google Scholar 

  192. Tambs, K. et al. Genetic and environmental contributions to the variance of the body mass index in a Norwegian sample of first- and second-degree relatives. Am. J. Hum. Biol. 3, 257–267 (1991).

    Article  PubMed  Google Scholar 

  193. Jee, S. H., Suh, I., Won, S. Y. & Kim, M. Y. Familial correlation and heritability for cardiovascular risk factors. Yonsei Med. J. 43, 160–164 (2002).

    Article  PubMed  Google Scholar 

  194. Davillas, A. & Pudney, S. Concordance of health states in couples: analysis of self-reported, nurse administered and blood-based biomarker data in the UK Understanding Society panel. J. Health Econ. 56, 87–102 (2017).

    Article  PubMed  Google Scholar 

  195. Moll, P. P., Burns, T. L. & Lauer, R. M. The genetic and environmental sources of body mass index variability: the Muscatine Ponderosity Family Study. Am. J. Hum. Genet. 49, 1243–1255 (1991).

    PubMed  PubMed Central  Google Scholar 

  196. van Dongen, J., Willemsen, G., Chen, W.-M., de Geus, E. J. C. & Boomsma, D. I. Heritability of metabolic syndrome traits in a large population-based sample. J. Lipid Res. 54, 2914–2923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Prichard, I. et al. Brides and young couples: partners’ weight, weight change, and perceptions of attractiveness. J. Soc. Pers. Relat. 32, 263–278 (2015).

    Article  Google Scholar 

  198. Province, M. A. & Rao, D. C. Path analysis of family resemblance with temporal trends: applications to height, weight, and Quetelet index in northeastern Brazil. Am. J. Hum. Genet. 37, 178–192 (1985).

    PubMed  PubMed Central  Google Scholar 

  199. Chien, K. L. et al. Familial aggregation of metabolic syndrome among the Chinese: report from the Chin-Shan community family study. Diabetes Res. Clin. Pract. 76, 418–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Knight, B. et al. Evidence of genetic regulation of fetal longitudinal growth. Early Hum. Dev. 81, 823–831 (2005).

    Article  PubMed  Google Scholar 

  201. Bouchard, C., Perusse, L., Leblanc, C., Tremblay, A. & Theriault, G. Inheritance of the amount and distribution of human body fat. Int. J. Obes. 12, 205–215 (1988).

    CAS  PubMed  Google Scholar 

  202. Friedlander, Y., Kark, J. D., Kaufmann, N. A., Berry, E. M. & Stein, Y. Familial aggregation of body mass index in ethnically diverse families in Jerusalem. The Jerusalem Lipid Research Clinic. Int. J. Obes. 12, 237–247 (1988).

    CAS  PubMed  Google Scholar 

  203. Silverman-Retana, O. et al. Spousal concordance in pathophysiological markers and risk factors for type 2 diabetes: a cross-sectional analysis of The Maastricht Study. BMJ Open Diabetes Res. Care 9, e001879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sear, R. & Marlowe, F. W. How universal are human mate choices? Size does not matter when Hadza foragers are choosing a mate. Biol. Lett. 5, 606–609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Silventoinen, K., Kaprio, J., Lahelma, E., Viken, R. J. & Rose, R. J. Assortative mating by body height and BMI: Finnish twins and their spouses. Am. J. Hum. Biol. 15, 620–627 (2003).

    Article  PubMed  Google Scholar 

  206. Mueller, W. H. & Malina, R. M. Differential contribution of stature phenotypes to assortative mating in parents of Philadelphia black and white school children. Am. J. Phys. Anthropol. 45, 269–276 (1976).

    Article  CAS  PubMed  Google Scholar 

  207. Heude, B. et al. Anthropometric relationships between parents and children throughout childhood: the Fleurbaix–Laventie Ville Santé Study. Int. J. Obes. 29, 1222–1229 (2005).

    Article  CAS  Google Scholar 

  208. Sanchez-Andres, A. & Mesa, M. Assortative mating in a Spanish population: effects of social factors and cohabitation time. J. Biosoc. Sci. 26, 441–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  209. Salces, I., Rebato, E. & Susanne, C. Evidence of phenotypic and social assortative mating for anthropometric and physiological traits in couples from the Basque country (Spain). J. Biosoc. Sci. 36, 235–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  210. Ahmad, M. & Gilbert, R. I. Assortative mating for height in Pakistani arranged marriages. J. Biosoc. Sci. 17, 211–214 (1985).

    Article  CAS  PubMed  Google Scholar 

  211. Ajala, O. et al. The relationship of height and body fat to gender-assortative weight gain in children. A longitudinal cohort study (EarlyBird 44). Int. J. Pediatr. Obes. 6, 223–228 (2011).

    Article  PubMed  Google Scholar 

  212. Annest, J. L., Sing, C. F., Biron, P. & Mongeau, J. G. Familial aggregation of blood pressure and weight in adoptive families: III. analysis of the role of shared genes and shared household environment in explaining family resemblance for height, weight and selected weight/height indices. Am. J. Epidemiol. 117, 492–506 (1983).

    Article  CAS  PubMed  Google Scholar 

  213. Burgess, E. W. & Wallin, P. Homogamy in personality characteristics. J. Abnorm. Soc. Psychol. 39, 475–481 (1944).

    Article  Google Scholar 

  214. Byard, P. J., Poosha, D. V. R. & Satyanarayana, M. Genetic and environmental determinants of height and weight in families from Andhra Pradesh, India. Hum. Biol. 57, 621–633 (1985).

    CAS  PubMed  Google Scholar 

  215. Byard, P. J., Mukherjee, B. N., Bhattacharya, S. K., Russell, J. M. & Rao, D. C. Familial aggregation of blood pressure and anthropometric variables in patrilocal households. Am. J. Phys. Anthropol. 79, 305–311 (1989).

    Article  CAS  PubMed  Google Scholar 

  216. Dasgupta, I., Dasgupta, P. & Daschaudhuri, A. B. Familial resemblance in height and weight in an endogamous Hahisya caste population of rural West Bengal. Am. J. Hum. Biol. 9, 7–9 (1997).

    Article  PubMed  Google Scholar 

  217. Eckman, R. E., Williams, R. & Nagoshi, C. Marital assortment for genetic similarity. J. Biosoc. Sci. 34, 511–523 (2002).

    Article  PubMed  Google Scholar 

  218. Ellis, J. A. et al. Comprehensive multi-stage linkage analyses identify a locus for adult height on chromosome 3p in a healthy Caucasian population. Hum. Genet. 121, 213–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Ginsburg, E., Livshits, G., Yakovenko, K. & Kobyliansky, E. Major gene control of human body height, weight and BMI in five ethnically different populations. Ann. Hum. Genet. 62, 307–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  220. Harrison, G. A., Gibson, J. B. & Hiorns, R. W. Assortative marriage for psychometric, personality and anthropometric variation in a group of Oxfordshire villages. J. Biosoc. Sci. 8, 145–153 (1976).

    Article  PubMed  Google Scholar 

  221. Knuiman, M. W., Divitini, M. L. & Bartholomew, H. C. Spouse selection and environmental effects on spouse correlation in lung function measures. Ann. Epidemiol. 15, 39–43 (2005).

    Article  PubMed  Google Scholar 

  222. Luo, Z. C., Albertsson-Wikland, K. & Karlberg, J. Target height as predicted by parental heights in a population-based study. Pediatr. Res. 44, 563–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  223. Mascie-Taylor, C. G. N. Assortative mating in a contemporary British population. Ann. Hum. Biol. 14, 59–68 (1987).

    Article  CAS  PubMed  Google Scholar 

  224. McManus, I. C. & Mascie-Taylor, C. G. Human assortative mating for height: non-linearity and heteroscedasticity. Hum. Biol. 56, 617–623 (1984).

    CAS  PubMed  Google Scholar 

  225. Mukhopadhyay, N. et al. A genome-wide scan for loci affecting normal adult height in the Framingham Heart Study. Hum. Hered. 55, 191–201 (2003).

    Article  PubMed  Google Scholar 

  226. Nagoshi, C. T. & Johnson, R. C. Between- vs. within-family analyses of the correlation of height and intelligence. Soc. Biol. 34, 110–113 (1987).

    CAS  PubMed  Google Scholar 

  227. Nance, W. E., Corey, L. A. & Eaves, L. J. A model for the analysis of mate selection in the marriages of twins: application to data on stature. Acta Genet. Med. Gemellol. 29, 91–101 (1980).

    CAS  PubMed  Google Scholar 

  228. Pearson, K. & Lee, A. On the laws of inheritance in man: I. Inheritance of physical characters. Biometrika 2, 357–462 (1903).

    Article  Google Scholar 

  229. Pieper, U. Assortative mating in the population of a German and a Cameroon city. J. Hum. Evol. 10, 643–645 (1981).

    Article  Google Scholar 

  230. Pomerat, C. M. Homogamy and infertility. Hum. Biol. 8, 19 (1936).

    Google Scholar 

  231. Raychaudhuri, A., Ghosh, R., Vasulu, T. S. & Bharati, P. Heritability estimates of height and weight in Mahishya caste population. Int. J. Hum. Genet. 3, 151–154 (2003).

    Article  Google Scholar 

  232. Roberts, D. F., Billewicz, W. Z. & McGregor, I. Heritability of stature in a West African population. Ann. Hum. Genet. 42, 15–24 (1978).

    Article  CAS  PubMed  Google Scholar 

  233. Seki, M., Ihara, Y. & Aoki, K. Homogamy and imprinting-like effect on mate choice preference for body height in the current Japanese population. Ann. Hum. Biol. 39, 28–35 (2012).

    Article  PubMed  Google Scholar 

  234. Siniarska, A. Assortative mating of parents and sib-sib similarities in offspring. Stud. Hum. Ecol. 5, 95–112 (1984).

    Google Scholar 

  235. Smith, M. A research note on homogamy of marriage partners in selected physical characteristics. Am. Sociol. Rev. 11, 226 (1946).

  236. Stulp, G., Buunk, A. P. & Pollet, T. V. Women want taller men more than men want shorter women. Pers. Individ. Differ. 54, 877–883 (2013).

    Article  Google Scholar 

  237. Stulp, G., Buunk, A. P., Pollet, T. V., Nettle, D. & Verhulst, S. Are human mating preferences with respect to height reflected in actual pairings? PLoS ONE 8, e54186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Stulp, G., Mills, M., Pollet, T. V. & Barrett, L. Non-linear associations between stature and mate choice characteristics for American men and their spouses. Am. J. Hum. Biol. 26, 530–537 (2014).

    Article  PubMed  Google Scholar 

  239. Susanne, C. Heritability of anthropological characters. Hum. Biol. 49, 573–580 (1977).

    CAS  PubMed  Google Scholar 

  240. Tambs, K. et al. Genetic and environmental contributions to the variance of body height in a sample of first and second degree relatives. Am. J. Phys. Anthropol. 88, 285–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  241. Tenesa, A., Rawlik, K., Navarro, P. & Canela-Xandri, O. Genetic determination of height-mediated mate choice. Genome Biol. 16, 269 (2015).

    Article  Google Scholar 

  242. To, W. W. K., Cheung, W. & Kwok, J. S. Y. Paternal height and weight as determinants of birth weight in a Chinese population. Am. J. Perinatol. 15, 545–548 (1998).

    Article  CAS  PubMed  Google Scholar 

  243. Willoughby, R. R. Somatic homogamy in man. Hum. Biol. 5, 690 (1933).

    Google Scholar 

  244. Xu, J. et al. Major recessive gene(s) with considerable residual polygenic effect regulating adult height: confirmation of genomewide scan results for chromosomes 6, 9, and 12. Am. J. Hum. Genet. 71, 646–650 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Donahue, R. P., Prineas, R. J., Gomez, O. & Hong, C. P. Familial resemblance of body fat distribution: the Minneapolis Children’s Blood Pressure Study. Int. J. Obes. Relat. Metab. Disord. 16, 161–167 (1992).

    CAS  PubMed  Google Scholar 

  246. McLeod, J. D. Spouse concordance for depressive disorders in a community sample. J. Affect. Disord. 27, 43–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  247. Sun, J. et al. Prevalence of diabetes and cardiometabolic disorders in spouses of diabetic individuals. Am. J. Epidemiol. 184, 400–409 (2016).

    Article  PubMed  Google Scholar 

  248. Patel, S. A. et al. Chronic disease concordance within Indian households: a cross-sectional study. PLoS Med. 14, e1002395 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Jun, S. Y., Kang, M., Kang, S. Y., Lee, J. A. & Kim, Y. S. Spousal concordance regarding lifestyle factors and chronic diseases among couples visiting primary care providers in Korea. Korean J. Fam. Med. 41, 183–188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Watanabe, T., Sugiyama, T., Takahashi, H., Noguchi, H. & Tamiya, N. Concordance of hypertension, diabetes and dyslipidaemia in married couples: cross-sectional study using nationwide survey data in Japan. BMJ Open 10, e036281 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Zorina-Lichtenwalter for help with ideas and feedback as the project developed. This work was supported by the National Institute of Mental Health R01 Grants MH130448 (M.C.K., J.V.B.) and MH100141 (M.C.K.), T32 Training Grant MH016880 (K.N.P), as well as by the National Institute on Drug Abuse T32 Training Grant T32DA017637 (T.B.H.). This work also used resources from the University of Colorado Boulder Research Computing Group, which is supported by the National Science Foundation (Award Nos. ACI-1532235 and ACI-1532236), the University of Colorado Boulder and Colorado State University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.B.H. contributed to study design, statistical analyses, manuscript writing/editing, assessment of meta-analysed studies, and creation of figures and tables; J.V.B. contributed to study design, statistical analyses, manuscript writing/editing, assessment of meta-analysed studies, and creation of figures and tables; K.N.P. contributed to manuscript editing, assessment of meta-analysed studies, and creation of tables; M.C.K. contributed to study design, statistical analyses, manuscript writing/editing, assessment of meta-analysed studies, and creation of tables.

Corresponding authors

Correspondence to Tanya B. Horwitz or Matthew C. Keller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Laurence Howe, Fartein Torvik and Yayouk Willems for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Funnel plots for each meta-analysed trait.

The funnel plots in Extended Data Fig. 1a Smoking Status, Extended Data Fig. 1b Height, Extended Data Fig. 1c Smoking Quantity, Extended Data Fig. 1d Extraversion, Extended Data Fig. 1e Neuroticism, Extended Data Fig. 1f Openness, Extended Data Fig. 1g Conscientiousness, Extended Data Fig. 1h Drinking Quantity, Extended Data Fig. 1i Agreeableness, Extended Data Fig. 1j Intelligence Quotient, Extended Data Fig. 1k Waist-to-Hip Ratio, Extended Data Fig. 1l Educational Attainment, Extended Data Fig. 1m Depression, Extended Data Fig. 1n Diabetes, Extended Data Fig. 1o Generalized Anxiety, Extended Data Fig. 1p Political Values, Extended Data Fig. 1q Religiosity, Extended Data Fig. 1r Smoking Initiation, Extended Data Fig. 1s Smoking Cessation, Extended Data Fig. 1t Problematic Alcohol Use, Extended Data Fig. 1u Substance Use Disorder, and Extended Data Fig. 1v Body Mass Index are designed to assess possible publication bias for each meta-analysis. Here, the Fisher Z-transformed correlations are plotted against their respective standard errors. For dichotomous traits, standard error was estimated using the delta method (see main text).

Extended Data Fig. 2 Partner correlations and Bonferroni-Adjusted 95% confidence intervals for 133 traits in the UK Biobank.

The visualized traits represent partner correlations for all of the adequately-powered UK Biobank traits (out of an original 140). Each estimate is color-coded by the correlation type—Pearson (in blue), Spearman (in red), and Tetrachoric (in green), used for continuous, ordinal, and binary traits, respectively—with the lines depicting the Bonferroni-adjusted 95% confidence interval for each trait. Estimates are based on up to 79,074 pairs; Supplementary Table 4 includes the precise sample size for each trait along with the Bonferroni-adjusted p-values associated with the adjusted 95% confidence intervals depicted in this figure. See main text for description of specific analyses. Num Dep Episodes = Number of Depressive Episodes; Heel BMD = Heel Bone Mineral Density (in the form of a t-score); LDL = Direct Low-density Lipoprotein Cholesterol, CRP = C-reactive Protein; RBC = Red Blood Cell (Erythrocyte) Count; DBP = Diastolic Blood Pressure; CPD (All Participants) = Cigarettes per Day (Includes Current, Former, and Never Smokers); FEV1 Pred % = Forced Expiratory Volume in 1-Second (FEV1), Predicted Percentage; PEF= Peak Expiratory Flow; WBC = White Blood Cell (Leukocyte) Count; SBP = Systolic Blood Pressure; HDL = High-density Lipoprotein Cholesterol; CPD (Smokers Only) = Cigarettes per Day (Restricted to Current or Former Smokers); WHR = Waist-to-hip Ratio; BMR = Basal Metabolic Rate; FIQ = Fluid Intelligence Quotient; BMI = Body Mass Index; FVC = Forced Vital Capacity; Time to First Cig = Time to First Cigarette; EA = Educational Attainment.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horwitz, T.B., Balbona, J.V., Paulich, K.N. et al. Evidence of correlations between human partners based on systematic reviews and meta-analyses of 22 traits and UK Biobank analysis of 133 traits. Nat Hum Behav 7, 1568–1583 (2023). https://doi.org/10.1038/s41562-023-01672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01672-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing