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Sensory perception relies on 
fitness-maximizing codes

Jonathan Schaffner1,2, Sherry Dongqi Bao    1,2, Philippe N. Tobler    1,2, 
Todd A. Hare    1,2,4  & Rafael Polania    2,3,4 

Sensory information encoded by humans and other organisms is 
generally presumed to be as accurate as their biological limitations allow. 
However, perhaps counterintuitively, accurate sensory representations 
may not necessarily maximize the organism’s chances of survival. To 
test this hypothesis, we developed a unified normative framework for 
fitness-maximizing encoding by combining theoretical insights from 
neuroscience, computer science, and economics. Behavioural experiments 
in humans revealed that sensory encoding strategies are flexibly adapted 
to promote fitness maximization, a result confirmed by deep neural 
networks with information capacity constraints trained to solve the same 
task as humans. Moreover, human functional MRI data revealed that novel 
behavioural goals that rely on object perception induce efficient stimulus 
representations in early sensory structures. These results suggest that 
fitness-maximizing rules imposed by the environment are applied at early 
stages of sensory processing in humans and machines.

One of the main goals of the neural and behavioural sciences is to 
understand what general principles explain the solutions evolution 
has selected to extract and process information from the environ-
ment to guide behaviour. Half a century ago, it was postulated that 
neural systems should represent the sensory world as accurately and 
efficiently as possible by exploiting information about the statistical 
regularities of the environment, an idea known as efficient coding1,2.

Efficient coding in sensory perception is typically assumed to be 
based on an information maximization criterion—that is, the sensory 
world must be represented as accurately as possible. One may think that 
this criterion makes sense for early sensory systems, as this is precisely 
the role of a sensor: a good measurement instrument must reliably 
measure the environmental variable that it was built for. However, the 
information maximization criterion does not necessarily consider the 
behavioural goals of the organism3–7.

Is it reasonable that our sensory systems invest their limited 
resources to represent the world as accurately as possible irrespec-
tive of the organism’s goals? This question has kept scientists and phi-
losophers busy for centuries and led to heated debates across various 

fields and domains including neuroscience, psychology, economics 
and evolutionary biology8. Some views support the idea that organ-
isms should represent objects as they exist in the world, as closely as 
biological limitations allow9,10. Others posit that perceptual represen-
tations should be in general different from the actual physical world, 
and these representations should directly map onto the utility they 
offer to the agents11–13.

In partial support of the latter idea, recent neurophysiological 
evidence shows that early sensory systems represent not only informa-
tion about physical sensory inputs but also non-sensory information 
according to the requirements of a specific task and the behavioural 
relevance of the stimuli14–18. This does not necessarily imply that sen-
sory systems should give up representing the ‘veridical’ world, as it has 
been demonstrated that neural systems can develop computational 
strategies that allow representing multiple behaviourally relevant 
features alongside objective sensory information19,20. However, this 
line of research provides no indication of the actual benefit of hav-
ing such mixed neural representations at the earliest stages of sen-
sory processing, or how this information could be used to efficiently 
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To solve this problem, we assume that the organism must make 
choices between alternatives drawn from the stimulus distribution, 
f(s), which describes the relative availability of the different alternatives 
in its environment (for example, how often a blowfly encounters a par-
ticular flower). The goal is to select the alternative that promises more 
reward to the organism, as this should lead the organism to maximize 
its fitness3,39. In the case of the blowfly LMCs, one may suppose that 
the blowfly must often make fine discriminations and that different 
contrast levels are monotonically related to different reward values.

On the one hand, if the goal of the organism is to minimize the 
number of erroneous responses (that is, maximize discrimination 
accuracy between two stimuli s1 and s2)

min
h

∬ f(s1, s2)P(error|h(s1),h(s2))ds1ds2, (1)

it can be shown that the optimal neural response h(s) matches the 
cumulative distribution function (CDF) of the stimulus distribution 
(Fig. 1b; see also equation (11) in the Methods). However, this accuracy 
maximization strategy does not provide a precise account of the dis-
tribution of neural responses in the blowfly (Fig. 1).

On the other hand, if the goal of the organism is to minimize 
expected reward loss (that is, maximize the amount of reward received 
after many decisions; see Supplementary Note 1 for derivation)

min
h

∬ f(s1, s2)P(error|h(s1),h(s2))|s1 − s2|ds1ds2, (2)

the optimal fitness-maximizing neural response h(s) provides a nearly 
perfect account of the neural responses of the blowfly retina (Fig. 1b,c 
and Methods). We emphasize that the remarkable overlap between the 
fitness-maximizing predictions and the empirical neural responses 
presented in Fig. 1 are not the product of curve fitting; instead, these 
predictions emerge from the normative decision model, which has no 
degrees of freedom (Methods).

A common approach adopted in computer science and neurosci-
ence to study the way in which a system penalizes estimation mistakes 
to optimize performance is via the Lp loss function defined as | ̂s(r) − s|p, 
where ̂s  is the sensory estimation, s is the true signal and p determines 
how errors are penalized. A recent parameter estimation study asked 
what type of error penalty best explained the LMC data40. However, in 
this study, the authors did not have explicit hypotheses for the potential 
evolutionary and behavioural meaning of different values for error 
penalties, and they instead relied on numerical estimations of p that 
best explained the data. We demonstrate that the error penalty that 
provides a nearly perfect fit to the LMC response function corresponds 
to the blowfly LMC encoding function that guarantees maximal reward 
expectation to the organism under our sensory-reward mapping 
assumptions (Fig. 1c and Methods).

While the predictions of reward-maximizing sensory codes and the 
data from blowfly retinal neurons (that is, the earliest level of encoding) 
show a striking similarity (Fig. 1), this result does not directly address all 
aspects of our hypothesis that neural codes in early sensory areas adapt 
to the organism’s behavioural goals. This is because we do not know the 
specific function linking contrast to fitness for the blowfly, and we can-
not show that the code used in their retinas adapts between contexts 
because we have data from only one context. While we emphasize that 
this result should be treated at this stage as anecdotal, it inspired us to 
test the fitness-maximizing hypothesis more directly in humans (see 
below) and may inspire others to do the same in other animals.

Adaptive fitness-maximizing sensory codes in humans
To more directly test the hypothesis that sensory perception relies on 
adaptive fitness-maximizing codes, we implemented an experiment 
with more than one context in human sensory encoding. To date, it 

guide behaviour, given that we are limited in our capacity to process 
information.

The study of how systems should trade off the maximization of 
some utility function relevant to the goals of the organism against 
information-processing constraints is part of a growing body of 
research inspired by the work of Shannon, who put forward the idea that 
when optimizing a distortion function that characterizes the cost of 
particular errors, not all such errors are equally important. This implies 
that the unreliability of signal transmission is not necessarily uniform 
across the space of possible messages that can be transmitted21. Similar 
concepts have been borrowed from the field of statistical mechanics, 
where information processing in capacity-limited systems can be 
modelled as the energy required to move away from default states in 
thermodynamic systems, which can be quantified by differences in free 
energy22,23. These principled approaches have played a fundamental 
role in neural process theories of early sensory systems24–28 as well as 
higher cognitive functions29–35.

Our work builds on these normative theoretical principles to deter-
mine how a (neural) system should allocate information-processing 
resources to maximize fitness in different situations. We focus on two 
of the most common problems studied in decision-making: accuracy 
maximization in perceptual discrimination tasks and reward maximiza-
tion for situations in which a particular attribute is related to a given 
currency value. This allowed us to test the following hypothesis: given 
that noisy communication channels always lose information during 
transmission, the brain will adapt to the fitness-maximizing rules of 
a particular environment at the earliest stages of sensory processing. 
We demonstrate that early visual structures in humans and artifi-
cial agents with sensory information-processing bottlenecks follow 
fitness-maximizing encoding schemes.

Results
Neural codes in an insect’s retina
Before moving on to humans, we introduce an illustrative example, as 
anecdotal evidence, to motivate the theoretical framework applied in 
our experiments. Specifically, we studied the responses of retinal neu-
rons in the blowfly—the large monopolar cells (LMCs)—which encode 
sensory information about visual contrast levels. These neural codes 
are considered the first demonstration of efficient coding in biologi-
cal organisms36.

Visual features such as shape, colour and texture are important 
sensory signals that insects use to discriminate between competing 
flowers and fruit species, with visual contrast playing a key role37,38. In 
our example, we assume that blowflies use knowledge of the different 
levels of contrast displayed by flowers and fruits to select food sources 
that promise more beneficial nutrients (that is, reward). In other words, 
we assume that there is a monotonic association between contrast 
and reward that makes some contrast discrimination mistakes more 
costly than others. Please note that this corresponds to the standard 
and most studied class of economic problems, where choices with 
a particular attribute are monotonically related to a given currency 
value. The hypothesis that we test here is that a neural code that simply 
maximizes information accuracy in the LMCs would not maximize the 
fitness of the organism.

Concretely, we studied the following problem. Suppose that the 
distribution of contrasts encountered by the blowfly in its natural 
environment is given by f(s). We define the function that transforms 
the contrast stimulus input s to neural responses r in the blowfly retina 
as r = h(s). Then, what is the optimal neural response shape h(s) if, 
given biological limitations, such a function can only generate a lim-
ited set of neural responses? Under this formulation, the following 
problem can be studied39: find the optimal neural response function 
under two evolutionary optimization criteria, (1) the probability of 
mistakes minimization criterion and (2) the expected reward loss  
minimization criterion.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | July 2023 | 1135–1151 1137

Article https://doi.org/10.1038/s41562-023-01584-y

has been widely accepted that the default neural code for orientation 
perception in humans is information maximization (infomax) cod-
ing41, as it can be shown that this code will minimize the probability of 
mistakes in perceptual discrimination tasks (Supplementary Note 1).  
One reason that infomax coding may typically explain human per-
ception well in regard to orientation is that, for humans, orientation 
information does not typically signify reward and is instead used for 
navigation purposes. The fitness-maximizing code for orientation 
perception may thus be equivalent to infomax under standard condi-
tions. Our experiments deviate from these standard conditions to test 
whether sensory encoding strategies adapt in a manner predicted by 
the theory of fitness maximization.

We designed behavioural tasks in which, on any given trial, human 
participants had to choose which of two simultaneously presented ori-
entation stimuli, s1 or s2, was more diagonal (that is, closer to a 45-degree 
angle; Fig. 2). In experiment 1, the participants were trained in two dif-
ferent contexts but were always tested with stimuli in the same retino-
topic locations, while in experiment 2, the participants were trained in 
only one context or the other but were tested with stimuli in trained and 
untrained retinotopic locations. The key aspect of both experiments is 
that decisions were made in two different stimulus–reward association 
contexts. In one context, the participants were paid a fixed reward for 
correct discrimination of the more diagonal stimulus in each trial and 
received no reward for incorrect decisions (henceforth the accuracy 
context, Kacc). In the second context, the participants were rewarded 
depending on the stimulus s that they selected in each trial, and the 
amount of reward was linearly mapped to the degree of diagonality 
of the input stimulus (henceforth the reward context, Krew). Crucially, 
the prior distribution of sensory signals f(s) was exactly the same in 
both contexts. Stimuli close to cardinal orientations were presented 
the most often to match the statistics of natural scenes that humans 
typically encounter42 (Fig. 3a). This experimental design allowed us to 
test the competing hypotheses that neural codes in early sensory areas 
(1) maximize accurate representations of the environment and are 
thus constant in both reward contexts, or (2) adapt between contexts 
to instantiate efficient coding strategies that maximize fitness. The 
location-specific training in experiment 2 allowed us to test whether 

any adaptation occurs in early sensory regions that maintain retino-
topic mappings or only later in downstream circuits that generalize 
across locations.

We employed a general method for defining efficient codes by 
investigating optimal allocation of limited neural resources43. On the 
basis of this framework, sensory precision, measured as Fisher informa-
tion J(s), should be proportional to the amount of resources available 
k and the prior distribution f(s) raised to a power q

J(s) ∝ k × f(s)q, (3)

hence known as the power-law efficient code. We show that an advan-
tage of employing this framework is that there is a direct link between 
the power-law efficient codes and the fitness maximization solutions 
for the contexts that we consider here (Methods and Supplementary 
Note 1). In brief, the connection of the power-law efficient codes with 
accuracy versus reward maximization objectives is the following: if the 
power-law parameter q is relatively low, it shifts some neural resources 
away from where f(s) is high and relocates them where it is low. The rea-
son for this spreading of coding resources is that, even though observ-
ing a rare stimulus is unlikely (and thus the probability of error will be 
low), if there is an error, it could be a very costly mistake. Therefore, 
when stimuli are directly associated to rewards relative to situations 
in which all mistakes are equally costly, it pays to allocate more neural 
resources to the segments of the stimulus space where f(s) is low (Fig. 3e 
and Supplementary Fig. 1). This theoretical link allowed us to derive vari-
ous qualitative predictions that we used to test whether humans indeed 
adopt fitness-maximizing, as opposed to information-maximizing, 
neural codes of sensory perception.

A first prediction of fitness maximization theory is related to 
sensory discrimination differences in the two reward association con-
texts considered here. If participants maximize fitness under limited 
resources, discrimination accuracy for diagonal (that is, oblique) rela-
tive to cardinal orientations should improve more in Krew than in Kacc 
over the course of the decision task (Fig. 3e). In line with this predic-
tion, we found an interaction between reward association context, 
orientation and task phase (early or late) on discrimination accuracy 
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Fig. 1 | Blowfly LMC responses are better explained by fitness than 
information maximization coding schemes. a, Responses measured from the 
LMCs (black dots) and the CDF (blue line) of contrasts in the natural environment 
of the blowfly. If accurate perception of the environment is maximized by the 
LMCs, then the line indicating the CDF should lie on top of the dots reflecting the 
empirical data. The data points were averaged from n = 6 cells; the range bars 
show the total scatter (data of the LMC responses was reproduced from ref. 36). 
b, The black dots represent the same empirical data and the blue line the same 
contrast stimulus CDF as in a. The grey dashed line represents the predicted 
response function from an accuracy maximization code. The orange line 
indicates a coding rule that maximizes fitness. It matches the data better than 

the grey line. The data points were averaged from n = 6 cells; the range bars show 
the total scatter (data of the LMC responses was reproduced from ref. 36, work 
distributed with license CC BY-NC-ND 3.0). c, Neural response probability density 
distributions predicted by a fitness maximization rule (orange) also align better 
with the empirical data (black) than those predicted by infomax coding (dashed 
grey). This suggests that the fitness maximization model describes the empirical 
data more accurately than the accuracy maximization model. The same fitness-
maximizing solution emerges when studying the Lp reconstruction error penalty, 
with optimal solution p = 0.5, which is the error penalty that best describes the 
LCM neural response data40.
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(β = 1.46 ± 0.65; PMCMC < 0.001; Supplementary Tables 1 and 2). Note 
that this interaction is not driven by a simple increase in sensitivity in 
Krew—that is, a general improvement across the whole orientation space  
(Fig. 3b). Despite the differences between contexts, fitness maximiza-
tion theory predicts that for both optimization objectives, discrimina-
bility should be higher in regions of the stimulus distribution prior with 
higher density (that is, greater in cardinal than oblique orientations) 
because these stimuli occur more frequently in all contexts (see the 
thick blue and thick red lines in Fig. 3e). The data are consistent with this 
prediction as well (main effect of obliqueness s in Kacc: β = −4.50 ± 0.45; 
PMCMC < 0.001; in Krew: β = −5.50 ± 0.47; PMCMC < 0.001; Fig. 4a,b). These 
results thus support our hypothesis that perceptual coding of sensory 
information uses a fitness-maximizing code.

To further substantiate the conclusion that changes in behaviour 
were driven by fitness-maximizing codes rather than experience-driven 
increases in sensitivity, we fit the encoding model to the choice data 
to estimate parameters q and k. In line with the fitness maximization 
predictions, we found that in context Krew the value of k did not change 
(Δk = −0.0004 ± 0.0014; PMCMC = 0.61), while q decreased between 
the first and last part of the decision experiment by Δq = −0.29 ± 0.15 
(PMCMC = 0.03). The final value of q was significantly smaller in Krew than 
in Kacc (Δq = −0.38 ± 0.14; PMCMC = 0.004; Fig. 4c). Taken together, our 
results clearly indicate that the empirically observed behavioural 
changes in Krew versus Kacc were not caused by simple practice-related 
sensitivity enhancements or differences in monetary payoffs (Methods).

Fitness-maximizing adaptation at sensory estimation stages
We next sought to determine whether the form of efficient adaptation 
observed in the decision task takes place only in downstream decision 
circuits or whether it is already implemented at earlier processing 
stages—for instance, in the circuits that generate estimations of sen-
sory stimuli. To answer this question, we had participants perform 

an edge orientation estimation task before and after the contextual 
decision-making task (Fig. 2 and Methods). After training in either 
context, there was a significant decrease in the estimation bias 
(PMCMC = 0.02; Supplementary Fig. 2). A decrease in the estimation bias 
is predicted by either a fitness-maximizing code or increased sensitivity 
(Fig. 3c,f). However, similar to the decision task, experience-dependent 
changes in sensitivity versus a fitness-maximizing code make distinct 
predictions for the estimation task in terms of the estimation variance. 
Greater sensitivity would lead to lower estimation variability for all 
orientations (Fig. 3d). In contrast, the fitness maximization hypothesis 
predicts that after participants adapt to context Krew in the decision 
task, estimation variability for more oblique orientations will decrease, 
while estimation variability for stimuli near cardinal orientations will 
be slightly higher (Fig. 3g). This is because the theory predicts a shift 
in coding resources from high-probability cardinal orientations to 
low-probability diagonal orientations. Crucially, fitness maximization 
predicts that after exposure to context Kacc, there will be no change in 
the relative estimation variability for cardinal versus diagonal orienta-
tions. In line with these predictions, we found a significant interaction 
(β = −0.16 ± 0.09; PMCMC = 0.04) between the change in estimation vari-
ability for oblique relative to cardinal stimuli across contexts (Fig. 5a 
and Supplementary Table 3).

Fitness-maximizing codes are retinotopically specific
A key conclusion that we draw from our results is that fitness-maximizing 
adaptation in both the decision task and the estimation task appears to 
have a common origin that does not depend on comparisons between 
decoded stimuli in downstream decision circuits. To explicitly test 
whether fitness-maximizing neural codes are indeed present at the ear-
liest stages of sensory processing, we modified the decision and estima-
tion tasks to train and test behavioural performance in retinotopically 
specific locations. In the modified estimation task, the participants were 
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reward for a correct decision, whereas in context Krew, the reward magnitude was 
linearly related to the degree of diagonality of the stimuli. In experiment 1 (a), the 
participants (n = 25) completed multiple sessions of the estimation–decision–
estimation sequence using either Krew or Kacc for the decision task. In experiment 
2 (b), there were four locations for stimulus presentation in the estimation task. 
However, during the decision task, each participant (n = 61) trained in only two of 
these locations (up or down) and only one stimulus–reward association context 
(either Krew or Kacc).
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presented with an orientation stimulus in one of four spatial locations 
(Fig. 2b). Crucially, the participants in these experiments were trained 
in only two of these locations during the decision task and completed 
the decision task in only one context (either Krew or Kacc). If adaptation is 
retinotopically specific, then changes in estimation task performance 
should be specific to the retinotopic locations trained during the deci-
sion task. In line with the fitness-maximizing predictions, for those 
trained in Krew, we found the pattern predicted by a fitness-maximizing 
code in the location-specific changes in estimation variability (loca-
tion × time(after − before) × oblique: β = −0.12 ± 0.07; PMCMC = 0.04;  
Fig. 5b and Supplementary Table 4). For those trained in Kacc, this inter-
action was not significant (Fig. 5c and Supplementary Table 5). A com-
parison across groups showed that the effect was greater in the Krew 
than the Kacc group (context × location × time(after − before) × oblique: 
β = −0.17 ± 0.10; PMCMC = 0.04). Together, these results confirm the reti-
notopic specificity of fitness-maximizing coding rules in humans.

Artificial neural networks with sensory processing 
bottlenecks use fitness-maximizing codes
The existence of fitness-maximizing codes in early sensory systems— 
where they will literally change the way an organism sees the world—
must be for very good reasons. We conducted machine learning analyses 
with artificial neural networks (ANNs44) to investigate whether agents 
with informational bottlenecks must recode their sensory representa-
tions to fitness-maximizing schemes to achieve the best performance in 
decision-making tasks. Alternatively, the downstream decision circuits 
(which are not involved in estimating orientation as such) may not care 
about the accuracy with which orientation can be estimated and may 
have enough flexibility to maximize fitness even if the encoding scheme 
at early sensory stages is fixed to an infomax strategy.

The precision of neural representations at different sensory 
processing stages can be studied using recently developed neural 
network techniques in machine learning. We constructed an ANN 

implementation to test how (that is, at what layer of processing) it 
incorporates the behavioural goals of the agent when encoding sensory 
stimuli. More specifically, our premise is that the way in which internal 
representations of retinal sensory information are formed and used in 
the nervous system can be studied with a variational information bot-
tleneck (VIB)-like objective45–48, where in general the goal is to minimize 
the following loss function:

min
ϕ,θ

E[ reward loss ] + β × I, (4)

where ϕ and θ are the parameters of the encoder and downstream 
decision circuit, respectively. In our ANN, the VIB-like objective trades 
(an approximation of) the amount of ‘visual’ information I that the 
encoder can process with the expected reward loss, via the regulariza-
tion parameter β. Note that the analytical solutions developed in our 
work ‘drop’ costs on I by assuming that the noise in the encoder is small 
compared with the dynamic range of the signal (that is, the small-noise 
approximation, which is commonly adopted in early sensory systems 
to study neural coding efficiency, often leading to satisfactory predic-
tions49). The reason for using the VIB-like objective in our ANNs is that 
it provides a parsimonious way to induce pressures in the encoder to 
disentangle information up to a certain bound in a systematic manner 
(Supplementary Fig. 3).

We implemented an ANN that solved the same task as in our human 
experiments (Fig. 6a; see Methods for the details). The ANN received 
two retinal images corresponding to screen locations where the two 
Gabor patches were presented in our task. Just as in the human experi-
ment, the decision rule that the ANN had to learn was to indicate which 
of the two input stimuli (left or right) was more diagonal, while maxi-
mizing the reward received across many trials. We trained networks 
in two contexts, corresponding to the human experiments: Kacc and 
Krew (Methods). After the information had been encoded, it was fed 
to downstream neural circuits that used the encoded information 
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Fig. 5 | Estimation task performance. a, Changes in estimation variability 
for Kacc (blue) and Krew (red) stimulus–reward association contexts. Estimation 
variability before training is shown in the dotted lines and open triangles, while 
post-training variability is shown in the solid lines and filled circles. The results 
from Krew training show the interaction between oblique (decreased variance) 
and cardinal angles (increased variance) predicted by the implementation of 
a fitness-maximizing coding scheme for linear stimulus–reward mappings. In 

contrast, Kacc training produces no such interaction. b, Changes in estimation 
variability for the Kacc and Krew contexts in trained (top row) and untrained 
locations (bottom row) in experiment 2 indicate retinotopically specific training 
effects. The Krew training leads to an interaction between oblique and cardinal 
variance changes in trained locations only. Training Kacc does not lead to this 
interaction in either location.
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to solve the task at hand (in our case, select the Gabor patch that was 
more diagonal), while considering the goals of the agent within the 
environmental context (for example, maximize decision accuracy or 
maximize reward consumption; Methods).

After the networks were trained in each context, we first investi-
gated whether the network could disentangle the hidden structure in 
the retinal image statistics to solve the downstream task. By applying 
a t-distributed stochastic neighbour embedding (t-SNE) algorithm to 
the neural responses of the bottleneck structure, we found that the 
network indeed learned a useful representation of the scalar angular 
orientations from the retinal images (Fig. 6b). However, this t-SNE 

solution provided no direct insight into how the encoder allocated 
its limited resources (that is, using an infomax or fitness-maximizing 
code). We therefore analysed the amount of information contained in 
the encoder layer, quantified as Fisher information, as a function of the 
angular orientation. This analysis more directly illuminated the pres-
sures shaping the learning of the latent representation in the encoder.

Mirroring the predictions of fitness-maximizing theory and the 
human behavioural results, we found that, in general, the amount of 
information in the encoder layer was larger for cardinal orientations 
than for diagonal orientations. The network thus allocated the limited 
processing resources in the bottleneck encoder to the more recurrent 
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portions of the multi-dimensional encoding space. The smooth gradient of 
transition between angle representations might be beneficial for downstream 
circuits to implement decision rules. c, Estimation of Fisher information (FI) in 
the encoder layer for the networks trained in each context (Kacc and Krew) shows 
that the relationship between angle cardinality and FI in the neural network 
depends on the training context, consistent with the normative solution 
and behaviour exhibited by human participants. In Kacc (blue), FI is higher for 
cardinal orientations but lower for diagonal orientations than in Krew (red). This 
suggests that the sensory encoder learns useful representations according 
to the behavioural goals of the agent. The lines represent the means, and the 
shaded intervals denote ±1 s.d. across repeated neural network simulations. 
d, We trained networks in contexts Kacc (blue) and Krew (red) to have the same 
levels of discrimination accuracy (top, Bayesian paired t-test PMCMC > 0.51 

for all pairwise combinations) and investigated the amount of reward loss 
according to the reward contingencies in Krew (bottom). As predicted by the 
normative model, we found that reward loss in Krew is greater when the network 
was trained in Kacc relative to Krew. Next, we investigated whether freezing the 
Kacc network information bottleneck layers after training (purple) would allow 
this network to reach optimal reward loss when retrained using the reward 
contingencies in Krew. We found that irrespective of the degree of complexity of 
the downstream network, it was not possible to reduce the levels of reward loss if 
the information bottleneck encoding was fixed to maximize accuracy, reaching 
levels matching the network trained from scratch in Krew (Bayesian paired t-test 
PMCMC = 0.86). However, when the originally trained Kacc network was allowed 
to learn to minimize reward loss according to the Krew reward contingencies 
without freezing any network weights, it could reach optimal levels of reward 
loss reduction (light orange) (Bayesian paired t-test PMCMC < 0.001). Critically, 
in this case the encoding scheme changed from infomax to fitness-maximizing 
as predicted by the normative model. The points represent the means and the 
error bars represent ±1 s.d. across neural network simulations. ***PMCMC < 0.001 
(Bayesian paired t-tests); NS, not significant.
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portions of the angular stimulus space. Crucially, we found that for 
ANNs trained in context Kacc relative to ANNs trained in context Krew, 
the amount of information was larger for more cardinal angles but 
smaller for diagonal orientations (Fig. 6c). Moreover, we found that 
these results were insensitive to the information-processing costs 
imposed in the encoder (Supplementary Fig. 3). Interestingly, we found 
that the retinal layer in our ANN architecture in which we did not explic-
itly incorporate information-processing regularization (Fig. 6a) also 
revealed signatures of information-processing allocation similar to 
the ones encountered in the second retinotopic layer (although less 
pronounced; Supplementary Fig. 4). We also studied how the ANN 
allocates information-processing resources in the first and second reti-
notopic layers when informational bottleneck pressures are imposed 
at the decision-making layer. We found that the fitness-maximizing 
patterns were also present in this scenario in the second retinotopic 
layer (Supplementary Fig. 5). We found that the fitness-maximizing 
patterns in layer 1 were present for high levels of network performance 
(that is, generally low β in the decision layer; Supplementary Fig. 6). 
Thus, even when information-processing pressures are very small 
at early sensory stages (and relatively large in downstream decision 
layers), neural networks still try to develop fitness-maximizing codes 
at the early sensory stages to compensate for reward loss due to pro-
cessing limitations in downstream circuits. However, these effects are 
more pronounced if information-processing constraints are present 
at early stages. This set of results indicates that the network learns to 
allocate its neural resources in a fitness-maximizing manner following 
the predictions of the algorithmic normative theory and the behaviour 
exhibited by human participants.

The first network analysis additionally addressed the following 
concern: as downstream circuits are not involved in estimating ori-
entation as such, they may not care about the accuracy with which 
orientation can be estimated. The ANN architecture we implemented 
here addressed exactly this question because the objective function 
the networks sought to optimize did not explicitly incorporate “recon-
struction error minimization” (as classically implemented in variational 
autoencoder architectures47,48). Instead, in our ANN architecture, the 
network had to find encoding solutions that benefited downstream 
operations supporting decision behaviour. That is, all that mattered 
to the network was what information about the latent (angular) space 
was most relevant to solve the decision task at hand and maximize 
reward. Nevertheless, we found that ANNs learned to implement effi-
cient coding schemes in their encoding layers that maximized reward 
in each context.

Having demonstrated the efficient, fitness-maximizing nature of 
the encoder in an ANN, we investigated whether an ANN could achieve 
solutions similar to the ones obtained in the fitness-maximizing context 
Krew, if we forced the encoder layer to maximize information transmis-
sion (that is, to use an infomax code). To test this, we first trained an 
ANN to maximize decision accuracy and then froze all network weights 
up to the encoder, but we left the downstream network weights free 
to change. Theoretically, ANNs with sufficient complexity can inter-
polate any objective function. One could therefore hypothesize that 
even if the encoder is restricted to maximize information transmis-
sion, downstream circuits could still figure out solutions that maxi-
mize reward gain on the basis of the representations coming from an 
infomax encoder. However, a competing hypothesis comes from an 
information-theoretic point of view, which holds that, in sensory dis-
crimination tasks that face a bottleneck due to limited resources (like 
the one we study), once information is lost or processed in a suboptimal 
manner in one step of a noisy transmission channel, it cannot be recov-
ered, irrespective of how complex the downstream circuits are. In line 
with the predictions from information theory, we found that freezing 
the encoder layers after training them in context Kacc resulted in a sig-
nificant reward loss when downstream layers were retrained in context 
Krew (Fig. 6d). Once we unfroze the encoder layer (that is, allowed it to 

depart from the Kacc constraint and use fitness-maximizing codes), we 
found that reward loss was significantly lower than in the Kacc trained 
network (Bayesian paired t-test PMCMC < 0.001; Fig. 6d, bottom), reach-
ing levels matching the network trained from scratch in context Krew 
(Bayesian paired t-test PMCMC = 0.86; Fig. 6d, bottom). Crucially, just as 
in the human experiments, the degree of discrimination accuracy was 
calibrated to be identical in all cases, and thus our results do not depend 
on different levels of accuracy across the ANNs (Fig. 6d, top; Bayesian 
paired t-test for all pairwise comparisons PMCMC > 0.51). Moreover, we 
found that this result held independent of the degree of complexity 
(that is, size) of the downstream network, indicating that downstream 
circuits cannot compensate for the lack of fitness-maximizing codes 
at the encoding stage.

The findings from our ANN analysis clarify our human behaviour 
results. Our ANN analyses reveal how a fixed set of physical sensory 
inputs with relevant but hidden environmental/contextual statistics 
that the agent can only experience and learn over time are represented 
in coding schemes to maximize fitness. Moreover, studying ANNs with 
a VIB is useful because it provides a reasonably realistic model of how 
encoding schemes are adapted to optimize a given objective function 
when the resources to process information are limited.

Generalizing to other ecologically valid reward functions
The solutions to the two decision-making objectives studied here 
belong to the same family of power-law efficient codes with a single 
parameter that determines the solution of the decision objective. 
However, we acknowledge that when the system must deal with more 
complex sensory–reward mappings, the same analytical solutions 
might not generally apply. This would have to be tested case by case. 
Nevertheless, it is possible to go beyond the analytical solutions and 
employ the same framework to find general strategies of resource allo-
cation for arbitrary stimulus–reward mapping functions. We address 
this possibility next.

Non-monotonic stimulus–reward functions. As has been emphasized 
in previous work, non-monotonic payoff functions are common10,12,50. 
For instance, suppose that a physical attribute is related to the degree 
of salinity of food. Too little or too much salt can have deleterious 
consequences on an organism and its fitness. In such scenarios, it has 
been suggested that perception should not be tuned directly to the 
stimulus–reward associations, as the organisms will be able to know 
only how good or bad the payoff is50. However, knowing that the payoff 
is bad provides no information about why it is bad and hence no clue 
to the adaptive course of action for an organism50.

How should the neural resources be allocated in such cases? What 
strategy should the agent follow? We consider the following three sce-
narios. Scenario 1 corresponds to the accuracy maximization task (Kacc). 
Scenario 2 corresponds to a reward-maximizing task where rewards 
are linearly (monotonically) mapped to the physical stimulus values 
(Krew, Fig. 7a). Scenario 3 corresponds to a non-monotonic mapping 
where stimuli in the middle of the sensory space deliver the highest 
reward values (Fig. 7b). In all three scenarios, we assume a right-skewed 
distribution of sensory stimuli over the physical value space (Fig. 7a,b) 
for comparison with the orientation experiments we conducted in 
humans. For scenario 3, there is no known closed-form solution to find 
the optimal allocation of resources, but please note that the minimiza-
tion objective remains the same as for scenario 2: minimize the reward 
given up for every erroneous decision.

Here we emphasize that a key assumption of our framework is that, 
on the basis of experience or understanding of task instructions, the 
agent clearly understands which stimuli deliver more reward. For 
scenarios 1 and 2, higher levels of the stimuli are preferred. In scenario 
3, however, stimuli in the middle are preferred. We can examine the 
downstream decoding process to understand how resources at encod-
ing should be allocated in each scenario. Recall that the decoding rule 
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in our model is the same in all cases: the Bayesian mean squared error. 
What is a possible strategy for the cases where the stimulus–reward 
mappings are monotonic or non-monotonic unimodal? A relatively 
simple strategy that preserves the ‘veridicality’ of sensory information 
is one in which the agent employs a categorization threshold τ over the 
space of physical stimuli and decodes the values ̂s  relative to that 
threshold. A simple implementation is one where the agent computes 
a relative decoded value ̃s = −|τ − ̂s(s0)|, an operation that could be 
flexibly implemented in downstream circuits. The choice rule is then 
choose s1 if ̃s1 > ̃s2; otherwise, choose s2. Thus, in addition to finding 
the optimal resource allocation function, the threshold τ is another 
latent variable to solve the reward maximization problem.

Before solving the optimization problem numerically, we note 
that the predictions for τ are relatively intuitive. In scenarios 1 and 2, τ 
should be set to the maximum stimulus value in the physical space, and 
the optimal resource allocation solutions remain the same as derived 
in our manuscript. In scenario 3, with reward values peaking in the 
middle of the stimulus distribution, the threshold will probably be 
located at τ ≈ 0.5 in our example in the encoding low-noise limit (not 
precisely at 0.5 due to biases and variance of ̂s  and the related influence 
of the prior distribution of physical stimuli).

The numerical solutions of resource allocation for scenarios 1 and 2 
resemble, as expected, the analytical solutions in which more resources 
are allocated to regions of the physical space with the highest physical 
prior density. The amount of information is larger for lower sensory 
values in scenario 1 but larger for higher sensory values in scenario 2. 
For scenario 3, the solution for the categorization threshold is τ ≈ 0.5, 
and the resource allocation solution may be surprising and perhaps 
at first counterintuitive (Fig. 7c). Taking a closer look at the problem, 
we see that the solution indeed makes sense. First, we observe that the 
allocation of resources has a general trend to decrease as the sensory 
stimulus gets larger, thus following the expected result given the shape 
of the prior distribution of sensory stimuli. Second, the resource allo-
cation solution has a dip at around s = 0.5 ≈ τ. This may appear initially 
counterintuitive given that these are the regions where the reward is 
the highest. However, note that (1) randomly drawing choice sets from 
this non-monotonic prior distribution is more likely to generate choice 
sets that are close in value than in the monotonic reward or accuracy 
scenarios, and (2) choice sets s1,2 with values close to s = 0.5 are more 
likely to generate ‘mistakes’ given the resource allocation in Fig. 7c, but 
there is often little reward loss because the value function is relatively 
flat and symmetric (for example, s1 = 0.52 and s2 = 0.48 deliver the same 
reward). It is thus not worth investing too many resources near s = 0.5 

even if the reward promised at those locations is high, because the 
potential for reward loss is low (Fig. 7d). We emphasize that this exam-
ple is just one alternative strategy, but one that generates interesting 
predictions that could be tested in future experiments.

Efficient resource allocation under reaction time costs. We used 
simulations to study the scenario in which agents are rewarded/penal-
ized for short/long reaction times (RTs) in both the Kacc and Krew con-
texts. The goal was to study whether and how resource allocation 
changed relative to the accuracy maximization task without RT costs. 
Examining this scenario requires assumptions about a process model 
that jointly generates decisions and RTs. For simplicity and illustra-
tion purposes, we assumed that decisions and RTs were generated by 
a simple drift-diffusion model (DDM) with a constant decision bound 
b, decision evidence z and diffusion noise σ that was independent of 
the choice set inputs, which can be thought of as a downstream deci-
sion noise (Methods).

In this scenario, the loss function for the Kacc context is given by

∬
S
f(s1, s2)(P(error|s1, s2) + ηE[RT|s1, s2]), (5)

and the loss function for the Krew context is given by

∬
S
f(s1, s2) (P(error|s1, s2)|s1 − s2| + ηE[RT|s1, s2]), (6)

where η is the cost per RT unit (for example, in seconds). Note that as 
η → 0, the optimal decision bound would be z → ∞. Thus, the goal was 
to find the optimal balance between resource allocation and bound z 
that minimizes the loss in equations (5) and (6) for a given RT cost η and 
prior distribution of sensory stimuli in the environment f(s).

The numerical solutions revealed that the resource allocation 
solutions in context Kacc differed from the RT-cost-free scenario and 
depended on RT costs (Fig. 8a). While the RT-cost solutions were similar 
to the RT-cost-free solution for relatively high values of η, the smaller 
the RT costs, the more the allocation of resources tended to flatten. As 
expected, we found that higher η resulted in lower b (Fig. 8b). Second, 
in context Krew, the RT-cost solutions were remarkably similar to the 
RT-cost-free solution. However, contrary to the Kacc environment, 
the RT-cost solutions in Krew appeared to get steeper as the RT cost 
decreased (at least in the range of RT costs studied here; Fig. 8c). Once 
again, in context Krew, higher η resulted in lower b (Fig. 8d).
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Fig. 7 | Studying efficient allocation of neural resources with non-monotonic 
stimulus–reward mappings. a,b, The prior distribution of sensory stimuli in 
the environment monotonically decreases with sensory stimuli (black) and is 
the same in all scenarios. The stimulus–reward mapping function in scenario 2 
monotonically increases following a linear relationship (red, a) and in scenario 
3 is non-monotonic with the highest reward delivered at s = 0.5 (green, b). 
Scenario 1 corresponds to the accuracy maximization context—that is, any 

correct decision yields the same amount of reward. c, Optimal solutions of the 
resource allocation problem for scenario 1 (blue), scenario 2 (red) and scenario 
3 (green). d, Percentage reward lost in scenario 3 assuming that the agent uses 
the optimal resource allocations from Kacc (MaxAcc, blue), Krew (MaxRew, red) or 
environments relative to the optimal solution in this non-monotonic stimulus–
reward mapping environment (Non-Mon, green).
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We emphasize that the results presented here are based on a simple 
DDM with constant bounds. The resource allocation solutions may 
slightly differ for DDMs where the bounds are allowed to collapse or 
drift/diffusion parameters dynamically change over time51–53. This will 
be an interesting aspect to investigate in future research. Irrespective of 
these considerations, we show how the general framework developed 
here generates a rich set of testable predictions that allow for falsifica-
tion and further refinement of the theory.

Discussion
Our theoretical and empirical results provide evidence that early stages 
of sensory processing encode environmental stimuli to maximize fit-
ness and not necessarily to maximize perceptual accuracy. We have 
shown this to be the case in humans and artificial agents with sensory 
processing bottlenecks. Our findings indicate that downstream circuits 
do not need to continuously compute reward distributions on the basis 
of stimulus–outcome associations because this information should 
be efficiently embedded in the neural codes of sensory perception. 
This notion is supported by recent studies showing that functional 
remapping of stimulus–reward contingencies in early sensory areas 
causally depends on top-down control signals from prefrontal struc-
tures17,18,54. We argue that this gives the organism the advantages of 
preventing information loss and rapidly transmitting behaviourally 
relevant information encoded by early sensory systems to downstream 
circuits specialized in action, learning or decision-making.

Efficient sensory adaptation to behavioural goals can arise without 
long-lasting synaptic changes or rewiring. Specific fitness-maximizing 
codes may have a structural basis if the environment and behavioural 
goals are stable over long periods, as may be the case for retinal con-
trast coding in the blowfly. However, efficient filtering of sensory 
information can rapidly occur via mechanisms of top-down contex-
tual modulation of sensory processing, which can be achieved via 
mechanisms such as top-down attentional normalization55. In fact, 
it has been shown that adaptation to behaviourally relevant sensory 
statistics (such as edge orientations) can occur in the course of one 
hour in human participants56. Our key argument is that irrespective 
of whether efficient coding occurs via structural, synaptic or online 
top-down contextual modulations, it must occur at early stages if it is 
to be relevant for goal-directed behaviour. Information theory predicts 
that inefficient coding in regard to behavioural goals will cause a loss 
of relevant information that cannot be recovered in noisy transmission 
channels such as the brain. Our experiments with ANNs provide direct 
empirical evidence for this prediction by showing that restricting the 
initial encoding scheme to one that maximizes information causes 

suboptimal performance in specific contexts. Overall, a key contribu-
tion of our work is that we provide a formal justification of why and how 
neural recoding should occur across contexts in capacity-constrained 
and noisy transmission systems to maximize reward and fitness.

We found additional supporting evidence for this hypothesis when 
re-analysing data from a recent human functional MRI (fMRI) study57. 
Specifically, we investigated whether novel goal-directed actions that 
promote people’s ‘survival’ in hypothetical scenarios they had never 
before encountered triggered an efficient reorganization of percep-
tual codes in the human brain (Supplementary Note 2). Our analyses 
revealed that switching back and forth between survival goals that 
required participants to use the same items in very different ways led 
the brain to efficiently represent sensory information in a goal-specific 
manner. More specifically, novel behavioural goals that relied on object 
recognition caused changes in stimulus representations at early stages 
of sensory processing. Regions showing changes in stimulus represen-
tation codes included V1–V3 as well as downstream object detection 
areas such as the lateral occipital cortex (LOC) (Supplementary Note 
2). We note that these results do not explicitly support the quantitative 
theory developed here but instead provide support for the general 
idea that a system should employ resources in its early sensory areas to 
represent abstract behavioural goals. In addition, these results do not 
imply that V1–V3 and LOC are discarding veridical feature information 
and instead represent only goal-oriented values. Although veridical-
ity might be compromised (resources are finite), strategies might be 
implemented to ensure that it is not entirely suppressed (for example, 
disentangling via orthogonalization19,20).

Our study has some limitations and also generates interesting 
predictions that should be addressed in future research. First, the 
analytical solutions are restricted to accuracy maximization in dis-
crimination tasks and reward maximization in the standard and most 
studied economic problem where properties of a good or action scale 
linearly with value. We acknowledge that when the system must deal 
with more complex sensory–reward mappings, the analytical solution 
to the resource allocation problem may not exist in a tractable form. 
Nevertheless, we provided some hints as to how the system can adapt 
to non-monotonic solutions with the use of categorization thresholds. 
Second, we acknowledge that our theory does not explain the dynamics 
of adaptation but generates predictions once the system has adapted 
after learning from experience. It thus remains unclear what the nor-
mative algorithms of efficient adaptation might be and how these 
could be connected with a biologically plausible algorithm that applies 
to arbitrary stimulus–reward association contexts such that reward 
expectation is maximized. Third, for the problems of accuracy and 
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Fig. 8 | Efficient resource allocation solutions considering RT costs. a, 
Optimal allocation of neural resources in context Kacc considering different 
RT costs η. For reference, we have added the optimal solution of context Kacc in 
a RT-cost-free environment (blue dashed line). As the RT cost decreases, the 
allocation of resources appears to slightly flatten relative to the RT-cost-free 
solution. b, Decision bound as a function of η. As expected, the larger the RT cost, 

the smaller the decision bound. c,d, Same as a,b, but this time in context Krew. For 
reference, we have added the optimal solution of context Krew in an RT-cost-free 
environment (red dashed line). While the RT-cost solutions are similar to the RT-
cost-free solution, contrary to the Kacc environment, the RT-cost solutions appear 
to get steeper as the RT cost decreases.
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reward maximization with linear sensory–reward mappings, our model 
predicts that in edge cases where the prior distribution is approxi-
mately flat, the optimal solutions are indistinguishable and the agent 
should allocate resources equally across the whole sensory space in 
both cases. Fourth, with regard to the previous point, an additional 
prediction appears worthy of future testing: if the prior density is low 
for low sensory values as well as for high sensory values, and there is a 
linear stimulus–reward mapping across the whole sensory space, our 
model predicts that, relative to the standard accuracy maximization 
task, sensitivity should also increase for low sensory values. Our model 
predicts that this effect should become more pronounced during a 
reward maximization task than during a standard discrimination task 
(a hint of this prediction can be found in Supplementary Fig. 1).

Beyond the obvious relevance for biological organisms, our results 
may have important implications in ongoing developments in artificial 
intelligence as well. Recent deep generative models show a remarkable 
ability to encode high-dimensional signals into latent factors under 
the objective of accurately predicting the local environment with 
specific encoding constraints. However, on the basis of our results, 
such an optimization objective will not necessarily match those present 
in biological organisms. Interestingly, a recent successful artificial 
intelligence model58 proposed instead that representation forma-
tion should be driven by the need to predict the motivational value 
of experiences accurately. Our results validate this notion and imply 
that the development of artificial intelligence algorithms that aim to 
resemble neurobehavioural functions should go beyond the objec-
tive of maximizing only the accurate transmission of information and 
account for the motivational aspects of the environment that enable 
the organism (or the artificial agent) to maximize fitness.

Finally, although drawn from a different domain of behaviour, our 
results lend substantial support to economic theories positing that 
context-dependent utility functions should maximize expected reward 
rather than the expected accuracy of decisions guided by reward3,39,59. 
The corroborating evidence presented in our work grounded on the 
principles of neural coding and decision behaviour should help advance 
the development and refinement of these theories within economics 
and related disciplines of evolutionary biology and social sciences12,60,61.

Methods
Participants
The participants were recruited by the Center for Neuroeconomics at 
the University of Zurich, Switzerland. The participants were instructed 
about all aspects of the experiment and gave written informed consent. 
None of the participants suffered from any neurological or psychologi-
cal disorder or took medication that interfered with participation in 
our study. The participants received fixed monetary compensation 
for their participation in the experiment, in addition to a variable 
monetary payoff that depended on task performance (see below). 
The experiments conformed to the Declaration of Helsinki, and the 
experimental protocol was approved by the Ethics Committee of the 
Canton of Zurich.

Participants who failed to follow the eye fixation instructions on 
more than 25% of trials were excluded from the data analysis (n = 12). 
We measured the performance of the participants in the training tasks 
and excluded participants who were unable to perform the task at the 
easiest difficulty level (n = 11). Additionally, we had to exclude three 
participants due to technical problems with the data collection. The 
final sample thus comprised n = 86 participants (n = 25 in experiment 
1 and n = 61 in experiment 2 (30 in Krew)).

Experimental design and stimuli
The stimuli were generated with MATLAB (version 9.7)62, using the 
Psychtoolbox and displayed on a screen that was one metre away from 
the participants. The angle of the head was kept stable with a chin rest. 
The height of the chin rest was adjusted to position the centre of the 

screen at the height of the eyes. As stimuli, we used oriented Gabor 
patches, presented on a grey background. Each patch was composed 
of a high-contrast three-cycles-per-degree sinusoidal grating convo-
luted with a circular Gaussian with width 0.41° and subtended 2.98° 
vertically and 2.98° horizontally. In experiment 1, all Gabor patches 
were presented so that the centres fell 5.7° to the left or right of the 
centre of the monitor and on the horizontal midline. In experiment 2, 
the Gabor centres fell 4.7° to the left and right of the vertical midline 
and 4.7° above or below the horizontal midline.

Eye tracking. Eye-tracking data were acquired using an ST Research 
Eyelink 1000 eye-tracking system. Gaze position was sampled at 
500 Hz. Eye movements away from fixation were computed for the 
window corresponding to the stimulus presentation. For every saved 
position, the absolute distance to the fixation cross was computed. If 
the absolute distance exceeded 4° of visual angle, the trial was marked 
to include an eye movement. For most participants, the average number 
of trials with eye movements was less than 5%. Participants (n = 12) who 
made eye movements that exceeded 4° of visual angle on more than 
25% of trials were excluded from all analyses.

Experiment 1. The participants performed the experiment in multiple 
sessions to allow for training within the two contexts on different days. 
The order of the accuracy (Kacc) and reward (Krew) context training was 
counterbalanced across participants. In total, every participant com-
pleted 240 trials in the estimation task and 400 trials in the decision task.

Experiment 2. In experiment 2, each participant trained in only one 
stimulus–reward association context (either Kacc or Krew). Training in 
the binary judgement decision task was performed either in the two 
upper locations or in the two lower locations. The participants were 
randomly allocated to one of the two training locations. In the estima-
tion tasks before and after the training task, the trial locations were 
evenly distributed between all four possible locations. In total, every 
participant completed 400 trials in the estimation task and 360 trials 
in the decision task.

Orientation estimation task. Before the start of every trial, the par-
ticipants had to fixate on a cross in the middle of the screen. At the 
beginning of the trial, an arrow appeared for 0.5 seconds to indicate 
on which side the stimulus would be shown. Afterwards, the stimulus 
appeared on the indicated side for 0.6 seconds. The orientation of the 
stimulus was determined randomly within (0–179°). During stimulus 
presentation, the participant had to continue fixating on the cross. 
After the stimulus disappeared, a Gabor patch appeared in the middle 
of the screen. By pressing and holding the left mouse button, the partic-
ipant then rotated the new Gabor patch until its perceived orientation 
matched the orientation of the previously observed target stimulus. 
The participant could end the trial by pressing the space key. After five 
seconds, the trial ended automatically. The trials were separated by a 
random intertrial interval of 1.5–2 seconds. The estimation task took 
place before and after the decision task (see below and Fig. 2). To avoid 
the possibility that participants developed contextual strategies, they 
were not informed in advance that a second estimation task was going 
to take place after the decision task.

Decision task. The fixation cross turned black to indicate the start 
of a trial. After 0.5 seconds, two Gabor patch stimuli appeared. The 
orientation of one of the stimuli was drawn from the approximate 
distribution of edges in the real world42. The orientation of the second 
stimulus was adjusted by a participant-specific difficulty score to 
keep performance at approximately 75% accuracy for all participants. 
The median accuracy across participants in Krew was 77 ± 2.9% and in 
Kacc was 77 ± 2.8%. Additionally, on the basis of (1) calibration to 75% 
accuracy, (2) the linear mapping between the degree of diagonality 
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and reward (that is, from 1 Swiss franc (CHF) for 0° to CHF 46 for 45° 
in the diagonality space), and (3) pilot data, we adjusted the payoff of 
correct trials in Kacc to match the expected payoff in Krew. We calculated 
that setting the payoff for each correct response in Kacc to 15 CHF would 
fulfil these conditions. Our experimental data were in line with these 
calculations: the median payoff in Kacc was 15.00 ± 0 CHF, and in Krew it 
was 14.70 ± 0.62 CHF.

On average, the stimulus orientation followed a prior distribution 
f(s) described by equation (7) and shown in Fig. 3a:

f(s) = 1
1.85 − cos(4s) . (7)

The stimuli were displayed for 0.6 seconds. During stimulus pres-
entation, the participants had to fixate on the cross in the middle of the 
screen. When the stimuli disappeared, the participants had 2.5 seconds 
to decide which stimulus was more oblique. Independent of the RT, the 
full 2.5 seconds had to be waited out. Afterwards, the two stimuli were 
shown again in their positions, and the result of the choice and the 
orientations of the stimuli were displayed for 3 seconds until the trial 
ended. The trials were separated by a 1.5-to-2-second intertrial interval.

Blowfly retinal LMC experiment
Here we provide a brief description of the data collected in Laughlin’s 
seminal work36, which we re-analyse in this work. To derive the prior 
for the sensory stimulus of interest f(s), the researcher measured the 
distribution of contrasts that occur in woodland settings of the blowfly 
environment. In brief, photographs were taken in the natural habitat 
of the blowfly such as sclerophyll woodland and lakeside lands. Relative 
intensities were measured across these scenes using a detector that 
scanned horizontally, like the ommatidium of a turning fly. The scans 
were digitized at intervals of 0.07° and convolved with a Gaussian point 
spread function of half-width 1.4°, corresponding to the angular sen-
sitivity of a fly photoreceptor. Contrast values were obtained by divid-
ing each scan into intervals of 10, 25 or 50°. Within each interval, the 
mean intensity ( ̄I) was found and subtracted from every data point to 
give the fluctuation about the mean (ΔI). This difference value was 
divided by the mean to give the contrast (ΔI/ ̄I).

These data were used to construct a histogram, which was later 
transformed to a CDF (Fig. 1a and Supplementary Fig. 1). Here we used 
this CDF to reconstruct the probability density function f(s) (Sup-
plementary Fig. 1). Once the prior distribution was obtained, the fly 
was placed in front of a screen with a light-emitting diode (LED). At 
the beginning of each trial, the LED luminance was set to the screen 
luminance and then changed to a new luminance drawn from the prior 
distribution f(s) for 100 ms. The stimulus s was defined as the pro-
portional change of the difference between the background and LED 
luminances. We emphasize that the CDF of the contrast statistic comes 
directly from the contrast measurement methodology described in 
the preceding paragraph and reported by Laughlin. We thus did not 
make the original calculations for the prior f(s), nor is it influenced by 
the fitness-maximizing sensory coding theory.

Fitness-maximizing neural codes
In this section, we provide a detailed description of the connection 
between the Lp reconstruction error, the efficient code that maximizes 
reward expectation and the power-law efficient codes briefly described 
in the main text.

Suppose that the stimulus distribution is given by s ~ f(s). The 
function that transforms the input s to neural responses r is given by 
r = h(s). While the mapping h(s) is deterministic, here we assume that 
errors in the neural response r follow a distribution P[r|h(s)]. We apply 
a general approach that considers optimality criteria accounting for 
how well stimulus s can be reconstructed ( ̂s) from the neural represen-
tations r. Wang and colleagues introduced a general formulation of the 

efficient coding problem in terms of minimizing the error in such 
reconstructions ̂s(r) according to the Lp norm as a function of the norm 
parameter p (ref. 63). In brief, the reconstruction is assumed to be based 
on the maximum likelihood estimate of the decoder in the low-noise 
regime, where P[r|h(s)] is assumed to be Gaussian distributed.

The goal is to find the optimal mapping function h*(s) to achieve a 
minimal Lp reconstruction error for any given prior stimulus distribu-
tion f(s). More formally, the problem is defined as: find h*(s) such that

min ⟨| ̂s(r) − s|p⟩
s,r

s.t. 0 ≤ h(s) ≤ 1, (8)

where, without loss of generality, we assume that the operation range 
of the neuron is bounded between 0 and 1. It is possible to show that 
the optimal mapping h*(s) is given by equation (9)63:

h∗(s) =
∫s−∞ f( ̃s)1/(1+p)d ̃s

∫∞
−∞ f( ̃s)1/(1+p)d ̃s

. (9)

If we define

γ ≡ 1/(1 + p), (10)

we observe that the normalized power function of the stimulus distri-
bution f in equation (9) is the escort distribution with parameter γ (ref. 
64). Note that under this framework, infomax coding is given by the 
norm parameter p → 0, and therefore γ = 1, thus leading to the result 
that h(s) is the CDF of the prior distribution.

Efficient Lp error-minimizing codes and behavioural goals. Eco-
nomics has a long tradition of studying the following problem: for a 
given distribution f(s) in the environment, what is the optimal shape 
of the internal representation (that is, h(s), which in economics is 
known as the utility function) if such function can only take a large 
but limited set of n discrete subjective values (that is, the internal 
readings, r) that code for any given stimulus s (refs. 3,39)? The util-
ity function is thus restricted to a set of step functions with n jumps, 
each corresponding to a utility increment of size 1/n. In this case, dis-
crimination errors originate from the fact that the organism cannot 
distinguish two alternatives located at the same step of the utility 
function. Under this formulation, the following variant of the prob-
lem was studied: find the optimal utility function (h*) under two 
evolutionary optimization criteria, (1) the probability of mistakes 
minimization criterion and (2) the expected reward loss minimization  
criterion.

To solve this problem, we assume that the organism repeatedly 
makes choices between two alternatives drawn from the stimulus dis-
tribution f(s), where we may suppose that stimuli are linearly mapped 
to a reward value. The organism is endowed with a utility function 
that assigns a level of reward to each possible stimulus s from f(s). The 
alternative that promises more utility to the organism is chosen39.

If the goal of the organism is to minimize the number of erroneous 
responses (that is, maximize discrimination accuracy), the optimal 
utility function h∗accuracy is given by

h∗accuracy(s) = ∫
s

−∞
f( ̃s)d ̃s. (11)

According to this solution, the power parameter of the escort 
distribution in equation (9) is given by γ = 1, which corresponds to the 
infomax strategy.

However, if the goal of the organism is to minimize the expected 
reward loss (that is, maximize the amount of reward received after 
many decisions) and stimuli are linearly mapped to reward value, the 
optimal utility function h∗reward is given by
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h∗reward(s) =
∫s−∞ f( ̃s)2/3d ̃s

∫∞
−∞ f( ̃s)2/3d ̃s

. (12)

According to this solution, the power parameter of the escort 
distribution in equation (9) is given by γ = 2/3, which corresponds to 
optimizing the Lp minimization problem with parameter p given by

γ = 2/3 = 1
1 + p ⇒ p = 0.5. (13)

We found that this normative fitness-maximizing solution is the 
error penalty that best describes the LMC data40 (these results are 
reported in the main text and Fig. 1). Additionally, please note that the 
solutions provided in equations (11) and (12) are derived on the basis of 
maximizing the accurate choices and reward expectation, respectively, 
without any assumptions about maximizing information efficiency as 
a goal in itself.

Connection to power-law efficient codes. We employed a general 
method for defining efficient codes by investigating optimal allocation 
of Fisher information J given (1) a bound of the organism’s capacity c 
to process information, (2) the frequency of occurrence f(s) and (3) 
the organism’s goal (for example, maximize perceptual accuracy or 
expected reward) according to

argmax
J(s)

−∫ ds f(s)J(s)−α (14)

subject to a capacity bound

C(s) = ∫ ds J(s)β ≤ c, (15)

with parameters α defining the coding objective and β > 0 specifying 
the capacity constraint43. The solution of this optimization problem 
reveals that Fisher information should be proportional to the prior 
distribution f(s) raised to a power q, which is therefore referred to as 
the power-law efficient code

Jopt(s) = c1/β(
f(s)γ

∫ dsf(s)γ
)
1/β

≜ kf(s)q, (16)

where q = 1/(β + α) and γ = β/(β + α). Note that power-law parameter q is 
multiply determined, and to make progress in identifying it, we need to 
make some further assumptions. Here we opted for setting β = 0.5, as 
previously proposed in the standard infomax framework41; however, 
our conclusions are not affected by the specific value of β. This means 
that α determines how Fisher information is allocated relative to the 
prior, influencing the values of both q and γ. It can be shown that the 
infomax coding rule implies γ = 1 and therefore an efficient power-law 
code q = 2, and the reward expectation rule implies γ = 2/3 and there-
fore an efficient power-law code q = 4/3 (Supplementary Note 1).  
The power-law efficient codes thus allow us to establish a connection 
between behavioural goals in the contexts studied in this work (Kacc 
and Krew) and parameter γ, which incorporates the goals of the organ-
ism under the resource-constrained framework that we study here.

Optimal inference. When specifying an inference problem using such 
an encoding–decoding framework, a key aspect for generating predic-
tions of decision behaviour is to obtain expressions of the expected 
value and variance of the noisy estimations ̂s  for a given value input s0. 
However, we first need to specify the encoding and decoding rules. We 
adopted an encoding function P(r|s) associated with the power-law 
efficient code that is parameterized as Gaussian43

P(r|s) = 𝒩𝒩 (s, 1
kf(s)q

)

= √
kf(s)q

2π
exp (− kf(s)q

2
(r − s)2) ,

(17)

and therefore Fisher information is allocated using an s-dependent 
variance σ2 = 1/kf(s)q. While we are aware that in our study the stimulus 
space is circular, given that discriminability thresholds are relatively 
low for orientation discrimination tasks in humans, it is safe to assume 
that the likelihood function can be locally approximated as a Gaussian 
distribution.

At the decoding stage, the observer computes the posterior using 
Bayes’s rule:

P(s|r) = P(r|s)f(s)
P(r) . (18)

Theoretical and empirical evidence suggests that for orientation 
estimation tasks, estimates are typically biased away from the prior. 
This suggests that humans employ an expected value estimator of the 
posterior, at least for the infomax case41.

The expected value of the estimator can be defined as the input 
stimulus s0 plus some average bias b(s0). Using analytical approxima-
tions under the high-signal-to-noise regime, it is possible to show that 
the bias for the posterior expected value estimator can be approxi-
mated by65

b (s0) ≈ (1 − 1
q )

1
k(

1
f(s)2

)
′

s0

. (19)

In a previous study, using model simulations and exploring par-
simonious functional forms, it was shown that the proportionality 
constant of the bias term can be approximated by43

log(q)
k√q

. (20)

The analytical solution and the simulation-based solution of the 
proportionality constant are approximately equivalent for a range of 
q values relevant to our work (for example, q ∈ [0.5, 2]); that is

log(q)
k√q

≊ (1 − 1
q )

1
k
, (21)

thus validating the results derived in the analytical approximations that 
we used in the current work. However, using either function does not 
affect the qualitative or quantitative results in our study.

Using this result, the expected value of the estimators is given by

E[ ̂s|s0] ≈ s0 + (1 − 1
q )

1
k (

1
f(s)q

)
′

s0

. (22)

As already defined in the description of the behavioural task, 
in this study, we used a parametric form of the prior that closely 
resembles the shape of the natural distribution of orientations in the  
environment42

f(s) = ω × 1
a − cos(4s) , (23)

with a > 1 determining the elevation (steepness) of the prior, and ω a 
normalizing constant. Using this parameterization of the prior, we can 
obtain an explicit analytical approximation of the bias:
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b(s0) ≈ (1 − 1
q
) 1
k

∂
∂s
(( ω

a−cos(4s)
)
−q
)
s0

≈ (1 − 1
q
) 1
k
(

4q sin(4s)( ω
a−cos(4s)

)
1−q

ω
)
s0

.
(24)

We can also obtain an analytical approximation of the variance 
under the high-signal-to-noise regime using the Cramer–Rao bound 
formulation:

Var [ ̂s|s0] ∝ ( 1
J(s)

)
s0

≈ 1
k
( 1
f(s)q

)
s0

≈ 1
k
( (a−cos(4s))

ω
)
q

s0
.

(25)

We can thus use equations (24) and (25) to derive the predictions 
presented in Fig. 3.

Finally, assuming that the estimators are normally distributed 
using the expected value and variance derived above, the probability 
that an agent chooses an alternative with orientation value s1 over a 
second alternative with orientation value s2 (recall that in our experi-
ment the decision rule (objective) of the participants is to choose the 
orientation perceived as closer to the diagonal orientation) is given by

P ( ̂s1 > ̂s2|s1, s2) = Φ ( E [ ̂s1|s1] − E [ ̂s2|s2]
√Var [ ̂s1|s1] + Var [ ̂s2|s2]

) , (26)

where Φ() is the CDF of the normal distribution. When fitting the choice 
data to the model, we accounted for potential side (left/right) biases 
β0 and lapse rates λ in the decision task using

P ( ̂s1 > ̂s2|s1, s2) =
λ
2 +Φ ( E [ ̂s1|s1] − E [ ̂s2|s2]

√Var [ ̂s1|s1] + Var [ ̂s2|s2]
+ β0) (1 − λ). (27)

Fitting the power-law efficient model to human data. To fit the 
power-law efficient coding model to the choice data from the decision 
task, we used a hierarchical Bayesian model. We fit the early (1–200) 
and late (>200) training trials in each reward context separately. Pos-
terior inference of the parameters in the hierarchical models was per-
formed via the Gibbs sampler using the Markov chain Monte Carlo 
technique implemented in JAGS66, assuming flat priors for both the 
mean and the noise of the estimates. For each model, we drew a total 
of 20,000 burn-in samples and subsequently took 5,000 new samples 
from three independent chains. We applied a thinning of 5 to this final 
sample, thus resulting in a final set of 3,000 samples for each param-
eter. We conducted Gelman–Rubin tests for each parameter to assess 
convergence of the chains. All latent variables in our Bayesian models 
had ̂R < 1.05, which suggests that all three chains converged to a target 
posterior distribution. We checked convergence of the group-level 
parameter estimates via visual inspection.

Behavioural and statistical analyses
In the estimation task, the observers’ behavioural error on a given 
trial was computed as the difference between the reported orienta-
tion and the presented orientation. The direction of the error was 
defined as positive if the reported orientation was more oblique than 
the presented orientation, or negative if vice versa. If the error on 
any given trial was bigger than 25% of the maximum possible error 
(90 degrees), we discarded that trial. To make full use of the data, we 
pooled all participants from both experiments for the analysis of the 
impact of the reward training context. Comparisons between trained 
and untrained locations used only the data from the location-specific 
training in experiment 2.

We computed the average bias and variance in five bins of 9° 
before and after the training phases. Next, we computed the aver-
age change in the variance in each bin for each participant. We used 
the changes in variance within the most cardinal and most oblique 
bins to test for the predicted interactions between diagonality and 
training type (Kacc or Krew) or location (trained or untrained) using 
Bayesian hierarchical linear regressions implemented with the brms 
package (version 2.13.5)67 in the statistical computing software R 
(version 3.6.3)68. For each model, we used four chains with 2,000 
samples per chain after burn-in. The PMCMC values reported for these 
regressions represent one minus the probability of the reported 
effect being greater (less) than zero given the posterior distribu-
tions of the fitted model parameters.

We also compared the performance of participants in the binary 
judgement decision task using Bayesian hierarchical regressions imple-
mented with brms in R. In this task, the participants had to decide which 
of two stimuli were more diagonal (closer to 45 degrees). We compared 
the accuracy of these decisions as a function of diagonality, training 
phase (early or late) and training type (Kacc or Krew). We used four chains 
with 1,000 samples per chain after burn-in for a total of 4,000 posterior 
samples for each regression parameter. The PMCMC values were com-
puted in the same fashion as described above for the estimation task.

ANNs
Suppose that we have a dataset of x samples from a distribution of 
images represented by the retina where each image indicates an angular 
orientation s with an angular prior distribution p(s). Note that a key 
feature of our analyses is that knowledge about this angular prior is 
not explicitly given to the neural network; this prior is embedded in 
the statistics of image occurrences over space and time. Also note that 
there might be different images xs that can be mapped to the same angle 
s0 (for example, a Gabor patch with identical angle but different angular 
phases). Each stimulus is encoded by a set of latent codes (or a latent 
neural distributional code) z with a prior distribution p(z). This prior 
distribution results in a posterior distribution p(z|x) after observing 
image x. The neural coding system should thus learn a good representa-
tion of the environment (the distribution of physical sensory inputs) 
that might also need to be optimized for a particular downstream 
task (for example, maximize the reward consumption resulting from 
decision y). More specifically, we propose a VIB-like objective function 
(equation (4) in main text). In our ANN, the VIB-like objective trades 
(an approximation of) the amount of ‘visual’ information I that the 
encoder can process with the expected reward loss, via the regulari-
zation parameter β. Higher values of β thus introduce extra pressures 
in the network to encode information about the input image that can 
yield the most significant improvement in the downstream objective 
function. The neural network received two retinal images correspond-
ing to screen locations where the two Gabor patches were presented 
in our task. We note that when training the ANN, the parameters of the 
encoder ϕ are shared for both retinal locations where the stimuli x1,2 are 
presented. The decision rule that the neural network has to learn is to 
indicate which of the two input stimuli (left or right) is more diagonal, 
while maximizing the reward received across many trials. Also like in 
the human experiments, we trained networks in two contexts: Kacc and 
Krew.For all VIB-like objectives studied here, we define the regularized 
‘information transmission’ I as

I ≡ 𝔼𝔼X [DKL (pϕ(z1|x1) ∥ p(z1))

+DKL (pϕ(z2|x2) ∥ p(z2))] ,
(28)

where DKL is the Kullback–Leibler divergence. In context Kacc, the reward 
loss in the VIB-like objective is defined as

E[ reward loss ] ≡ 𝔼𝔼pϕ(z|x) [y(x1,x2)(1 − pθ(y = 1|z1, z2))

+(1 − y(x1,x2))pθ(y = 1|z1, z2)] ,
(29)
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with y = 1 when the correct response is given by stimulus input x1, and 
y = 0 otherwise. p(y = 1|z1, z2) is the probability that the network chooses 
x1 given the encoding vectors z1,2.

In context Krew, the reward loss in the VIB-like objective is defined as

E[ reward loss ] ≡ 𝔼𝔼pϕ(z|x) [|s(x1) − s(x2)|

× {y(x1,x2)(1 − pθ(y = 1|z1, z2))

+ (1 − y(x1,x2))pθ(y = 1|z1, z2)}] ,

(30)

which is identical to the reward loss in the Kacc VIB-like objective function, 
except that the probability of an erroneous ANN decision is weighted 
by the absolute value of the difference in the cardinality values s(x1) and 
s(x2). The ANNs trained with VIB-like objective functions thus penalize 
reward loss following the Kacc and Krew objectives employed in the analyti-
cal solutions (see equations (1) and (2) in the main text).

All networks tested here used layers that are standard in the 
machine learning literature. Each retinal input network consisted of 
convolutional 4 × 4 kernels, with a stride of two. In the results presented 
in this work, we used four filters, but we found that our results are 
largely insensitive to the number of filters used. We also investigated 
a fully connected input layer with different sizes (50–200 neurons), 
which led to nearly identical results and conclusions. The stochastic 
encoder has the form

p(z|x) = 𝒩𝒩 (z|gμe (x), gΣe (x)) , (31)

where ge is a fully connected layer that receives as input the output of 
the retinal layer, where ge outputs the K-dimensional mean vectors μ of 
z as well as the K × K covariance matrix Σ. In the results presented here, 
we use K = 4, but our results are similar for a range of K values from 2 
to 16. We used the reparameterization trick to write p(z|x)dz = p(ϵ)
dϵ, where z = g(x, ϵ) is a deterministic function of x and the Gaussian 
random variable ϵ. The noise is thus independent of the parameters 
of the network, and it is possible to take gradients that optimize the 
objective function in equation (4). The downstream integration net-
work consisted of a fully connected network that receives as input the 
values of the noisy encoder z for each retinal input. The size of this 
layer for the results presented here is 20, but the main conclusions of 
our analyses are insensitive to the size of this layer. Finally, the decision 
module was a single sigmoidal unit indicating the selection of the left 
or right stimulus. All hidden units used rectified-linear activations. 
The networks were trained with Adam optimization with a learning 
rate of 0.0001.

To compute the Fisher information of the encoder, we first gener-
ated 500 inputs for each orientation stimulus s in the cardinality space 
from 0° to 45° in steps of 0.5°. We computed the empirical expected 
value vector

̄z(s) = 𝔼𝔼z∼p(z|s)[z] = 𝔼𝔼[z|s]. (32)

By rescaling the responses zi(s) such that the noise has unit 
variance, without loss of generality, the Fisher information J can be 
expressed as

J(s) =
n
∑
i=1

̄z′i (s)
2 = ‖

‖‖
∂ ̄z(s)
∂s

‖
‖‖

2

2
. (33)

Resource allocation with RT costs
We used simulations to study the scenario in which agents are rewarded 
for short RTs in both the Kacc and Krew contexts. Examining this scenario 
requires assumptions about a process model that jointly generates 
decisions and RTs. We assumed that decisions and RTs T are generated 
by a simple DDM with a constant decision bound b, decision evidence 
z and diffusion noise σ that is independent of the choice set inputs, 

which can be thought of as a downstream decision noise. In the DDM, 
the data generation process does not change if we set, for instance, σ 
to a constant. Here we set σ = 1. Following the notation in our work, we 
define the decision evidence z(s1, s2) for the choice set s1,2

z(s1, s2) =
|E[ ̂s1 |s1]−E[ ̂s2 |s2]|

√Var[ ̂s1 |s1]+Var[ ̂s2 |s2]

= |E[ ̂s1 |s1]−E[ ̂s2 |s2]|

√
1

J(s1)
+ 1
J(s2)

,
(34)

where J(s) is Fisher information, which determines resource allocation. 
To find the optimal resource allocation, we define

J(s) ≡ k × ̃f(s), (35)

with the property

∫ ̃f(s)ds = 1, d ̃F
ds

> 0, (36)

where ̃F  is defined as the CDF of ̃f. Here we set k sufficiently high such 
that the low-noise limit property holds, and we numerically find  
̃f  (ref. 69).

In the standard DDM, the probability of an erroneous response is 
given by (for simplicity, we approximate the normal CDF of equation 
(26) with the logit function corresponding to the analytical solution of 
the DDM; this approximation does not change the qualitative conclu-
sions of our results)

P( error |s1, s2) =
1

1 + e2b×z(s1 ,s2)
, (37)

and the expected RT is given by70

E[RT|s1, s2] =
b

z(s1, s2)
tanh(b × z(s1, s2)). (38)

In this scenario, the loss function for the Kacc context is given by 
equation (5) in the main text, and the loss function for the Krew context 
is given by equation (6) in the main text. Note that as η → 0, the optimal 
decision bound would be z → ∞. The goal is thus to find the optimal 
balance between resource allocation J(s) and optimal bound z that 
minimizes the loss functions for a given RT cost η and for the prior 
distribution of sensory stimuli in the environment.

Representational similarity analyses of human fMRI data
We conducted additional conjunction analyses on the whole-brain 
maps of representational similarity for identity and usefulness that 
were originally computed by Castegnetti and colleagues57. We obtained 
the thresholded (FWE P < 0.05) whole-brain maps from Castegnetti 
and colleagues and computed conjunctions between the identity 
and usefulness contrasts, as well as usefulness and independently 
defined masks of the LOC and primary visual areas V1–V3 to create 
the figure in Supplementary Note 2. The LOC mask was obtained from 
the fMRI meta-analysis tool Neurosynth (neurosynth.org) with the 
keyword ‘Lateral Occipital Cortex’ and thresholded at the Neurosynth 
default of P < 0.01 (FDR-corrected). The V1–V3 masks were extracted 
from the Julich-Brain Cytoarchitectonic Atlas and thresholded at 50% 
probability. The LOC and V1–V3 masks were then conjoined with the 
cluster-corrected statistical map of usefulness representations. For the 
full details about the fMRI data analyses, see Supplementary Note 2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The behavioural data are available at https://osf.io/an274/. The LOC 
mask was obtained from the fMRI meta-analysis tool Neurosynth (neu-
rosynth.org). The V1–V3 masks were extracted from the Julich-Brain 
Cytoarchitectonic Atlas ( julich-brain-atlas.de)

Code availability
The analysis code is available at https://osf.io/an274/.
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Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We designed an experiment  to test if human early visual areas adapt in a manner predicted by the theory of fitness maximization. 
The data is quantitative experimental, allowing to test direct qualitative predictions of the theory (see Figure 3).  

Research sample The sample consisted of young healthy volunteers (age range: 18-40) who were mostly University students/employees.  Given that 
we wanted to test the hypothesis that early visual areas adapt to fitness-maximizing codes in the healthy brain, none of the 
participants suffered from any neurological or psychological disorder or took medication that interfered with participation in our 
study. 

Sampling strategy The sampling strategy was random. 
The sample size in Experiment 1 was determined such that the final sample size after exclusion criteria (see below) consisted of at 
least 25 participants each with 200-400 successful trials per experiment. This sample size typically allows testing well-defined 
theories of behaviour in standard laboratory settings (e.g., Polania et al., 2019 Nature Neuroscience). The replication/extension 
sample size in Experiment 2 was chosen for the same reasons.

Data collection Stimuli were generated with Matlab, using the Psychtoolbox and displayed on a screen using the following experimental protocol. 
Participants were sat one meter from the screen. The angle of the head was kept stable with a chin rest. The height of the chin rest 
was adjusted to position the center of the screen at the height of the eyes. As orientation stimuli, we used oriented Gabor patches, 
presented on a grey background. 
 
Eye-tracking data was acquired using an ST Research Eyelink 1000 eye-tracking system. Gaze position was sampled at 500 Hz. 
 
no one else was present besides the participants(s) and the researcher. The researcher was not blinded to experimental condition 
and/or the study hypothesis. 

Timing Data collected from the end of 2018 until March 2022

Data exclusions Participants who failed to follow the eye fixation instructions on more than 25\% of trials were excluded from the data analysis. We 
measured the performance of participants in the training tasks and excluded eleven that were unable to perform the task at the 
easiest difficulty level. Additionally, we had to exclude three participants due to technical problems with the data collection. Thus, 
the final sample comprised n=86 participants (n=25 in Experiment 1, n=61 in Experiment 2).

Non-participation Participants were recruited according to the following inclusion cireterion: 
None of the participants suffered from any neurological or psychological disorder or took medication that interfered with 
participation in our study. 
No participant dropped out/declined participation 
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Randomization Participants were randomly allocated to each of the experiments. Each experiment consisted of independent samples

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were recruited via the online system recruitment platform of the University of Zurich. 
There might be slight selection bias in our sample given that participants were recruited online and required access to a 
computer or mobile  phone. However, given that we here we study basic sensory system mechanisms, we believe that this 
selection had no impact in the interpretation and conclusions derived in our work

Ethics oversight The experiments conformed to the Declaration of Helsinki and the experimental protocol was approved by the Ethics 
Committee of the Canton of Zurich.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
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Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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