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Nationwide health, socio-economic and 
genetic predictors of COVID-19 vaccination 
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Reedik Mägi2, Mark Daly1,4,5,6, Hanna M. Ollila1,4,7,8, Lili Milani    2, Markus Perola3, 
Samuli Ripatti1,4,5,9 & Andrea Ganna    1,4,5 

Understanding factors associated with COVID-19 vaccination can highlight 
issues in public health systems. Using machine learning, we considered the 
effects of 2,890 health, socio-economic and demographic factors in the 
entire Finnish population aged 30–80 and genome-wide information from 
273,765 individuals. The strongest predictors of vaccination status were 
labour income and medication purchase history. Mental health conditions 
and having unvaccinated first-degree relatives were associated with reduced 
vaccination. A prediction model combining all predictors achieved good 
discrimination (area under the receiver operating characteristic curve, 
0.801; 95% confidence interval, 0.799–0.803). The 1% of individuals with the 
highest predicted risk of not vaccinating had an observed vaccination rate 
of 18.8%, compared with 90.3% in the study population. We identified eight 
genetic loci associated with vaccination uptake and derived a polygenic 
score, which was a weak predictor in an independent subset. Our results 
suggest that individuals at higher risk of suffering the worst consequences of 
COVID-19 are also less likely to vaccinate.

In the face of the COVID-19 pandemic, several laboratories developed 
safe and effective vaccines in record-breaking time1. However, across 
high-income countries, somewhere between 5% and 30% of the population 
has not received a single dose of a COVID-19 vaccine. Even higher propor-
tions of populations in low-income countries remain unvaccinated2. In Fin-
land, 23.5% of the population had not received a single dose of a COVID-19  
vaccine by the end of October 2021. A broad and rapid vaccination against 

COVID-19 helps reduce disease severity (vaccination effectiveness against 
death, 99.0%3), the health-care burden (vaccination effectiveness against 
hospitalization, 97.2%3) and the spread of infection4. Refusal, postpone-
ment or inability to participate in the vaccination programme is therefore 
a key societal concern. Being able to identify individual factors impacting 
vaccination uptake can help policymakers design more effective targeted 
interventions for future immunization programmes.
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for at least four months (Fig. 1c). In total, we included 3,192,505 indi-
viduals (50.5% females), of which 136,947 women (8.5%) and 171,647 
men (10.9%) (Fig. 1b) were unvaccinated. Younger individuals were 
eligible for vaccination later and had a lower vaccination rate by the 
end of the study period (Fig. 1c). Age was thus used as a covariate in all 
the presented analyses. Genetic information from the FinnGen study16 
was available for a subset of 273,765 individuals fulfilling similar inclu-
sion criteria, of which 93% had received their first dose of a COVID-19 
vaccination by 31 October 2021. The details of data preprocessing are 
reported in the Methods.

FinRegistry is a joint project of the Finnish Institute for Health 
and Welfare (THL) and the Data Science Genetic Epidemiology 
research group at the Institute for Molecular Medicine Finland, Uni-
versity of Helsinki. The FinRegistry project has received approvals 
for data access from the National Institute of Health and Welfare 
(THL/1776/6.02.00/2019 and subsequent amendments), Digital and 
Population Data Services Agency DVV (VRK/5722/2019-2), Finnish 
Center for Pension (ETK/SUTI 22003) and Statistics Finland (TK-53-
1451-19). The FinRegistry project has received Institutional Review 
Board (IRB) approval from the National Institute of Health and Welfare 
(Kokous 7/2019).

Income and medicine purchases correlate with COVID-19 
vaccination uptake
We studied the importance of the 12 categories of predictors in pre-
dicting COVID-19 vaccination uptake using machine learning mod-
els (XGBoost17) trained separately for each category. Training was 
conducted in a randomly sampled 80% of the study population and 
evaluated in the remaining 20%. To speed up training, controls were 
downsampled in the training data so that five randomly sampled con-
trols (vaccinated) were included for each case (unvaccinated). This 
downsampling did not significantly affect the XGBoost model predic-
tions (Extended Data Fig. 2a). See the Methods and Extended Data Fig. 2b  
for more details on model training. Each model also included age 
and sex as predictors, representing the baseline model. Income (area 
under the receiver operating characteristic curve (AUC), 0.710; 95% 
confidence interval (CI), 0.708–0.712) and history of previous medi-
cation purchases, including 376 medications classes (AUC = 0.706; 
95% CI, 0.704–0.708), were the most predictive categories (Fig. 2a 
and Supplementary Table 1). The CIs for AUC were computed using 
bootstrapping (Methods). All but one of the categories, long-term care, 
performed better than the simple baseline model including only age 
and sex (AUC = 0.612; 95% CI, 0.610–0.614; Fig. 2a, dotted line). Because 
many of the predictors highly correlate with age and sex, comparison 
with the performance of the baseline model shows how much additional 
predictive information the categories contain.

Next, we studied the classification performance of individual 
predictors within each category by training individual Lasso18 models 
for each of the 2,890 predictors, including the baseline variables age 
and sex (Fig. 2b and Supplementary Table 2; see Methods for details). 
Lasso is a logistic regression model penalized with the L1 norm that 
acts as both a regularizer and a feature selector. The rationale was to 
establish a baseline that can be achieved using individual predictors. 
To provide interpretable effect sizes, we also performed logistic regres-
sion (without penalization) for each of the predictors, including age and 
sex as covariates, and calculated odds ratios (ORs) of not vaccinating 
against COVID-19 (Extended Data Fig. 3, Supplementary Table 3 and 
Methods). No downsampling of the training data was done for the 
individual predictor models. The Benjamini–Hochberg method was 
used to adjust the P values for multiple hypothesis testing. The refer-
ence levels for the predictors used in the logistic regression analysis 
are listed in Supplementary Table 8.

Not having income from labour in 2019 was the most predictive 
individual predictor (AUC = 0.668; 95% CI, 0.666–0.671; OR = 1.35; 
95% CI, 1.35–1.35). Among individuals with labour income, those in the 

Several previous studies on the correlates of COVID-19 vaccination 
were based on surveys5–11. They have found that trust and knowledge 
about the vaccine, recommendations by health-care professionals, 
beliefs about the severity of the disease, and convenience of vaccina-
tion were important correlates of vaccination intentions. This is in line 
with previous studies about vaccine hesitancy12,13.

Nevertheless, studies based on survey data have limitations. 
First, surveys usually include only a few thousand individuals, and 
this limits their statistical power. Second, populations included in 
surveys are often not representative of the general population, and 
factors associated with vaccine hesitancy (such as socio-economic 
status or education level) are also associated with participation in 
scientific studies14. People less likely to get a vaccine are more likely to 
be under-represented in these studies. Third, surveys include only a 
limited set of information, limiting the power of epidemiological and 
machine learning analyses.

Here we used a comprehensive collection of nationwide registers 
covering detailed health, socio-economic, familial and demographic 
information to map potential predictors of COVID-19 vaccination 
uptake across the entire Finnish population (5.5 million individuals). 
We compared 2,890 predictors measured before 31 December 2019 and 
the uptake of the first dose of a COVID-19 vaccine between 27 Decem-
ber 2020 and 31 October 2021. We used machine learning methods to 
quantify the importance of 12 predictor categories (such as disease 
history, medication purchases and education level; Fig. 1a) and their 
overlap. Finally, we combined these categories to derive a prediction 
model of COVID-19 vaccination status.

Previous studies have shown a genetic liability and identified 
individual genetic factors that impact COVID-19 severity and suscep-
tibility15. Across 273,765 individuals (with replication in an additional 
145,615 individuals from Estonia), we evaluated whether genetic infor-
mation could predict COVID-19 vaccination uptake, whether there 
is a genetic overlap with health and behavioural traits that were not 
available nationwide, and whether individuals with higher genetic 
risk for COVID-19 were more or less likely to be vaccinated. This study 
establishes a framework for using machine learning and statistical 
genetics methods to identify individuals that are less likely to partici-
pate in COVID-19 vaccination programmes.

Results
Nationwide data to identify predictors of COVID-19 
vaccination
The FinRegistry project (https://www.finregistry.fi/) combines and 
harmonizes data from 18 Finnish nationwide registers into a compre-
hensive dataset for epidemiological and machine learning analyses. 
Briefly, these registers cover disease diagnoses from primary, sec-
ondary and tertiary care; medication purchases; welfare benefits; 
multi-generational familial relationships; and socio-economic and 
demographic information for at least ten years, with some registers 
dating back to the 1970s (Fig. 1 and Methods). One of these registers, 
the Finnish Vaccination Register, contains records of all COVID-19 vac-
cination doses administered in Finland.

We manually divided the data, 2,890 potential predictors in total, 
into 12 consistent categories for easier interpretation of the results. 
Predictors were available before 31 December 2019 (that is, before 
the start of the COVID-19 pandemic, except for the vaccination sta-
tus of relatives, for which vaccination records until 31 October 2021 
were used) for all individual residents of Finland alive on 31 December 
2020. We considered only individuals between 30 and 80 years old 
and excluded 6.1% of the study population who had emigrated and a 
further 1.9% with a reported positive COVID-19 test by 31 October 2021. 
We further excluded 0.1% of the remaining study population living in 
Askola, a municipality with incomplete vaccination records (Extended 
Data Fig. 1). We chose the age range 30–80 because by 31 October 2021 
everyone in this age range had been eligible for a first dose of COVID-19 
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lowest income decile were less likely to take the vaccine than individuals 
in the 40–50% income decile bin (OR = 1.08; 95% CI, 1.08–1.09; Fig. 2c). 
Overall, we observed a linear relationship between income and COVID-
19 vaccination uptake. Other socio-demographic variables such as 
speaking another mother tongue than Finnish or Swedish were strong 
predictors and conferred an elevated relative risk of not vaccinating 
(AUC = 0.649; 95% CI, 0.647–0.651; OR = 1.27; 95% CI, 1.27–1.27).

We examined individual disease diagnoses (Fig. 2d) and medica-
tion purchases to identify possible disease groups associated with 
vaccination uptake (Supplementary Table 3). The highest ORs of not 
vaccinating were observed for diagnoses of substance abuse, such as 
stimulants (OR = 1.22; 95% CI, 1.21–1.23) and cannabinoids (OR = 1.25; 
95% CI, 1.24–1.26), and for hepatitis C diagnosis (OR = 1.22; 95% CI, 
1.21–1.23), which is itself strongly associated with intravenous drug 
usage. Other mental health conditions, particularly those associ-
ated with psychotic-type or delusion-type symptoms, showed large 
relative risks (for example, OR of dissocial personality disorder, 1.24; 
95% CI, 1.23–1.26; OR of schizoid personality disorder, 1.14; 95% CI, 
1.13–1.15).

While medication purchase history was the second strongest pre-
dictor category, no single medication alone was a strong predictor, sug-
gesting that the combined history of different medication purchases is 
largely responsible for the strength of the association. However, several 
of the most predictive medications associated with not vaccinating 
were those used in the treatment of psychosis-associated disorders, 
such as phenothiazines (OR = 1.07; 95% CI, 1.07–1.07) and novel/atypi-
cal antipsychotics (OR = 1.07; 95% CI, 1.07–1.07). Attention-deficit/
hyperactivity disorder (ADHD) medications (centrally acting sympa-
thomimetics) had the highest OR among the individual medications 
(1.08; 95% CI, 1.07–1.09). Memantine (other anti-dementia drugs), a 
medication used to treat symptoms of cognitive impairment such as 
Alzheimer’s disease, was also associated with lower vaccination rate 
(OR = 1.04; 95% CI, 1.03–1.05).

Because we had comprehensive information on multi-generational 
familial relationships, we could study how the vaccination status of a close 
relative impacts the likelihood of vaccinating (Extended Data Fig. 4).  
We considered only individuals who had relatives in the study popula-
tion (Supplementary Table 3 and Methods). We found that having an 
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Fig. 1 | Schematic outline of the study. a, COVID-19 vaccination uptake (at 
least one dose) at the end of October 2021 was extracted from the Finnish 
Vaccination Register for each individual aged 30–80 years and living in Finland. 
A comprehensive collection of potential predictors was extracted (at the end of 
2019, except for vaccination status of relatives, for which data up to the end of 
October 2021 were used) from nationwide registries, totalling 2,890 potential 
predictors across 12 manually defined predictor categories. The genetics of 
COVID-19 vaccination uptake was studied in a subsample of individuals of 
the total study population (FinnGen participants) and replicated in Estonia 

Biobank. Machine learning was then used to identify the predictors and 
predictor categories that best predict vaccination uptake in the test set. b, Total 
number of vaccinated (blue, at least one vaccination dose) and unvaccinated 
(purple) females and males in the study population at the end of October 2021. 
c, Cumulative fraction of different age groups in the study population (blue 
indicates 30- to 40-year-olds, orange indicates 41- to 50-year-olds, green indicates 
51- to 60-year-olds, red indicates 61- to 70-year-olds and violet indicates 71- to 
80-year-olds) who had received the first dose of a COVID-19 vaccine as a function 
of time during the follow-up period. Panel a created with BioRender.com.
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unvaccinated mother increases the odds of not vaccinating (OR = 1.31; 
95% CI, 1.31–1.32) more than having an unvaccinated father (OR = 1.23; 
95% CI, 1.22–1.23) or having any unvaccinated siblings (OR = 1.17; 95% 
CI, 1.16–1.17).

We performed a sensitivity analysis to account for possible 
non-reported emigration outside Finland. To capture unreported 
emigration, we excluded all individuals with no data entries in 2019 
(4.0%; Methods). Overall, we did not observe differences in predic-
tive performance for most individual predictors as measured by AUC 
(Extended Data Fig. 5a). However, we observed significant deflation 
in the ORs of several rare mother tongues (Extended Data Fig. 5b). 
The OR for speaking another mother tongue than Finnish or Swedish 
decreased from 1.27 to 1.15.

A prediction model for COVID-19 vaccination uptake
Combining all the registry-based predictors into a single XGBoost 
model provided good discrimination (AUC = 0.801; 95% CI, 0.799–
0.803 in the test set; see also Fig. 2a) but modest calibration, 
with the predicted probabilities being higher than the observed 
non-vaccination rates. However, we recalibrated the model using 
the method from ref. 19 and obtained a better match between the pre-
dicted probabilities and the observed non-vaccination rates (Extended 
Data Fig. 6). In the test set, the top 1% of individuals with the lowest pre-
dicted probability to vaccinate (N = 6,385) had an observed vaccination 
rate of only 18.8% compared with 90.3% when considering everyone 
in the test set (Fig. 3a). The XGBoost classifier outperformed a Lasso 
classifier trained using the same full set of predictors (AUC = 0.778; 
95% CI, 0.776–0.780).

We analysed the importance of each predictor in the combined 
XGBoost model by computing the mean absolute Shapley values of 
the predictors20. Income, the total number of medication purchases, 
age, the total duration of received social benefits and marital status 
were the most important predictors of COVID-19 vaccination status 
in this model (Fig. 3b). Interestingly, income was a more important 
predictor than age.

Different predictor categories share similar information
To study how much independent information each predictor category 
contains, we considered all possible combinations of predictor cat-
egories and trained a separate Lasso classifier model for each of the 
4,097 combinations. By testing each possible combination of catego-
ries, we can quantify information relevant to COVID-19 vaccination 
prediction that is unique to single categories versus what is shared 
across categories.

Figure 4a shows the drop in AUC when each predictor category 
is removed separately from the combined model. As expected, clas-
sification performance decreased the most when we removed the 
medication purchases history category, leading to a drop in AUC of 
1.3%. However, this decrease was substantially lower than the AUC 
improvement that this category contributed on top of age and sex 
(15.3%), indicating that much of the predictive information from this 
category was captured by other categories in the combined model.

We then studied the impact of removing multiple categories simul-
taneously on the prediction of COVID-19 vaccination uptake. This 
allowed us to identify category combinations that had the largest effect 
on the model predictions (Fig. 4b). For example, removing 10 of the 12 
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Fig. 2 | Predictors of COVID-19 vaccination uptake. a, AUC for XGBoost 
classifiers trained using predictors from different categories (each model also 
includes the baseline predictors age and sex). The error bars show 95% CIs 
computed using bootstrapping; the centres of the error bars correspond to the 
point estimates. The number of predictors in each category is indicated on the 
corresponding bar. The black dashed vertical line indicates the performance 
of the full XGBoost model using all predictors. The black dotted vertical line 
corresponds to an XGBoost model allowed to use only age and sex as predictors. 
Most of the predictor categories perform better than this baseline model, with 
income and medication purchases being the most predictive categories. b, AUC 
from Lasso classifiers trained separately for each of the individual predictors 
(the models also include the baseline predictors age and sex), grouped by the 
categories. Some of the highly predictive predictors have been highlighted (for a 
fully annotated list of AUCs of individual predictors, see Supplementary Table 2). 
c, Association between labour income in 2019 and COVID-19 vaccination uptake. 
The ORs are from a logistic regression model using income percentile bins as 

predictors and adjusting for age and sex. The 40–50% percentile bin was used as 
a reference category. The dots represent point estimates of ORs. The error bars 
indicate 95% CIs for the ORs computed using bootstrapping. d, Associations 
between previous disease diagnoses and COVID-19 vaccination status. The 
ORs are from a logistic regression model using a binary disease indicator as the 
predictor and adjusting for age and sex. Some of the interesting predictors are 
highlighted. MBD, mental and behavioural disorders. Predictors with multiple 
hypothesis testing-adjusted P > 0.01 (Benjamini–Hochberg method) and 
prevalence among vaccinated <1,000 are not shown. P values are two-sided and 
were calculated by dividing the coefficient values by their standard errors and 
observing the probability mass corresponding to equal or more extreme values 
from both tails of the standard normal distribution (as in the R package glm). The 
dots represent the point estimates of ORs. The error bars indicate 95% CIs for 
the ORs computed using bootstrapping. For a fully annotated list of the ORs of 
individual predictors, see Supplementary Table 3.
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categories resulted in only a 7.4% AUC decrease (with the most predic-
tive model containing two categories, occupation and medication 
purchases) compared with the full model. Taken together, these results 
indicate that predictive information was shared across categories and 
relatively good prediction accuracy can be achieved even in settings 
where some of the information used in this study is missing.

To understand how much predictive information was shared 
across categories, independently of age and sex, we computed par-
tial pairwise Pearson correlation between predicted probabilities 
obtained from models trained separately in each category (Fig. 4c; 
the same models are shown in Fig. 2a). We found that COVID-19 vac-
cination uptake probabilities predicted using the income, education, 
occupation and social benefits categories were highly correlated and 
clustered together (Pearson partial correlation coefficient, >0.25). We 
also identified significant correlations between predicted probabilities 
from socio-economic categories and health-related categories. For 
example, the correlation between predicted probabilities from the 
income and medication purchase history categories was 0.22.

Genetic information is a weak predictor of COVID-19 
vaccination
We performed a genome-wide association study (GWAS) of COVID-19 
vaccination uptake in FinnGen (N = 273,615; ~8.6% of FinRegistry partici-
pants aged 30–80) and the Estonian Biobank (N = 145,615), restricted to 
recent European ancestry. The effects were consistent across the two 
studies as evidenced by a genetic correlation of 0.8 (95% CI, 0.66–0.95). 
We therefore performed a meta-analysis using METAL21. We identified 
eight genome-wide significant loci (P ≤ 5 × 10−8) (Fig. 5a and Methods), 
and, in Supplementary Table 5, we report the most likely gene linked 
to each lead variant by using a machine-learning-based prioritization 
score from Open Targets Genetics22,23. Four of the eight lead variants 
were associated with anthropometric traits, such as body fat distri-
bution (Supplementary Table 5). These four variants increased the 
likelihood of vaccination while being associated with reduced body 
fat. We next investigated the single-nucleotide-polymorphism-based 
(SNP-based) heritability (the fraction of phenotypic variance in the 
population explained by the additive effects of SNPs, not to be confused 
with genetic influence) of vaccination uptake through linkage disequi-
librium score regression24, finding a low but statistically significant 

SNP-based heritability (observed scale h2
SNP = 2.6%, s.e. = 0.18%, 

P = 1.36 × 10−47).
Given the significant heritability, we explored whether we could 

build a polygenic score (PGS) for COVID-19 vaccination uptake. We 
reran the GWAS on 70% of the FinnGen individuals, meta-analysed 
these results with the GWAS conducted in the Estonia Biobank and 
used the results to build a PGS in the remaining 30% of the FinnGen 
individuals. A model including age, sex and the PGS reached an AUC 
of 0.612 (95% CI, 0.601–0.623) when predicting vaccination uptake, 
significantly higher than the baseline model including only age and 
sex (AUC = 0.589; 95% CI, 0.578–0.600; P for improvement, 1.72 × 10−9). 
The PGS predicted vaccination status better than the pregnancy and 
long-term care categories, and at a similar accuracy to municipality of 
residence (Supplementary Table 1).

We explored the genetic correlations between the GWAS of vacci-
nation uptake and a series of other health and behavioural information, 
mostly not available in the nationwide FinRegistry dataset. Of the 23 
phenotypes tested, 11 were significant after multiple hypothesis test-
ing correction (P < 2 × 10−3, Bonferroni corrected for 23 tests; Fig. 5b). 
Four psychiatric disorders—schizophrenia, major depressive disorder, 
bipolar disorder and ADHD—were positively genetically correlated 
with reduced vaccination uptake (rg between 0.18 and 0.43), consist-
ent with the epidemiological results (Fig. 2c). Not vaccinating was also 
associated with a higher genetic predisposition to loneliness, risky 
behaviour and smoking (rg between 0.25 and 0.33). Interestingly, we 
found a negative correlation (rg = −0.34; 95% CI, −0.40 to −0.28) with 
participation in subsequent questionnaires of UK Biobank (a proxy for 
engagement in scientific research) (Supplementary Table 6). Genetic 
correlations were comparable when COVID-19 cases were included in 
the vaccination uptake phenotype (Extended Data Fig. 7; only for the 
FinnGen study).

To test whether individuals at higher genetic risk for COVID-19 crit-
ical illness, hospitalization and susceptibility were more or less likely 
to vaccinate, we built a PGS for each of the three COVID-19 phenotypes 
using Release 7 from the COVID-19 Host Genetics Initiative15, which 
includes mostly studies collected before the start of the vaccination 
campaigns. Individuals with higher PGSs for each COVID-19 phenotype 
were less likely to receive the vaccine. However, the association was 
modest (critical illness: OR = 1.02; 95% CI, 1.01–1.04; hospitalization: 
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OR = 1.04; 95% CI, 1.02–1.05; susceptibility: OR = 1.02; 95% CI, 1.01–1.04 
per standard deviation in PGS), partially due to the PGS for COVID-19 
being weakly associated with COVID-19.

Using Mendelian randomization (MR), we found no evidence of 
a causal relationship between COVID-19 phenotypes and vaccination 
uptake (critical illness: MR inverse-variance weighted effect (IVW), 
0.015; s.e. = 0.019; P = 0.44; hospitalization: MR IVW, 0.018; s.e. = 0.028; 
P = 0.52; susceptibility: MR IVW, −0.017; s.e. = 0.069; P = 0.81) (Supple-
mentary Table 9). Similarly, we did not observe a causal relationship 
of height or type 2 diabetes with vaccination uptake. However, higher 
body mass index (BMI) was causally related to decreased vaccination 
uptake (MR IVW, 0.121; s.e. = 0.033; P = 2.1 × 10−4), with no evidence of 
unbalanced pleiotropy (MR Egger intercept, −1.3 × 10−3; s.e. = 1.5 × 10−3; 
P = 0.39).

Discussion
The digitalization, harmonization and accessibility of information col-
lected by health care organizations and by governmental agencies can 
inform policymakers at an unprecedented breadth. The comprehensive 

collection of nationwide registers combined with biobank data and 
empowered by machine learning approaches allowed us to exten-
sively compare the correlations of health-related, socio-economic, 
familial, genetics and demographic information with one of the most 
pressing public health issues: participation in COVID-19 vaccination 
programmes.

Even in the relatively economically equal Finnish society (top 15 
in income equality among all countries25), socio-economic aspects 
and labour income in 2019 were the strongest predictors of receiving 
the first dose of a COVID-19 vaccine. This observation could be partly 
explained by people in lower-income occupations having limited access 
to vaccines due to their stricter working schedules. Nonetheless, infor-
mation about professions was a weaker predictor of vaccination uptake 
than income. The lack of income in 2019, the strongest predictor, cap-
tures a wide range of socio-economic factors including unemployment, 
severe illness and retirement.

Several disease-related conditions were associated with vaccina-
tion uptake. Mental health issues were the most important category: 
psychosis-related conditions and diagnoses related to substance use 
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Fig. 4 | Shared information across different predictor categories. a, Drop 
in AUC (y axis) when removing a single category at a time from the full Lasso 
classifier (including all predictors). Removing all predictors from a category 
removes all information unique to the predictors of that category, meaning that 
the drop in AUC quantifies the loss in predictive power due to information unique 
to the removed category. The lower the AUC here, the higher is the amount 
of unique information contained in the category that is useful for predicting 
COVID-19 vaccination uptake. The black dashed line indicates the AUC of the 
full Lasso model using all predictor categories. The error bars and the error 
band correspond to 95% CIs computed using bootstrapping; the centres of 
the error bars correspond to the point estimates. b, Drop in AUC (y axis) when 
removing different combinations of predictor categories from the full Lasso 
model (the full model corresponds to ‘Number of included categories = 12’). 
All combinations of removed categories were tested by training separate Lasso 
classifiers on the data including only the specific combination of predictor 

categories, and the corresponding AUCs are shown as individual dots. The violin 
plots show the distribution of AUCs for each number of removed categories. 
Individual models discussed in the text are highlighted and named. The model 
with zero removed categories corresponds to a model trained using the baseline 
predictors age and sex only. All models include age and sex as predictors. Panel a 
shows a detailed view of ‘Number of included categories = 11’. c, Pairwise partial 
Pearson correlation, adjusting for age and sex, between predicted probabilities 
of COVID-19 vaccination uptake for each test set sample, obtained from each 
category separately (XGBoost classifiers; the AUCs for these models are shown 
in Fig. 2a and Supplementary Table 1). The colour indicates the strength of 
correlation, and the correlation coefficient is shown on each heat-map cell. 
Hierarchical clustering dendrograms of the partial correlation matrix of model 
predictions are shown beside the matrix and were used in ordering the rows and 
columns.
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disorders were associated with lower vaccination uptake. Associations 
with individual medication purchases supported these observations. 
People with mental health disorders are at increased risk of (severe) 
COVID-19, but even more notably, COVID-19 can cause deterioration 
in mental health, reduction in neuropsychiatric functioning and even 
neurodegeneration26. As those suffering from mental health disorders 
appear to be less likely to receive a vaccine, efforts to increase their 
vaccination uptake could prove especially effective in reducing both 
the acute infections and the multifactorial burden of long COVID.

Interestingly, medications used in the management of Alzheimer’s 
and Parkinson’s diseases were associated with lower vaccination rates. 
People with these conditions are at higher risk of severe COVID-19  
(ref. 27), probably have reduced functioning in everyday life and are less 
able to make informed decisions about their vaccination. Other, more 
common diseases were associated with reduced vaccination uptake, 
probably by capturing underlying socio-economic factors.

Previous studies have shown that the experience of a family mem-
ber with COVID-19 increased acceptance of the COVID-19 vaccine28. 
In line with this observation, we found that vaccination status cor-
relates within families. For example, having an unvaccinated mother 
correlated with the rate of not being vaccinated (OR = 1.31; 95% CI, 
1.31–1.32). However, having an unvaccinated mother has a stronger 
association with reduced vaccination than having an unvaccinated 
father or unvaccinated siblings, indicating that other factors beyond 
those shared within families (for example, socio-economic status) 
influence the correlation with vaccination status.

History of medication purchases was the strongest predictor cate-
gory alongside income, despite none of the individual medicines being 
a strong predictor alone. We hypothesize that the pattern of medication 
purchases is a relatively good proxy for both health and socio-economic 
aspects. Considering this observation, we performed extensive analy-
ses to understand whether different predictor categories are capturing 
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Fig. 5 | Genetic correlates of COVID-19 vaccination uptake. a, Manhattan 
plot of COVID-19 vaccination uptake from a meta-analysis of FinnGen and the 
Estonian Biobank. Genetic variants must have been tested in both datasets and 
passed quality control in both (INFO ≥ 0.8 and MAF ≥ 0.1%), and significant 
variants must not have indicated significant heterogeneity (heterogeneity 
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significant variants). The red horizontal line indicates genome-wide significance. 
b, Genetic correlations between COVID-19 vaccination uptake and selected 
health and behavioural phenotypes. The point estimates represent correlations, 

and the error bars reflect standard errors. Orange error bars and point estimates 
represent Bonferroni-significant genetic correlations (P < 0.002, Bonferroni 
corrected for multiple testing with 23 tests). The black dashed line indicates 
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vaccination uptake.
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overlapping information. We found a large overlap and redundancy 
in the predictive properties of different categories, some of which 
are traditionally considered independently (for example, health and 
socio-economic indicators). This observation is important for two rea-
sons. First, it blurs the distinction between health and socio-economic 
information. The overlap between these two categories has implica-
tions for law and ethics. For example, informed consents in biomedical 
studies are often bound to health-related research, while we show that 
socio-economic and health information can capture similar underly-
ing aspects in predicting vaccination uptake. Second, it questions 
the feasibility of excluding information perceived as sensitive from 
machine-learning-based prediction models. For example, citizens 
might be against using income to identify individuals at higher risk of 
not vaccinating but be more inclined to accept targeting individuals 
on the basis of certain previous health conditions. We have shown that 
predicted probabilities of vaccination uptake obtained using medica-
tion purchase history are correlated with predictions obtained using 
income, questioning whether medication purchase information should 
be used in a hypothetical scenario where income cannot be used as a 
predictor. Future work using dimensionality reduction techniques to 
obtain latent factors might help reduce information redundancy and 
identify some of underlying attitudinal aspects that are not directly 
measured in the registers.

We showed that by including all 2,997 predictors we could train a 
model of COVID-19 vaccination uptake. For example, such a model can 
be used to identify 1% of the population with an average vaccination 
rate of approximately 19%, which is almost five times lower than the 
national average.

GWASs have been conducted on thousands of health and behav-
ioural traits, and many behavioural traits correlate with genetic vari-
ants29. Importantly, both COVID-19 susceptibility and severity correlate 
with genetic variants15. This, together with the observation that many 
of the registry-based predictors in this study have genetic correlates 
(for example, mental health disorders), prompted us to study genetic 
associations with COVID-19 vaccination uptake.

Genetic information has been measured in nearly 10% of the 
Finnish population as of 2023. It has low measurement error, is stable 
through life and is not impacted by reverse causation. For these rea-
sons, statistical genetics approaches can be used to identify correlates 
of vaccination uptake that cannot be easily measured nationwide. 
Such correlates can be tested for replication in datasets from other 
countries. We demonstrate this by performing a meta-analysis on 
FinnGen and Estonian Biobank study participants and showing that 
genetic correlations between vaccination uptake and socio-economic 
traits or psychiatric disorders persist across countries. Interestingly, we 
found a significant genetic correlation with participating in optional 
questionnaires within the UK Biobank, supporting a shared underly-
ing effect between participating in scientific studies and propensity 
to vaccination. As is the case for many complex traits, the significant 
SNPs identified were robustly associated with vaccination uptake, but 
the effect sizes were very small in isolation. Summing these effects into 
a PGS produced a weak predictor of COVID-19 vaccination. Finally, 
our results indicate that individuals at higher genetic risk of severe 
COVID-19 were less likely to be vaccinated but that this association 
was not causal and was more likely due to shared risk factors captured 
by the PGS.

Our approach has several limitations. First, generalizability out-
side Finland and to non-European ancestries is unclear, and replica-
tion in other countries is needed to understand the generalizability 
of our findings across different populations. Generalizability can be 
impacted by differences in disease prevalence (for example, schizo-
phrenia being more common in Finland than in most European coun-
tries30) but also because of varying methods of organizing national 
vaccination programmes across vulnerable groups. Similarly, genetic 
associations have been shown to lack portability across ancestries due 

to differences in minor allele frequency (MAF) and linkage disequilib-
rium31. Studies including individuals from additional ancestries are 
needed before generalizations on the genetic results can be made. 
Previous studies using nationwide registers have, however, shown 
similar risk factors for severe COVID-19 as in other countries32,33. Sec-
ond, information about deaths and emigration from Finland during 
the year 2021 was not available to us. Thus, some individuals might not 
have taken the COVID-19 vaccination because they had passed away or 
had emigrated during the follow-up period. We restricted the analyses 
to individuals younger than 80 years old to reduce the number of indi-
viduals expected to die in 2021. Third, due to the scope and complexity 
of the included predictors, we made some simplifying decisions in 
preprocessing the nationwide registry data. The predictors included 
in the analyses are thus subject to some simplifications and limitations. 
We considered disease diagnoses and medication purchases over the 
lifespan of the individuals in the study population and condensed this 
information into binary yes/no predictors. Missing values for many 
socio-economic variables were considered by including separate 
predictors for missingness, but there might be multiple reasons for 
missing records. Better modelling of missing data and age of diagno-
sis would probably further increase the predictive performance of 
the models presented in this study. Not everyone reports emigrating 
outside Finland to the authorities. To capture this potential bias, we 
performed a sensitivity analysis removing individuals with no data 
entries in the year 2019 and showed no significant changes overall in 
the AUCs of individual predictors.

In conclusion, by performing a nationwide examination of predic-
tors of COVID-19 vaccination uptake across different life domains, we 
highlight the importance of harmonized and accessible registry and 
biobank-based information. We have shown that COVID-19 vaccination 
uptake is multifactorial and that individuals at higher risk of suffering 
the worst consequences of COVID-19 are also those with the lowest rates 
of COVID-19 vaccination. Using a machine learning approach, we could 
identify undervaccinated groups of individuals relative to the average 
population. A recent study has shown that financial incentives for vac-
cination do not have negative unintended consequences34. Targeting 
financial incentives on the basis of vaccination probabilities could be 
a cost-effective measure to increase the effectiveness of immunization 
programmes. While we cannot know whether targeting individual 
predictors is likely to change vaccination uptake, as our study does not 
address causality, the predicted probabilities from the model could be 
used to identify individuals at higher risk of not vaccinating. This could 
help better target existing awareness campaigns or financial incentives.

Methods
We assert that all procedures contributing to this work comply with the 
ethical standards of the relevant national and institutional committees 
on human experimentation and with the Helsinki Declaration of 1975, 
and as revised in 2008. The FinRegistry project has received approv-
als for data access from the National Institute of Health and Welfare, 
DVV (Digi- ja väestötietovirasto), the Finnish Center for Pension and 
Statistics Finland. The FinRegistry project has received IRB approval 
from the National Institute of Health and Welfare.

Patients and control participants in FinnGen provided informed 
consent for biobank research, on the basis of the Finnish Biobank Act. 
Alternatively, separate research cohorts, collected before the Finn-
ish Biobank Act came into effect (in September 2013) and the start of 
FinnGen (August 2017), were collected on the basis of study-specific 
consents and later transferred to the Finnish biobanks after approval by 
Fimea (Finnish Medicines Agency), the National Supervisory Authority 
for Welfare and Health. Recruitment protocols followed the biobank 
protocols approved by Fimea. The FinnGen study is approved by the 
Finnish Institute for Health and Welfare, the Digital and Population Data 
Service Agency, the Social Insurance Institution, Findata, Statistics 
Finland and the Finnish Registry for Kidney Diseases.
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The activities of the Estonian Biobank are regulated by the Human 
Genes Research Act, which was adopted in 2000 specifically for the 
operations of the Estonian Biobank. Analysis of individual-level data 
from the Estonian Biobank was carried out under ethical approval no. 
1.1-12/3022 from the Estonian Committee on Bioethics and Human 
Research (Estonian Ministry of Social Affairs), and according to data 
release application 3-10/GI/31487 from the Estonian Biobank, Institute 
of Genomics, University of Tartu.

Study population
The FinRegistry dataset (https://www.finregistry.fi/), used in the phe-
notypic analyses, includes 7,166,416 individuals of whom 5,339,804 
(74.51%) are index individuals (every resident of Finland alive on 1 Janu-
ary 2010). The remaining 1,826,612 individuals are relatives (offspring, 
parents and siblings) and spouses of index individuals who are not 
index individuals themselves.

FinnGen16 and the Estonian Biobank35 were used to explore the 
role of genetics in COVID-19 vaccination status. The FinnGen project 
combines multiple hospital biobanks and digital health registries. The 
data release used for this analysis (Release 9) has genotype data avail-
able for 377,277 individuals of Finnish ancestry. The Estonian Biobank 
is a volunteer-based sample with continually updated national health 
registry linkage and genotype data on 202,910 individuals.

To restrict the study population to individuals who had had a fair 
opportunity of receiving the first dose of a COVID-19 vaccination by the 
end of October 2021, we excluded the following individuals:

 1. Individuals who had died or emigrated before 31 December 
2020 (death statistics for 2021 in Finland were not available).

 2. Individuals who were less than 30 years old on 31 October 2021.
 3. Individuals who were more than 80 years old on 31 October 

2021.
 4. Individuals who had a laboratory-confirmed COVID-19 diagno-

sis prior to 31 October 2021.
 5. Individuals living in the municipality of Askola.

For the genetic analyses conducted in FinnGen and the Estonian 
Biobank, death or emigration was limited to 31 December 2019, as 
statistics beyond this date were unavailable for FinnGen. Residents 
of Askola were excluded because it was the only municipality where 
the vaccination coverage differed radically from any other Finnish 
municipality (Extended Data Fig. 1). After these exclusion criteria, the 
final FinRegistry study population contained 3,192,505 individuals, and 
the FinnGen study population included 273,615 individuals.

The study outcome, having received at least one dose of a COVID-
19 vaccine by 31 October 2021, was defined for the Finnish data using 
the official registry-based definition by the National Institute for Health 
and Welfare:

 1. Identifying all participants with a record for the anatomi-
cal therapeutic chemical (ATC) code J07BX03 (COVID-19 
vaccinations).

 2. Identifying all participants with a record corresponding to a rel-
evant drug name. The criteria included all records with a drug 
definition or trade name including ‘COM’, ‘COV’, ‘CVID’, ‘CO19’, 
‘COR’, ‘KOR’, ‘PFI’, ‘MOD’, ‘AST’, ‘AZ’, ‘BION’ or ‘SPIKE’. From the 
set of records identified using these criteria, we excluded am-
biguous records containing ‘TIC’, ‘ZOSTA’, ‘NEULA’, ‘VESIROK’, 
‘DUKORAL’, ‘TUHKA’, ‘COVAC’, ‘VAZ’, ‘ZAST’, ‘PASTEUR’, ‘FLUR’, 
‘LASTEN’, ‘KURKKU’ or ‘SUSTA’.

 3. Records were considered only after 1 October 2020.

In the Estonian Biobank, the study outcome of having received at 
least one dose of a COVID-19 vaccine was defined on the basis of linked 
data from the national Health and Welfare Information Systems Centre 
(TEHIK). Health care providers in Estonia have to submit all vaccination 
notifications to TEHIK, which is also the institution responsible for 

creating vaccination certificates. The database contains the follow-
ing information: name of vaccine, ATC code, amount (mcg), dosing 
and schedule. We included all individuals with at least one record of a 
COVID-19 vaccine (ATC code J07BX03) between 10 October 2020 and 
31 October 2021 as cases and others as controls. The analyses were not 
performed blind to the vaccination status.

Selection and definition of the phenotypic predictors
The FinRegistry study contains a comprehensive selection of data 
modalities ranging from disease history to medication purchase his-
tory and detailed socio-economic variables, as illustrated in Fig. 1a. 
We performed an initial variable selection by manually curating vari-
ables of interest across the different registries. Categorical variables 
were dichotomized into indicator variables. Individual predictors and 
their manually curated categories are listed in Supplementary Tables 
2 and 3. Division into the 12 predictor categories was based on expert 
knowledge and largely reflects the source registers of the predictors—
the FinRegistry dataset is aggregated from several individual thematic 
registers. For example, the social benefits category predictors come 
from the Finnish Register of Social Assistance, which is a collection of 
variables detailing received periods of income support.

For each predictor, excluding disease occurrences and med-
ication purchases, we also included a binary predictor indicating 
whether the value for this predictor was missing. For disease diagnoses 
and medication purchases, not having a record of the diagnosis or 
purchase was interpreted as absence of the diagnosis or purchase. 
Taken together, we defined 2,997 predictors (including age and sex). 
The prevalence of the predictors within the study population was 
not assessed beforehand. To preserve the privacy of individuals in 
the study population, FinRegistry has a policy that allows exporting 
aggregated data only when the aggregated data are based on five or 
more individuals. Some of the very rare predictors had fewer than 
this number of individuals among either vaccinated or unvaccinated, 
and thus predictor-level results for these predictors could not be 
exported from the secure analysis environment. In total, 105 of the 
defined predictors were excluded from the predictor-level results due 
to this, leaving us with 2,892 predictors (including age and sex). The 
preprocessing of each category of phenotypic predictors is discussed 
in more detail below.

Medication purchases. Information about medication purchases was 
retrieved from the Social Insurance Institution of Finland, Kela, which 
is a government agency that provides basic economic security through 
financial support for Finnish residents and many Finns living abroad. 
One of the social security benefits provided by Kela is reimbursements 
of part of the costs of medicines that are prescribed for the treatment of 
an illness. These data contain nationwide information about prescribed 
medications that are purchased from pharmacies. They do not include 
medications delivered in hospitals or purchases of medications without 
a prescription. This register exists from 1995. We coded medication 
purchase information into binary predictors describing whether an 
individual ever purchased the medication during 1995–2019. Similar 
medications were collapsed into one predictor by considering only the 
first five digits of the ATC codes.

Occupation. Information about job occupation was retrieved  
from Statistics Finland, which is a Finnish public authority that col-
lects, combines and stores data on a wide range of topics. Occupation 
is available for employed people at the end of the statistical refer-
ence year. The information exists from years 1970, 1975, 1980, 1990,  
1993, 1995, 2000 and 2004 on an annual basis. We defined occupation 
as the latest reported (not unknown) occupation before 31 Decem-
ber 2019. Occupation information was coded into 11 binary predic-
tors, according to the highest-level categorization in the Statistics  
Finland data.

http://www.nature.com/nathumbehav
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Disease history. Disease history was captured using two sets of data: 
FinnGen clinical endpoints and the Finnish National Infectious Diseases 
Register. The clinical endpoints were originally defined for the FinnGen 
project16 by a group of clinical experts. The clinical endpoints were 
predominantly generated by combining ICD8, ICD9 and ICD10 codes 
retrieved from the Finnish Institute of Health and Welfare registries 
(hospital discharge, cause of death and cancer registers). In addition, 
for a small proportion of clinical endpoints, information about medi-
cation purchases (Kela), medication reimbursements (Kela), surgical 
procedures (Finnish Institute of Health and Welfare) and primary health 
care ICD codes (Finnish Institute of Health and Welfare) was used. 
Clinical endpoints were filtered by excluding endpoints with fewer 
than 1,000 individuals in the FinRegistry population and redundant 
and highly correlated clinical endpoints as defined by FinnGen. Clinical 
endpoints defined solely on the basis of ATC codes were also excluded, 
as they capture the same information as medication purchases. For 
more information about FinnGen clinical endpoints and their defi-
nitions, see https://www.finngen.fi/sites/default/files/inline-files/
FinnGen_Endpoints_Elisa%20Lahtela.pdf and https://risteys.finregis-
try.fi/. Clinical endpoints were collected between 1 January 1969 and 
31 December 2019.

The Finnish National Infectious Diseases Register, retrieved from 
Finnish Institute of Health and Welfare, is based on the Communicable 
Diseases Act and Decree, which requires medical doctors and laborato-
ries to report cases of certain infectious diseases. The data exist from 
1995 to 2021. The ten most frequently reported infectious diseases were 
included as binary variables (having ever had the diagnosis before 31 
December 2019), excluding COVID-19. COVID-19 diagnoses (up until 
the end of the study period, 31 October 2021) from the infectious dis-
eases register were used to exclude people from the study population, 
as people with a COVID-19 diagnosis had different eligibility criteria 
for vaccination from the rest of the population. In total, the diseases 
category included 1,959 binary predictors that describe whether the 
individual has ever had the diagnosis.

Income. Information about income was retrieved from the Finnish pen-
sion registry. Income covers salary from labour, not income from benefits 
or capital income. Income from 2019 was used as a continuous predictor. 
The year 2019 was selected because it was the latest full year before the 
outbreak of the COVID-19 pandemic in Finland. Individuals with missing 
income information from 2019 (N = 1,173,047) were treated as missing 
data and were not included in computing the income percentiles in 
Fig. 2c. Missing income information was treated as a separate binary 
predictor. There are multiple reasons why income information might 
be missing, including unemployment, severe illness and retirement.

Education. Information about education level and field of education 
was retrieved from Statistics Finland as the highest completed degree 
by statistical year. The data exist for 1970, 1975, 1985 and every year 
between 1987 and 2018. Education level was defined as the highest 
completed degree by the end of 2018, and the field of education used 
was the field corresponding to the highest completed degree. Edu-
cation level was coded into ten binary predictors, according to the 
highest-level categorization in the Statistics Finland data, except for 
adding one predictor corresponding to possibly ongoing education. 
Each individual aged between 30 and 35 was assigned to this category 
on the basis of the median age of receiving a doctoral degree in our 
dataset. Correspondingly, the field of education was set to ‘education 
possibly ongoing’ for everyone aged between 30 and 35. In total, the 
field of education was coded into 13 binary predictors.

Marital status. Information on marital status in the study population 
was retrieved from the Finnish Population Registry from the Digital 
and Population Data Services Agency. The data exist between 1960 
and 2019. Marital status was coded into nine binary predictors using 

the latest known marital status. In addition, separate predictors for 
ever having been married or ever having been divorced were defined 
on the basis of the same original data.

Social benefits. The amount and duration of social benefits received 
were retrieved from the Finnish Register of Social Assistance. This regis-
ter covers the years between 1985 and 2019 and includes social benefits 
received by social service clients who, due to the lack or insufficiency 
of income or social security benefits, have claimed social assistance. 
Social security benefits are not included in the social benefits category 
in this study.

The social benefits data used in this study are a combination of 
recipients of primary social assistance, preventive social assistance 
and rehabilitative work benefits. The social benefits category includes 
four predictors: total actual income support in euros received by an 
individual between 1985 and 2019, total number of months an individual 
has received actual income support in that same interval, total number 
of months an individual has received any income support and whether 
an individual has ever received social assistance.

Long-term care. The Care Register for Social Welfare from the Finnish 
Institute of Health and Welfare was used to obtain information about 
long-term care periods. This register contains data on activities and 
clients of institutional care and residential services of social welfare, 
and it covers the years between 1995 and 2019. The register contains 
comprehensive data from individuals who have been clients in private 
or public retirement homes, elderly 24-hour residential accommoda-
tion, institutional care and assisted living for the intellectually disabled, 
24-hour residential housing for the severely physically or intellectually 
disabled, treatment for substance abuse, and rehabilitation facilities 
or non-round-the-clock housing services.

In this study, we used these data to create two sets of binary pre-
dictors. The first set contains 20 predictors that detail the type of 
care given to an individual (for example, living in an elderly home or 
rehabilitation facility). The second set contains 29 predictors that 
describe the main reason for entering the treatment. In addition, we 
created a predictor describing whether an individual had any periods 
of long-term care between 1995 and 2019 and another predictor to 
sum up the total number of treatment days within the same period.

Place of residence. The latest known place of residence was extracted 
from the Finnish Population Registry (Digital and Population Data 
Services Agency) on a municipality level. All individuals living in the 
municipality of Askola were discarded because the vaccination cover-
age in Askola was a heavy outlier. Place of residence was thus encoded 
as 306 binary predictors, including a predictor describing whether the 
place of residence was unknown.

Mother tongue. Information about mother tongue was obtained from 
the Finnish Population Registry from the Digital and Population Data 
Services Agency. This information is available between 1960 and 2019. 
Each mother tongue was considered as a separate binary predictor. 
Additionally, a predictor summarizing all mother tongues other than 
Finnish and Swedish was created.

Pregnancy. Information about pregnancy-related variables was 
obtained from the Medical Birth Register from the Finnish Institute 
of Health and Welfare. The information is available for all births in 
Finland between 1987 and 2019. We manually selected a set of 47 pre-
dictors from the Medical Birth Register. It is worth noting that the 
pregnancy-related information was used only for women who have 
been pregnant.

Vaccinated relatives. Information about COVID-19 vaccination status 
was obtained by combining the vaccination registry with information 

http://www.nature.com/nathumbehav
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about familial relationships within the study population retrieved 
from the Finnish Population Registry from the Digital and Population 
Data Services Agency. The familial information is available between 
1964 and 2019.

For each individual in the study population, we created separate 
binary predictors describing the vaccination status of their mother and 
father. If the mother or father was not included in the study population, 
the value of the corresponding predictor was marked as missing. There 
are several reasons why a person’s relative would not be included in the 
study population. They could be too young (<30 years), too old (>80 
years), dead or emigrated.

We also created a binary predictor describing the vaccination status 
of possible siblings of each individual in the study population. The value 
of this predictor was coded as 0 if the individual had siblings and any 
of them was vaccinated, as 1 if the individual had siblings and none of 
them was vaccinated, and as missing if the individual had no siblings or if 
information about possible siblings’ vaccination status was not available.

Train/test split and imputation of missing values
The study population was divided at random into training and test 
sets. The training set contained 80% of the study population. Only the 
training set was used in model training and fitting. The test set was 
reserved for computing the performance of the models. Classification 
performance was measured using AUC, and the uncertainty of the 
obtained AUC values was estimated using bootstrapping by drawing 
2,000 samples from the test set (with replacement) and computing the 
95% CIs. To speed up the training of the Lasso and XGBoost classifiers, 
the training set was downsampled to include all of the non-vaccinated 
individuals (308,594) and four randomly sampled vaccinated individu-
als per non-vaccinated individual.

Each binary predictor category (except for medication purchases 
and disease diagnoses, as described above) includes a binary predictor 
that encodes whether the value was missing in the registries. For exam-
ple, education level is encoded with nine binary predictors describing 
the education levels and one binary predictor indicating whether 
information about education level was missing. In the logistic regres-
sion analysis, individuals with missing values were discarded from the 
analysis. This corresponds to a complete case analysis. The number of 
missing values is shown for each predictor in Supplementary Tables 2 
and 3. In the Lasso analyses, imputation was used to keep the dataset 
sizes constant across the compared predictors. Imputation was con-
ducted by drawing new values for the missing values with replacement 
from the distribution of the non-missing values of the same predictor, 
assuming that the values are missing at random. In the XGBoost analy-
ses, missing values were input to the algorithm as is, letting XGBoost 
learn the rules for handling missing values.

Logistic regression
Logistic regression adjusted for age and sex was used to determine the 
association of each binary predictor with vaccination status (1, not vac-
cinated; 0, vaccinated). For each binary predictor, the following model 
was fit on the training split of the data using the function bigglm from 
the library biglm (v.0.9.2.1)36,37:

vaccination status ∼ age + sex + predictor.

The reference categories for the different predictors are detailed 
in the Supplementary Table 8. The P values of the logistic regression 
model coefficients were corrected for multiple hypothesis testing 
using the Benjamini–Hochberg procedure38, implemented in the 
Python package statsmodels (v.0.12.2)39.

XGBoost classifiers
XGBoost (eXtreme Gradient Boosting, v.1.5.0)17 classifiers were 
trained for each predictor category and for the full set of predictors 

to understand how much learning interactions and nonlinearities can 
boost the vaccination status predictions. All models were trained on 
the training split of the data using fivefold cross-validation to optimize 
the model hyperparameters using Bayesian hyperparameter optimiza-
tion (BayesSearchCV function from scikit-optimize, v.0.9.0) over the 
range of possible hyperparameter values detailed in Supplementary 
Table 4, sampling 200 hyperparameter combinations for each model. 
Balanced class weighting was used to penalize the misclassification 
of both vaccinated and unvaccinated equally. Classification perfor-
mance was marginally better without using balanced class weighting 
(Extended Data Fig. 2b).

Separate XGBoost classifiers for each predictor category. To deter-
mine the predictive performances of the predictor categories, we fitted 
an XGBoost classifier containing all the predictors from the specific 
category (see Supplementary Tables 2 and 3 for which predictors are 
included in which category). In addition, age and sex were used as pre-
dictors in each model, and a separate baseline model including age and 
sex only was trained to serve as a benchmark. The results from these 
XGBoost models are shown in Figs. 2a and 4c, and the AUCs are listed 
in Supplementary Table 1.

XGBoost classifier trained with the full set of predictors. An XGBoost 
model was trained using the full set of 2,997 predictors similarly to the 
individual-category models described above. TreeExplainer-method 
from the SHAP library20 (v.0.39.0) was used to interpret the importances 
of individual predictors of the full XGBoost model in terms of Shapley 
values. Shapley values were computed by averaging over randomly 
chosen training samples, covering 5% of the whole training set. We used 
the interventional feature perturbations with a random sample of 50 
individuals from the training set as the background data. The CIs for 
the mean absolute SHAP values were computed by bootstrapping the 
test set 2,000 times. The results from this model are shown in Figs. 2a 
and 3. Due to undersampling the vaccinated individuals and using class 
weights during training, the full XGBoost model is not well calibrated. 
We used the method proposed in ref. 19 to show that the model can be 
recalibrated to predict probabilities that correspond well to the actual 
observed probabilities.

Lasso classifiers
The Lasso classifiers were trained in three slightly different settings: (1) 
separate Lasso classifiers for each predictor, (2) separate Lasso classi-
fiers for each combination of predictor categories and (3) Lasso classi-
fiers trained with the full set of predictors. All models were trained on 
the training split of the data using fivefold cross-validation to optimize 
the regularization strength. The models were fitted with the cv.glmnet 
function from the glmnet R package (v.4.1.1)40 with the default param-
eter values. Balanced class weighting was used. We separately describe 
the three different settings for training Lasso classifiers in the following 
sections.

Separate Lasso classifiers for each predictor. To determine the 
predictive power of individual predictors, we fitted a Lasso logistic 
regression model for each predictor including age and sex. For each 
predictor, the following model was fit:

vaccination status ∼ age + sex + predictor.

The results from these analyses were used in Fig. 2b, and the full 
results are listed in Supplementary Table 2.

Separate Lasso classifiers for each combination of predictor cat-
egories. To quantify the importance of individual predictor categories 
in forecasting vaccination status, we trained additional Lasso classifier 
models by systematically testing each possible combination of the 
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12 predictor categories. Not including one predictor category in the 
model removes all information contained only in this predictor from 
the training data (notice that other predictor categories can partly 
or even completely contain the same information as the removed 
category). For example, excluding all predictors in the occupation 
category removes from the training set all information that cannot be 
explained by any other predictor category. Due to the computational 
complexity of this experiment (requiring the training of 4,095 separate 
models), Lasso was used here instead of the more computationally 
expensive XGBoost.

To determine the predictive performance of each combination of 
predictor categories, we fitted a Lasso logistic regression model con-
taining all the predictors from the specific combination of categories. 
In addition, age and sex were used as predictors in each model. Given 
a set C containing all the predictors in the specific combination, the 
fitted model is

vaccination status ∼ age + sex +∑
i∈C

predictori,

where the index i runs over all predictors in category C. The results from 
these analyses were used in Fig. 4a,b.

Lasso classifiers trained with the full set of predictors. To determine 
the overall predictive performance across all predictors, we trained 
Lasso logistic regression models using the full set of 2,997 predictors:

vaccination status ∼ age + sex +∑
i
predictori,

where the index i now runs through all predictors. The results from 
these analyses were used only for comparison with XGBoost, which 
was chosen as the primary method to calculate the combined predic-
tion model.

Sensitivity analysis removing individuals with no data entries 
in the year 2019
As a sensitivity analysis, we removed all individuals with no data entries 
in the year 2019 and reran the Lasso and the logistic regression analyses. 
Specifically, we removed each individual meeting all of the following 
criteria: no disease diagnoses, no medication purchases, no social 
benefits, no long-term care entries, no birth register entries and zero 
income. This ended up removing 129,089 of the total 3,192,505 individu-
als in the study population, indicating that we have reliable follow-up 
for a large majority of the study population. We considered only these 
data sources, because other data sources repeat the entry from the 
previous year if there is no new entry for the current year. Individuals 
with no data entries in the year 2019 were removed from the training 
and test sets; otherwise, the same train/test split was used. The results 
from this analysis are shown in Extended Data Fig. 5.

Calculation of partial correlations between machine learning 
model predictions, and clustering of predictions
To compute the similarity between the predicted probabilities for 
COVID-19 vaccination uptake obtained from the models trained for 
each predictor category, we calculated, in the test set, partial Pearson 
correlations between predicted probabilities from each category and 
visualized these as a clustered heat map (Fig. 4c). To remove the cor-
relation between predicted probabilities that is explained by the fact 
that age and sex are included in each category, we used the partial_corr 
function from the Python library pingouin (v.0.5.2)41, using the default 
parameters. Clustering of the partial correlation coefficient matrix was 
computed and the heat map plotted using the clustermap function 
from the Python library seaborn (v.0.11.2)42, with the default parameters 
(method, ‘average’; metric, ‘euclidean’).

Analysis of genetic predictors
We constructed the same vaccination phenotype used for FinRegistry 
in both FinnGen and the Estonia Biobank, except that deaths were 
excluded until 31 December 2019 as data were not available over the full 
period (total: Ncases = 45,202, Ncontrols = 374,178; FinnGen: Ncases = 19,338, 
Ncontrols = 254,427; Estonian Biobank: Ncases = 25,864, Ncontrols = 119,751). 
The GWAS was performed using REGENIE v.2.2.4 (ref. 43) for FinnGen 
and SAIGE v.1.0.7 (ref. 44) for the Estonian Biobank (Supplementary 
Methods). To test suitability for meta-analysis, we performed genetic 
correlations using linkage disequilibrium score regression and hapmap 
SNPs24. Quality control was performed on each set of summary statis-
tics from FinnGen and the Estonian Biobank, restricting SNPs to have 
INFO score ≥ 0.8 and MAF ≥ 0.1%. The meta-analysis was performed 
using METAL21. Genetic correlations with 23 phenotypes—including 
educational attainment, psychiatric disorders, physical diseases 
(including COVID susceptibility and severity), anthropometric traits, 
personality traits and general lifestyle factors—were calculated using 
linkage disequilibrium score regression24 (see Supplementary Table 3 
for a list of summary statistics used for each phenotype).

PGSs for vaccination status were computed using PRS-CS45. To 
remove sample overlap, prior to meta-analysis with the Estonian 
Biobank, we first performed a GWAS in a random 70% of the FinnGen 
study (Ncases = 13,555, Ncontrols = 178,081). Association testing was then 
restricted to the remaining 30%. We trained a logistic regression model 
of COVID-19 vaccination where the predictors were the vaccination 
PGS, age and sex by training a regression in 50% of the test set, and we 
calculated AUC in the remaining 50%. PGSs for COVID-19 resulting in 
critical illness, COVID-19 resulting in hospitalization and COVID-19 
susceptibility were calculated using the same method, but association 
with COVID-19 vaccination uptake was performed in the full sample due 
to the lack of sample overlap. Release 7 of the COVID-19 Host Genetics 
Initiative with FinnGen and 23andMe excluded (COVID-19 critical illness: 
Ncases = 17,962, Ncontrols = 867,353; COVID-19 hospitalization: Ncases = 44,549, 
Ncontrols = 2,018,071; COVID-19 susceptibility: Ncases = 155,026,  
Ncontrols = 2,445,292) were used as summary statistics to calculate  
the PGSs15.

To understand the impact of removing COVID-19 cases on our 
results, we repeated all analyses including COVID-19 cases within the 
FinnGen sample.

To test the causal effect of COVID-19 critical illness, hospitaliza-
tion and susceptibility on vaccination status, we used MR46. MR-Base 
was used to run two-sample MR47. For the exposures, we selected the 
same summary statistics used for the PGS analysis15, whereas for the 
outcome, we selected the summary statistics for vaccination status 
from only the FinnGen sample to prevent sample overlap. We addition-
ally tested for the causal effects of height, type 2 diabetes and BMI, 
as the traits had significant genetic correlations or the genome-wide 
significant SNPs indicated overlapping effects. As sample overlap was 
not an issue for these traits, the meta-analysed summary statistics for 
vaccination status were used to improve power. For all tests, instru-
mental variables were selected using a P value threshold of 5 × 10−8 
and clumped using the default parameters (window size, 10,000 kb; 
r2 < 0.001). As a sensitivity analysis, we repeated the MR for COVID-19 
phenotypes using a less stringent P value threshold of 5 × 10−5.

Ethics declarations
FinRegistry is a collaboration project of the Finnish Institute for Health and 
Welfare (THL) and the Data Science Genetic Epidemiology research group 
at the Institute for Molecular Medicine Finland, University of Helsinki. The 
FinRegistry project has received the following approvals for data access 
from the National Institute of Health and Welfare (THL/1776/6.02.00/2019 
and subsequent amendments), DVV (VRK/5722/2019-2), the Finnish Center 
for Pension (ETK/SUTI 22003) and Statistics Finland (TK-53-1451-19). The 
FinRegistry project has received IRB approval from the National Institute 
of Health and Welfare (Kokous 7/2019).
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Patients and control participants in FinnGen provided informed 
consent for biobank research, on the basis of the Finnish Biobank Act. 
Alternatively, separate research cohorts, collected before the Finn-
ish Biobank Act came into effect (in September 2013) and the start of 
FinnGen (August 2017), were collected on the basis of study-specific 
consents and later transferred to the Finnish biobanks after approval by 
Fimea (Finnish Medicines Agency), the National Supervisory Authority 
for Welfare and Health. Recruitment protocols followed the biobank 
protocols approved by Fimea. The Coordinating Ethics Committee of 
the Hospital District of Helsinki and Uusimaa (HUS) statement number 
for the FinnGen study is HUS/990/2017.

The FinnGen study is approved by the Finnish Institute for 
Health and Welfare (permit numbers: THL/2031/6.02.00/2017, 
THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/ 
6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and 
THL/1524/5.05.00/2020), the Digital and Population Data Service 
Agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3 and 
VRK/4415/2019-3), the Social Insurance Institution (permit num-
bers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, 
KELA 98/522/2019, KELA 134/522/2019, KELA 138/522/2019, 
KELA 2/522/2020 and KELA 16/522/2020), Findata (permit 
numbers: THL/2364/14.02/2020, THL/4055/14.06.00/2020, 
THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/ 
14.06/2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, 
T H L / 2 0 9 / 1 4 . 0 6 . 0 0 / 2 0 2 1 ,  T H L / 6 8 8 / 1 4 . 0 6 . 0 0 / 2 0 2 1 , 
THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, THL/5546/ 
14.02.00/2020, THL/2658/14.06.00/2021 and THL/4235/14.06.00/202), 
S t a t i s t i c s  F i n l a n d  ( p e r m i t  n u m b e r s :  T K- 5 3 - 1 0 4 1 - 1 7, 
TK/143/07.03.00/2020 (earlier TK-53-90-20), TK/1735/07.03.00/2021 
and TK/3112/07.03.00/2021) and the Finnish Registry for Kidney Dis-
eases (permission/extract from the meeting minutes on 4 July 2019).

The Biobank Access Decisions for FinnGen samples and data 
utilized in FinnGen Data Freeze 9 include THL Biobank BB2017_55, 
BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, 
BB2019_7, BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood 
Service Biobank 7 December 2017, Helsinki Biobank HUS/359/2017, 
HUS/248/2020, Auria Biobank AB17-5154 and amendment no. 1 (17 
August 2020), AB20-5926 and amendment no. 1 (23 April 2020) and 
its modification (22 September 2021), Biobank Borealis of Northern 
Finland_2017_1013, Biobank of Eastern Finland 1186/2018 and amend-
ment 22 § /2020, Finnish Clinical Biobank Tampere MH0004 and 
amendments (21 February 2020 and 6 October 2020), Central Finland 
Biobank 1-2017, and Terveystalo Biobank STB 2018001 and amendment 
25 August 2020.

The activities of the Estonian Biobank are regulated by the Human 
Genes Research Act, which was adopted in 2000 specifically for the 
operations of the Estonian Biobank. Analysis of individual-level data 
from the Estonian Biobank was carried out under ethical approval no. 
1.1-12/3022 from the Estonian Committee on Bioethics and Human 
Research (Estonian Ministry of Social Affairs), and according to data 
release application 3-10/GI/31487 from the Estonian Biobank, Institute 
of Genomics, University of Tartu.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data dictionaries for FinRegistry are publicly available on the FinReg-
istry website (www.finregistry.fi/finnish-registry-data). Access to the 
FinRegistry data can be obtained by submitting a data permit appli-
cation for individual-level data to the Finnish social and health data 
permit authority, Findata (https://asiointi.findata.fi/). The application 
includes information on the purpose of data use; the requested data, 
including the variables, definitions of the target and control groups, 

and external datasets to be combined with FinRegistry data; the dates 
of the data needed; and a data utilization plan. The requests are evalu-
ated case by case. Once approved, the data are sent to a secure comput-
ing environment (Kapseli) and can be accessed within the European 
Economic Area and within countries with an adequacy decision from 
the European Commission. The Finnish biobank data can be accessed 
through the Fingenious services (https://site.fingenious.fi/en/) man-
aged by FINBB. Access to the Estonian Biobank data (https://genomics.
ut.ee/en/content/estonian-biobank) is restricted to approved research-
ers and can be requested. Summary statistics of the COVID-19 vaccina-
tion uptake GWAS are available in the GWAS catalogue under accession 
code GCST90255613.

Code availability
The essential analysis code used to produce the results is available 
in the FinRegistry GitHub at https://github.com/dsgelab/COVID-
19-vaccination-public.
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Extended Data Fig. 1 | COVID-19 1st dose vaccination coverage in the study population in each Finnish municipality. Residents of Askola (highlighted with red and 
annotated) were excluded from the study as the vaccination coverage in Askola (2,948 residents in the study population) seemed artificially low compared to all other 
municipalities and is likely due to misreporting.
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Extended Data Fig. 2 | The effects of downsampling of controls and use of 
balanced class weights to the XGBoost model predictions. a) Downsampling 
controls does not negatively affect the machine learning model predictions. 
AUCs for models trained with all cases and five randomly sampled controls per 
each case (orange) and for models trained with the full training data without 
downsampling (black). Predictors used by the models are indicated on the x-axis. 
All AUCs correspond to XGBoost models, except for the Full model (indicated 
with blue colour), where the AUCs were computed for the Lasso model, as the full 
XGBoost model could not be trained without downsampling the controls due to 

memory issues. b) Class weighting has a negligible effect on the XGBoost model 
predictions. AUCs for XGBoost models trained with balanced class weighting 
(orange) versus with no class weights (blue). In both cases, five controls per each 
case were sampled randomly for the training data. Predictors used by the models 
are indicated on the x-axis. In both panels, the error bars indicate 95% confidence 
intervals computed using bootstrapping, and the centre of the error bars 
corresponds to the point estimate. All models include the baseline predictors age 
and sex.
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Extended Data Fig. 3 | Effect size distributions across the predictor 
categories. Violin plots describing the distributions of adjusted odds ratios 
(OR) (adjusted for age and sex, see Methods) for not uptaking the COVID-19 
vaccination separately for each of the predictor categories. See Supplementary 

Table 3 for a full list of ORs for the individual predictors. Inside the violins, the 
box shows the quartiles of the distribution, white dot is the median and whiskers 
correspond to 1.5 times the interquartile range.
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Extended Data Fig. 4 | The effect of unvaccinated relatives to risk of not vaccinating. Adjusted (for age and sex, see Methods) odds ratios (OR) describing the 
risk of not uptaking the COVID-19 vaccination when either a) mother, b) father, or c) any of their siblings is unvaccinated (for the entire follow-up period of 1.1.2021-
31.10.2021).
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Extended Data Fig. 5 | Sensitivity analysis removing all individuals with no 
data entries in the year 2019 from the study population. In total 129,089 
individuals had no data entries in the year 2019 (see Methods for details). The 
dots are coloured by the predictor category. Error bars correspond to 95% 
confidence intervals computed using bootstrapping and dots correspond 
to point estimates. a) Area under receiver-operator characteristics curve 
(AUC) using the full study population (x-axis) plotted against the AUC using the 
study population with individuals with no data in the year 2019 removed (y-axis) 
from Lasso classifier models trained separately for each individual predictor 
(including also age and sex as predictors in each model). Models were trained 

separately using training data with and without individuals with no data entries in 
the year 2019. AUCs were computed on a separate unseen test set. No significant 
changes in AUC were observed for any predictor. b) Odds ratios (OR) using the 
full study population (x-axis) plotted against the ORs using the study population 
with individuals with no data in the year 2019 removed (y-axis) from logistic 
regression models trained separately for each individual predictor, adjusting for 
age and sex. Significant drop in OR when removing individuals with no data in the 
year 2019 occur mostly for relatively rare mother tongues (some highlighted with 
labels).
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Extended Data Fig. 6 | Calibration of the prediction model of COVID-19 vaccination uptake. Calibration curves for the full XGBoost (all predictors) model 
predicting COVID-19 vaccination status before (blue) and after (orange) recalibration (see Methods).
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Extended Data Fig. 7 | Genetic correlations with and without COVID-19 cases included in the phenotype definition. The analysis was performed within the 
FinnGen study. Point estimates represent correlations with error bars reflecting standard errors. Black error bars and point estimates represent the vaccination 
phenotype which includes COVID-19 cases.
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