Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mesocorticolimbic signature of pleasure in the human brain

Abstract

Pleasure is a fundamental driver of human behaviour, yet its neural basis remains largely unknown. Rodent studies highlight opioidergic neural circuits connecting the nucleus accumbens, ventral pallidum, insula and orbitofrontal cortex as critical for the initiation and regulation of pleasure, and human neuroimaging studies exhibit some translational parity. However, whether activation in these regions conveys a generalizable representation of pleasure regulated by opioidergic mechanisms remains unclear. Here we use pattern recognition techniques to develop a human functional magnetic resonance imaging signature of mesocorticolimbic activity unique to states of pleasure. In independent validation tests, this signature is sensitive to pleasant tastes and affect evoked by humour. The signature is spatially co-extensive with mu-opioid receptor gene expression, and its response is attenuated by the opioid antagonist naloxone. These findings provide evidence for a basis of pleasure in humans that is distributed across brain systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An fMRI-based signature for pleasure.
Fig. 2: Validation of the pleasure signature.
Fig. 3: Cortical and subcortical representations of pleasure.
Fig. 4: Opioid contributions to the pleasure signature.

Similar content being viewed by others

Data availability

Data used to train and validate the signature are available at https://osf.io/vs84r/. Data from the Allen Brain Atlas are available at https://neurosynth.org/genes/ and http://portal.brain-map.org/.

Code availability

Code for reproducing the findings presented in this manuscript is available at https://github.com/ecco-laboratory/PMA. SPM can be downloaded from https://www.fil.ion.ucl.ac.uk/spm/software/download/, and the CanlabCore Tools are available at https://github.com/canlab/CanlabCore.

References

  1. McMahon, D. M. Happiness: A History (Grove Press, 2006).

  2. Kringelbach, M. L. & Berridge, K. C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 13, 479–487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berridge, K. C. & Kringelbach, M. L. Pleasure systems in the brain. Neuron 86, 646–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    Article  PubMed  Google Scholar 

  6. Cabanac, M. Pleasure: the common currency. J. Theor. Biol. 155, 173–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Peng, Y. et al. Sweet and bitter taste in the brain of awake behaving animals. Nature 527, 512–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science 368, 89–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Castro, D. C. & Berridge, K. C. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc. Natl Acad. Sci. USA 114, E9125–E9134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, K. S. & Berridge, K. C. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, K. S. & Berridge, K. C. The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J. Neurosci. 25, 8637–8649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peciña, S. & Berridge, K. C. Opioid site in nucleus accumbens shell mediates eating and hedonic ‘liking’ for food: map based on microinjection Fos plumes. Brain Res. 863, 71–86 (2000).

    Article  PubMed  Google Scholar 

  13. Castro, D. C. & Berridge, K. C. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting”. J. Neurosci. 34, 4239–4250 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berridge, K. C. Affective valence in the brain: modules or modes? Nat. Rev. Neurosci. 20, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kühn, S. & Gallinat, J. The neural correlates of subjective pleasantness. NeuroImage 61, 289–294 (2012).

    Article  PubMed  Google Scholar 

  16. Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    Article  PubMed  Google Scholar 

  17. Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35, 1219–1236 (2011).

    Article  PubMed  Google Scholar 

  18. Nummenmaa, L. et al. μ-Opioid receptor system mediates reward processing in humans. Nat. Commun. 9, 1500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carlén, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).

    Article  PubMed  Google Scholar 

  20. Pizzagalli, D. A. & Roberts, A. C. Prefrontal cortex and depression. Neuropsychopharmacology 47, 225–246 (2022).

    Article  PubMed  Google Scholar 

  21. Korb, S. et al. Dopaminergic and opioidergic regulation during anticipation and consumption of social and nonsocial rewards. eLife 9, e55797 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richard, J. M. & Berridge, K. C. Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and D2 together for fear. J. Neurosci. 31, 12866–12879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, R. et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat. Neurosci. 24, 1757–1771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kahnt, T. A decade of decoding reward-related fMRI signals and where we go from here. NeuroImage 180, 324–333 (2018).

    Article  PubMed  Google Scholar 

  26. Chikazoe, J., Lee, D. H., Kriegeskorte, N. & Anderson, A. K. Population coding of affect across stimuli, modalities and individuals. Nat. Neurosci. 17, 1114–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poldrack, R. A. & Farah, M. J. Progress and challenges in probing the human brain. Nature 526, 371–379 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Haynes, J.-D. & Rees, G. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26, 1910–1922 (2016).

    Article  PubMed  Google Scholar 

  30. Miskovic, V. & Anderson, A. K. Modality general and modality specific coding of hedonic valence. Curr. Opin. Behav. Sci. 19, 91–97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keren, H. et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am. J. Psychiatry 175, 1111–1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shackman, A. J. & Fox, A. S. Two decades of anxiety neuroimaging research: new insights and a look to the future. Am. J. Psychiatry 178, 106–109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fenoy, A. J., Quevedo, J. & Soares, J. C. Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression. Mol. Psychiatry 27, 574–592 (2022).

    Article  PubMed  Google Scholar 

  35. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat. Med. 26, 760–768 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Speer, S. P. H. et al. A multivariate brain signature for reward. NeuroImage 271, 119990 (2022).

    Article  Google Scholar 

  38. Reddan, M. C., Lindquist, M. A. & Wager, T. D. Effect size estimation in neuroimaging. JAMA Psychiatry 74, 207–208 (2017).

    Article  PubMed  Google Scholar 

  39. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kragel, P. A., Han, X., Kraynak, T. E., Gianaros, P. J. & Wager, T. D. Functional MRI can be highly reliable, but it depends on what you measure: a commentary on Elliott et al. (2020). Psychol. Sci. 32, 622–626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han, X. et al. Effect sizes and test–retest reliability of the fMRI-based neurologic pain signature. NeuroImage 247, 118844 (2022).

    Article  PubMed  Google Scholar 

  42. Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 21, 283–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dubé, L. & Le Bel, J. The content and structure of laypeople’s concept of pleasure. Cogn. Emot. 17, 263–295 (2003).

    Article  PubMed  Google Scholar 

  44. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).

    Article  CAS  Google Scholar 

  45. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gründemann, J. et al. Amygdala ensembles encode behavioral states. Science 364, eaav8736 (2019).

    Article  PubMed  Google Scholar 

  47. Ye, L. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165, 1776–1788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baliki, M. N. et al. Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J. Neurosci. 33, 16383–16393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woo, C.-W. et al. Quantifying cerebral contributions to pain beyond nociception. Nat. Commun. 8, 14211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C. & Taylor, P. A. FMRI clustering in AFNI: false-positive rates redux. Brain Connect. 7, 152–171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berridge, K. C. & O’Doherty, J. P. in Neuroeconomics 2nd edn (eds Glimcher, P. W. & Fehr, E.) 335–351 (Academic Press, 2014).

  52. Rozin, P. in Well-being: The Foundations of Hedonic Psychology (eds Kahneman, D. et al.) 109–133 (Russell Sage Foundation, 1999).

  53. Dalenberg, J. R., Weitkamp, L., Renken, R. J., Nanetti, L. & Ter Horst, G. J. Flavor pleasantness processing in the ventral emotion network. PLoS ONE 12, e0170310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mobbs, D., Greicius, M. D., Abdel-Azim, E., Menon, V. & Reiss, A. L. Humor modulates the mesolimbic reward centers. Neuron 40, 1041–1048 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Admon, R. & Pizzagalli, D. A. Corticostriatal pathways contribute to the natural time course of positive mood. Nat. Commun. 6, 10065 (2015).

    Article  PubMed  Google Scholar 

  56. O’Doherty, J. P. The problem with value. Neurosci. Biobehav. Rev. 43, 259–268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blain, B. & Rutledge, R. B. Momentary subjective well-being depends on learning and not reward. eLife 9, e57977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. https://doi.org/10.3389/neuro.06.004.2008 (2008).

  60. Skerry, A. E. & Saxe, R. A common neural code for perceived and inferred emotion. J. Neurosci. 34, 15997–16008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gregoriou, G. C., Kissiwaa, S. A., Patel, S. D. & Bagley, E. E. Dopamine and opioids inhibit synaptic outputs of the main island of the intercalated neurons of the amygdala. Eur. J. Neurosci. 50, 2065–2074 (2019).

    Article  PubMed  Google Scholar 

  63. Ford, C. P., Mark, G. P. & Williams, J. T. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J. Neurosci. 26, 2788–2797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eikemo, M. et al. Sweet taste pleasantness is modulated by morphine and naltrexone. Psychopharmacology 233, 3711–3723 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Koepp, M. J. et al. Evidence for endogenous opioid release in the amygdala during positive emotion. NeuroImage 44, 252–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Buchel, C., Miedl, S. & Sprenger, C. Hedonic processing in humans is mediated by an opioidergic mechanism in a mesocorticolimbic system. eLife 7, e39648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    Article  CAS  PubMed  Google Scholar 

  68. Heath, R. G. Pleasure and brain activity in man. J. Nerv. Ment. Dis. 154, 3–18 (1972).

    Article  CAS  PubMed  Google Scholar 

  69. Samanez-Larkin, G. R. et al. Anticipation of monetary gain but not loss in healthy older adults. Nat. Neurosci. 10, 787–791 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Charpentier, C. J., De Neve, J.-E., Li, X., Roiser, J. P. & Sharot, T. Models of affective decision making: how do feelings predict choice? Psychol. Sci. 27, 763–775 (2016).

    Article  PubMed  Google Scholar 

  72. Karjalainen, T. et al. Opioidergic regulation of emotional arousal: a combined PET–fMRI study. Cereb. Cortex 29, 4006–4016 (2019).

    Article  PubMed  Google Scholar 

  73. Pecina, M., Love, T., Stohler, C. S., Goldman, D. & Zubieta, J.-K. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology 40, 957–965 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Palomero‐Gallagher, N., Vogt, B. A., Schleicher, A., Mayberg, H. S. & Zilles, K. Receptor architecture of human cingulate cortex: evaluation of the four‐region neurobiological model. Hum. Brain Mapp. 30, 2336–2355 (2009).

    Article  PubMed  Google Scholar 

  75. Beckmann, M., Johansen-Berg, H. & Rushworth, M. F. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bijanki, K. R. et al. Cingulum stimulation enhances positive affect and anxiolysis to facilitate awake craniotomy. J. Clin. Invest. 129, 1152–1166 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Somerville, L. H. et al. The Lifespan Human Connectome Project in Development: a large-scale study of brain connectivity development in 5–21 year olds. NeuroImage 183, 456–468 (2018).

    Article  PubMed  Google Scholar 

  79. Barch, D. M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. NeuroImage 80, 169–189 (2013).

    Article  PubMed  Google Scholar 

  80. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L. & Hommer, D. Dissociation of reward anticipation and outcome with event-related fMRI. NeuroReport 12, 3683–3687 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C. & Fiez, J. A. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Cooper, J. A., Arulpragasam, A. R. & Treadway, M. T. Anhedonia in depression: biological mechanisms and computational models. Curr. Opin. Behav. Sci. 22, 128–135 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pizzagalli, D. A. Toward a better understanding of the mechanisms and pathophysiology of anhedonia: are we ready for translation? Am. J. Psychiatry 179, 458–469 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Smeets, P. A., Kroese, F. M., Evers, C. & de Ridder, D. T. Allured or alarmed: counteractive control responses to food temptations in the brain. Behav. Brain Res. 248, 41–45 (2013).

    Article  PubMed  Google Scholar 

  85. Iranpour, J., Morrot, G., Claise, B., Jean, B. & Bonny, J.-M. Using high spatial resolution to improve BOLD fMRI detection at 3T. PLoS ONE 10, e0141358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Castrellon, J. J. et al. Mesolimbic dopamine D2 receptors and neural representations of subjective value. Sci. Rep. 9, 20229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The neural basis of loss aversion in decision-making under risk. Science 315, 515–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kragel, P. A. & LaBar, K. S. Multivariate neural biomarkers of emotional states are categorically distinct. Soc. Cogn. Affect. Neurosci. 10, 1437–1448 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lepping, R. J. et al. Neural processing of emotional musical and nonmusical stimuli in depression. PLoS ONE 11, e0156859 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Laurent, H. K., Wright, D. & Finnegan, M. Mindfulness-related differences in neural response to own infant negative versus positive emotion contexts. Dev. Cogn. Neurosci. 30, 70–76 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tomova, L. et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat. Neurosci. 23, 1597–1605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dalenberg, J. R., Weitkamp, L., Renken, R. J. & Ter Horst, G. J. Valence processing differs across stimulus modalities. NeuroImage 183, 734–744 (2018).

    Article  PubMed  Google Scholar 

  94. Atlas, L. Y., Bolger, N., Lindquist, M. A. & Wager, T. D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30, 12964–12977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kano, M. et al. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep. 7, 12425 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rubio, A. et al. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system—a fMRI study in healthy volunteers. NeuroImage 107, 10–22 (2015).

    Article  PubMed  Google Scholar 

  98. Čeko, M., Kragel, P. A., Woo, C.-W., López-Solà, M. & Wager, T. D. Common and stimulus-type-specific brain representations of negative affect. Nat. Neurosci. 25, 760–770 (2022).

  99. DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S. & Gray, J. R. Intellect as distinct from openness: differences revealed by fMRI of working memory. J. Pers. Soc. Psychol. 97, 883 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Van Ast, V. et al. Brain mechanisms of social threat effects on working memory. Cereb. Cortex 26, 544–556 (2016).

    PubMed  Google Scholar 

  101. Xue, G., Aron, A. R. & Poldrack, R. A. Common neural substrates for inhibition of spoken and manual responses. Cereb. Cortex 18, 1923–1932 (2008).

    Article  PubMed  Google Scholar 

  102. Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. NeuroImage 39, 527–537 (2008).

    Article  PubMed  Google Scholar 

  104. Mennes, M., Kelly, C., Colcombe, S., Castellanos, F. X. & Milham, M. P. The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cereb. Cortex 23, 223–229 (2013).

    Article  PubMed  Google Scholar 

  105. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gianaros, P. J. et al. An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biol. Psychiatry 75, 738–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Kross, E., Berman, M. G., Mischel, W., Smith, E. E. & Wager, T. D. Social rejection shares somatosensory representations with physical pain. Proc. Natl Acad. Sci. USA 108, 6270–6275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Krishnan, A. et al. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife 5, e15166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. de Jong, S. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263 (1993).

    Article  Google Scholar 

  112. Arulpragasam, A. R., Cooper, J. A., Nuutinen, M. R. & Treadway, M. T. Corticoinsular circuits encode subjective value expectation and violation for effortful goal-directed behavior. Proc. Natl Acad. Sci. USA 115, E5233–E5242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by grants R01MH126083 and R00MH102355 to M.T.T. D.A.P. was partially supported by grants P50MH119467 and R37MH068376. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing, validation and visualization, P.A.K.; conceptualization, review and editing, and resources, M.T.T.; writing—review and editing, and resources, R.A.; writing—review and editing, and resources, D.A.P.; conceptualization, writing—original draft, review and editing, and formal analysis, E.C.H.

Corresponding author

Correspondence to Philip A. Kragel.

Ethics declarations

Competing interests

The authors declare the following competing interests: in the past 3 years M.T.T. has served as a paid consultant to Neumora Therapeutics (formerly BlackThorn Therapeutics) and Boehringer Ingelheim. Over the past 3 years, D.A.P. has received consulting fees from Albright Stonebridge Group, Boehringer Ingelheim, Compass Pathways, Engrail Therapeutics, Neumora Therapeutics (formerly BlackThorn Therapeutics), Neurocrine Biosciences, Neuroscience Software, Otsuka, Sunovion and Takeda; he has received honoraria from the Psychonomic Society and the American Psychological Association (for editorial work) and Alkermes; he has received research funding from the Brain and Behavior Research Foundation, the Dana Foundation, Millennium Pharmaceuticals, National Institute of Mental Health (NIMH) and Wellcome Leap; he has received stock options from Compass Pathways, Engrail Therapeutics, Neumora Therapeutics and Neuroscience Software. No funding from these entities was used to support the current work, and all views expressed are solely those of the authors. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Junichi Chikazoe, Dylan Nielson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Multivariate models discriminate brain states during manipulations of pleasure, pain, cognitive control, and negative affect.

(a) Rendering of z-scores for beta estimates from Partial Least Squares regression fit on training data (n = 499) overlaid on the ICBM152 template. Warm colors are positively associated with predictions of each domain, whereas cool colors are negatively associated with each domain. (b) Confusion matrix estimated using stratified 5-fold cross-validation in the training dataset (4-way accuracy = 47.17%, all four classes are statistically distinguishable at p < .05). Rows have been normalized to sum to 1. (c) Clustering of domains based on classification errors. Dendrogram shows clustering of errors using Ward’s linkage. Dashed vertical line depicts the optimal cut point, in which all four domains are assigned to separate clusters.

Extended Data Fig. 2 Signature coefficients within ventral pallidum and nucleus accumbens.

(a) Volumetric rendering of anatomically defined regions of interest overlaid on the ICBM152 template. (b) Signature coefficients (beta estimates from Partial Least Squares regression) within the ventral pallidum that predict states of pleasure. Warm colors are positively associated with predictions of pleasure, whereas cool colors are negatively associated with pleasure. MNI coordinates (mm in the y dimension) are shown next to each section. (c) Signature coefficients in the nucleus accumbens.

Extended Data Fig. 3 Estimated spatial smoothness of the pleasure signature.

The empirical spatial autocorrelation of the pleasure signature (black) and estimates using both Gaussian (green) and mono-exponential fit (red) are shown. Figure generated from the AFNI program 3dFWHMx.

Extended Data Fig. 4 A simplified, region-average model of the signature response is neither sensitive nor specific to pleasure.

(a) The simplified model defined by the average of coefficients from the optimized signature. Warm colors indicate regions in which increases in brain activity contribute to predictions of pleasure, whereas cool colors indicate regions in which increased brain activity leads to fewer classifications of pleasure. (b) Box and whisker plot shows differences in the region-average signature response for each study (ns = 26, 26, 13, 24 independent participants; *mean = .0412, t25 = 2.948, p = .00685, d = .578, 95% Confidence Interval = [.0138 .0686], uncorrected two-sided paired t-test). Black lines depict the mean response, light-shaded regions depict one standard deviation, and darker-shaded regions two standard errors. Each point corresponds to the response of a single subject. (c) Receiver operating characteristic curves for each of the four studies.

Extended Data Fig. 5 Brain reward signature is sensitive to reward feedback, but not pleasure.

(a) Reward signature trained to discriminate gains and losses in a monetary incentive delay task. Warm colors indicate regions in which increases in brain activity contribute to predictions of greater reward, whereas cool colors indicate regions in which increases in brain activity lead to lower levels of reward. (b) Box and whisker plot shows differences in the region-average signature response for each study (ns = 26, 26, 13, 24 independent participants; *mean = .0279, t25 = 3.221, p = .00353, d = .632, 95% Confidence Interval = [.0109 .0448], uncorrected two-sided paired t-test). Black lines depict the mean response, light-shaded regions depict one standard deviation, and darker-shaded regions two standard errors. Each point corresponds to the response of a single subject. (c) Receiver operating characteristic curves for each of the four studies.

Extended Data Fig. 6 Spatial correlation of neurotransmitter gene expression maps from the Allen Brain Atlas.

Heatmap depicts the Pearson correlation coefficient between pairs of gene expression maps, with cool colors indicating negative correlations and warm colors positive correlations.

Extended Data Fig. 7 Spatial correlation between Partial Least Squares regression coefficients and neurotransmitter gene expression maps from the Allen Brain Atlas.

*p < .05; **qFDR < .05, two-sided bootstrap test. Full statistics are reported in Supplementary Table 7.

Extended Data Fig. 8 Group-average contrast maps showing the effect of naloxone on brain activity during the presentation of erotic images and feedback about monetary rewards.

Warm colors indicate greater activity during saline placebo administration compared to naloxone, whereas cool colors indicate a greater response during naloxone administration compared to placebo.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1–9.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kragel, P.A., Treadway, M.T., Admon, R. et al. A mesocorticolimbic signature of pleasure in the human brain. Nat Hum Behav 7, 1332–1343 (2023). https://doi.org/10.1038/s41562-023-01639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01639-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing