Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional asymmetry of the neonatal cerebral cortex

Abstract

Features of brain asymmetry have been implicated in a broad range of cognitive processes; however, their origins are still poorly understood. Here we investigated cortical asymmetries in 442 healthy term-born neonates using structural and functional magnetic resonance images from the Developing Human Connectome Project. Our results demonstrate that the neonatal cortex is markedly asymmetric in both structure and function. Cortical asymmetries observed in the term cohort were contextualized in two ways: by comparing them against cortical asymmetries observed in 103 preterm neonates scanned at term-equivalent age, and by comparing structural asymmetries against those observed in 1,110 healthy young adults from the Human Connectome Project. While associations with preterm birth and biological sex were minimal, significant differences exist between birth and adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of GA at birth and PMA at scan for preterm and term-born neonates.
Fig. 2: Median asymmetry indices of structural and functional asymmetries across the healthy term-born neonatal cohort scanned at TEA.
Fig. 3: \(-{\log}_{10}{(P)}_{{\mathrm{...mcfwe}}}\) value maps for structural and functional asymmetries in the healthy term-born neonatal cortex at TEA.
Fig. 4: Median asymmetry indices of structural and functional asymmetries across the healthy term-born neonatal cohort scanned at TEA.
Fig. 5: Comparison of structural asymmetries between the dHCP and HCP—YA.
Fig. 6: Development and validation of a symmetric surface-based atlas.

Similar content being viewed by others

Data availability

The images used to produce the figures shown here are available as scenes through https://balsa.wustl.edu/study/2xrBN. UKB asymmetry summary measures reported in Sha et al.29 are available at https://archive.mpi.nl/mpi/islandora/object/mpi:1839_24c1553d_3ee8_4879_8877_79ca19a0ac6a?asOfDateTime=2021-11-02T14:30:48.830Z. The following templates are publicly available: dhcpSym spatiotemporal cortical surface atlas: https://brain-development.org/brain-atlases/atlases-from-the-dhcp-project/cortical-surface-template/; HCP sulcal depth template: https://github.com/Washington-University/HCPpipelines/tree/master/global/templates/standard_mesh_atlases; deformations between HCP fs_LR and FreeSurfer fsaverage space: https://github.com/Washington-University/HCPpipelines/tree/master/global/templates/standard_mesh_atlases/resample_fsaverage. Demographic data for the dHCP are available at https://github.com/BioMedIA/dHCP-release-notes/blob/master/supplementary_files/combined.tsv.

Code availability

This study utilized the following open software and code: surface atlas creation (without symmetrization): https://github.com/jelenabozek/SurfaceAtlasConstruction; dHCP structural pipeline: https://github.com/BioMedIA/dhcp-structural-pipeline and dHCP functional pipeline: https://git.fmrib.ox.ac.uk/seanf/dhcp-neonatal-fmri-pipeline/-/tree/master; FSL version 6.0.3 (for MIGP and MELODIC): https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; symmetrizing resting-state timeseries: https://git.fmrib.ox.ac.uk/seanf/asymmetry-analysis; surface registration, metric and anatomical mesh resampling: https://github.com/ecr05/dHCP_template_alignment; MSM: https://github.com/ecr05/MSM_HOCR/releases; dHCP MSM configuration file: https://github.com/ecr05/dHCP_template_alignment/blob/master/configs/config_subject_to_40_week_template_3rd_release; HCP MSM configuration file optimized for sulcal depth: https://github.com/metrics-lab/CorticalAsymmetry/blob/main/config_standard_MSMstrain_HCP_CorticalAsymmetry; PALM version alpha119: https://github.com/andersonwinkler/PALM; INTERGROWTH-21 growth curves: http://intergrowth21.ndog.ox.ac.uk/; Connectome Workbench: https://www.humanconnectome.org/software/connectome-workbench; Pingouin Python package version 0.5.3: https://pingouin-stats.org/. Code used to perform image processing and asymmetry analyses is available at https://github.com/metrics-lab/CorticalAsymmetry.

References

  1. Mazoyer, B. et al. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS ONE 9, e101165 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Zhen, Z. et al. Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. NeuroImage 113, 13–25 (2015).

    PubMed  Google Scholar 

  3. Postema, M. C. et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat. Commun. 10, 1–12 (2019).

    Google Scholar 

  4. Damme, K. S., Vargas, T., Calhoun, V., Turner, J. & Mittal, V. A. Global and specific cortical volume asymmetries in individuals with psychosis risk syndrome and schizophrenia: a mixed cross-sectional and longitudinal perspective. Schizophr. Bull. 46, 713–721 (2020).

    PubMed  Google Scholar 

  5. Kong, X.-Z. et al. Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the enigma consortium. Biol. Psychiatry 87, 1022–1034 (2020).

    PubMed  Google Scholar 

  6. Postema, M. et al. Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. J. Child Psychol. Psychiatry 62, 1202–1219 (2021).

    PubMed  PubMed Central  Google Scholar 

  7. Altarelli, I. et al. Planum temporale asymmetry in developmental dyslexia: revisiting an old question. Hum. Brain Mapp. 35, 5717–5735 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Glasel, H. et al. A robust cerebral asymmetry in the infant brain: the rightward superior temporal sulcus. NeuroImage 58, 716–723 (2011).

    CAS  PubMed  Google Scholar 

  9. Dubois, J. et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb. Cortex 18, 1444–1454 (2008).

    CAS  PubMed  Google Scholar 

  10. Hill, J. et al. A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J. Neurosci. 30, 2268–2276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leroy, F. et al. New human-specific brain landmark: the depth asymmetry of superior temporal sulcus. Proc. Natl Acad. Sci. USA 112, 1208–1213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, G. et al. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2014).

    CAS  PubMed  Google Scholar 

  13. Li, G., Lin, W., Gilmore, J. H. & Shen, D. Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. J. Neurosci. 35, 9150–9162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dehaene-Lambertz, G. et al. Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proc. Natl Acad. Sci. USA 103, 14240–14245 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Perani, D. et al. Functional specializations for music processing in the human newborn brain. Proc. Natl Acad. Sci. USA 107, 4758–4763 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilmore, J. H., Knickmeyer, R. C. & Gao, W. Imaging structural and functional brain development in early childhood. Nat. Rev. Neurosci. 19, 123–137 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dubois, J. et al. Structural asymmetries in the infant language and sensori-motor networks. Cereb. Cortex 19, 414–423 (2009).

    CAS  PubMed  Google Scholar 

  18. Perani, D. et al. Neural language networks at birth. Proc. Natl Acad. Sci. USA 108, 16056–16061 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, S. M. et al. Resting-state fmri in the human connectome project. NeuroImage 80, 144–168 (2013).

    PubMed  Google Scholar 

  21. Bozek, J. et al. Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project. NeuroImage 179, 11–29 (2018).

    PubMed  Google Scholar 

  22. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. NeuroImage 92, 381–397 (2014).

    PubMed  Google Scholar 

  23. Kwon, S. H. et al. Adaptive mechanisms of developing brain: cerebral lateralization in the prematurely-born. NeuroImage 108, 144–150 (2015).

    PubMed  Google Scholar 

  24. Volpe, J. J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 95, 42–66 (2019).

    PubMed  Google Scholar 

  25. McBryde, M., Fitzallen, G. C., Liley, H. G., Taylor, H. G. & Bora, S. Academic outcomes of school-aged children born preterm: a systematic review and meta-analysis. JAMA Netw. Open 3, e202027–e202027 (2020).

    PubMed  PubMed Central  Google Scholar 

  26. Shaw, P. et al. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 66, 888–896 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Zhou, D., Lebel, C., Evans, A. & Beaulieu, C. Cortical thickness asymmetry from childhood to older adulthood. NeuroImage 83, 66–74 (2013).

    PubMed  Google Scholar 

  28. Roe, J. M. et al. Population-level asymmetry of the cerebral cortex: reproducibility, lifespan changes, heritability, and individual differences. Preprint at bioRxiv https://doi.org/10.1101/2021.11.25.469988 (2021).

  29. Sha, Z. et al. Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc. Natl Acad. Sci. USA 118, e2113095118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage 166, 400–424 (2018).

    PubMed  Google Scholar 

  32. Garcia, K. E. et al. Dynamic patterns of cortical expansion during folding of the preterm human brain. Proc. Natl Acad. Sci. USA 115, 3156–3161 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Robinson, E. C. et al. Msm: a new flexible framework for multimodal surface matching. NeuroImage 100, 414–426 (2014).

    PubMed  Google Scholar 

  34. Robinson, E. C. et al. Multimodal surface matching with higher-order smoothness constraints. NeuroImage 167, 453–465 (2018).

    PubMed  Google Scholar 

  35. Kersbergen, K. J. et al. Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. NeuroImage 142, 301–310 (2016).

    PubMed  Google Scholar 

  36. Wood, A. G. et al. Language cortex activation in normal children. Neurology 63, 1035–1044 (2004).

    CAS  PubMed  Google Scholar 

  37. Agcaoglu, O., Miller, R., Mayer, A. R., Hugdahl, K. & Calhoun, V. D. Lateralization of resting state networks and relationship to age and gender. NeuroImage 104, 310–325 (2015).

    CAS  PubMed  Google Scholar 

  38. Glasser, M. F. & Rilling, J. K. Dti tractography of the human brain’s language pathways. Cereb. Cortex 18, 2471–2482 (2008).

    PubMed  Google Scholar 

  39. Pernet, C. R. et al. The human voice areas: spatial organization and inter-individual variability in temporal and extra-temporal cortices. NeuroImage 119, 164–174 (2015).

    PubMed  Google Scholar 

  40. Le Guen, Y. et al. Enhancer locus in ch14q23. 1 modulates brain asymmetric temporal regions involved in language processing. Cereb. Cortex 30, 5322–5332 (2020).

    PubMed  Google Scholar 

  41. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirai, M. & Hakuno, Y. Electrophysiological evidence of global structure-from-motion processing of biological motion in 6-month-old infants. Neuropsychologia 170, 108229 (2022).

    PubMed  Google Scholar 

  43. Kolster, H., Peeters, R. & Orban, G. A. The retinotopic organization of the human middle temporal area mt/v5 and its cortical neighbors. J. Neurosci. 30, 9801–9820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Buiatti, M. et al. Cortical route for facelike pattern processing in human newborns. Proc. Natl Acad. Sci. USA 116, 4625–4630 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Adibpour, P., Dubois, J. & Dehaene-Lambertz, G. Right but not left hemispheric discrimination of faces in infancy. Nat. Hum. Behav. 2, 67–79 (2018).

    PubMed  Google Scholar 

  46. Brancucci, A., Lucci, G., Mazzatenta, A. & Tommasi, L. Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philos. Trans. R. Soc. Lond. B 364, 895–914 (2009).

    CAS  Google Scholar 

  47. Dall’Orso, S. et al. Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain. Cereb. Cortex 28, 2507–2515 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Angstmann, S. et al. Microstructural asymmetry of the corticospinal tracts predicts right–left differences in circle drawing skill in right-handed adolescents. Brain Struct. Funct. 221, 4475–4489 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Demnitz, N. et al. Right-left asymmetry in corticospinal tract microstructure and dexterity are uncoupled in late adulthood. NeuroImage 240, 118405 (2021).

    PubMed  Google Scholar 

  50. Barber, A. D. et al. Motor “dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cereb. Cortex 22, 51–59 (2012).

    PubMed  Google Scholar 

  51. Floris, D. L. et al. Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Mol. Autism 7, 1–14 (2016).

    Google Scholar 

  52. Wiberg, A. et al. Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain 142, 2938–2947 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Sha, Z. et al. The genetic architecture of structural left–right asymmetry of the human brain. Nat. Hum. Behav. 5, 1226–1239 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Leopold, N. A. & Daniels, S. K. Supranuclear control of swallowing. Dysphagia 25, 250–257 (2010).

    PubMed  Google Scholar 

  55. Galovic, M. et al. Lesion location predicts transient and extended risk of aspiration after supratentorial ischemic stroke. Stroke 44, 2760–2767 (2013).

    PubMed  Google Scholar 

  56. Avery, J. A. et al. A common gustatory and interoceptive representation in the human mid-insula. Hum. Brain Mapp. 36, 2996–3006 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Doria, V. et al. Emergence of resting state networks in the preterm human brain. Proc. Natl Acad. Sci. USA 107, 20015–20020 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Eyre, M. et al. The developing human connectome project: typical and disrupted perinatal functional connectivity. Brain 144, 2199–2213 (2021).

    PubMed  PubMed Central  Google Scholar 

  59. Uchida, M. et al. Emotion regulation ability varies in relation to intrinsic functional brain architecture. Soc. Cogn. Affect. Neurosci. 10, 1738–1748 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Lopez-Persem, A. et al. Differential functional connectivity underlying asymmetric reward-related activity in human and nonhuman primates. Proc. Natl Acad. Sci. USA 117, 28452–28462 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Konishi, S. et al. Hemispheric asymmetry in human lateral prefrontal cortex during cognitive set shifting. Proc. Natl Acad. Sci. USA 99, 7803–7808 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams, C. M., Peyre, H., Toro, R. & Ramus, F. Comparing brain asymmetries independently of brain size. NeuroImage 254, 119118 (2022).

    PubMed  Google Scholar 

  63. Engelhardt, E. et al. Regional impairments of cortical folding in premature infants. Ann. Neurol. 77, 154–162 (2015).

    PubMed  Google Scholar 

  64. Dubois, J. et al. Structural asymmetries of perisylvian regions in the preterm newborn. NeuroImage 52, 32–42 (2010).

    CAS  PubMed  Google Scholar 

  65. Liu, T. et al. Diffusion mri of the infant brain reveals unique asymmetry patterns during the first-half-year of development. NeuroImage 242, 118465 (2021).

    PubMed  Google Scholar 

  66. Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013).

    PubMed  Google Scholar 

  67. Bethlehem, R. A. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Buxhoeveden, D. & Casanova, M. Comparative lateralisation patterns in the language area of human, chimpanzee, and rhesus monkey brains. Laterality 5, 315–330 (2000).

    CAS  PubMed  Google Scholar 

  69. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Horng, S. et al. Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for zic4 and foxp2 in visual and auditory pathway development. J. Neurosci. 29, 13672–13683 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Del Pino, I. et al. Coup-tfi/nr2f1 orchestrates intrinsic neuronal activity during development of the somatosensory cortex. Cereb. Cortex 30, 5667–5685 (2020).

    PubMed  Google Scholar 

  72. O’Sullivan, M. L. et al. Flrt proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Sun, T. et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308, 1794–1798 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sprung-Much, T. & Petrides, M. Morphological patterns and spatial probability maps of two defining sulci of the posterior ventrolateral frontal cortex of the human brain: the sulcus diagonalis and the anterior ascending ramus of the lateral fissure. Brain Struct. Funct. 223, 4125–4152 (2018).

    PubMed  Google Scholar 

  76. Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex 6, 207–214 (1996).

    CAS  PubMed  Google Scholar 

  77. Knaus, T. A., Corey, D. M., Bollich, A. M., Lemen, L. C. & Foundas, A. L. Anatomical asymmetries of anterior perisylvian speech-language regions. Cortex 43, 499–510 (2007).

    PubMed  Google Scholar 

  78. Makropoulos, A. et al. The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage 173, 88–112 (2018).

    PubMed  Google Scholar 

  79. Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013).

    PubMed  Google Scholar 

  80. Hughes, E. J. et al. A dedicated neonatal brain imaging system. Magn. Reson. Med. 78, 794–804 (2017).

    CAS  PubMed  Google Scholar 

  81. Fitzgibbon, S. P. et al. The developing human connectome project (dhcp) automated resting-state functional processing framework for newborn infants. NeuroImage 223, 117303 (2020).

    PubMed  Google Scholar 

  82. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fischl, B. Freesurfer. NeuroImage 62, 774–781 (2012).

    PubMed  Google Scholar 

  84. Glasser, M. F. et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 19, 1175–1187 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Edwards, A. D. et al. The developing Human Connectome Project neonatal data release. Front. Neurosci. 16, 886772 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    PubMed  Google Scholar 

  87. Smith, S. M., Hyvärinen, A., Varoquaux, G., Miller, K. L. & Beckmann, C. F. Group-PCA for very large fMRI datasets. NeuroImage 101, 738–749 (2014).

    PubMed  Google Scholar 

  88. Beckmann, C. F., Mackay, C. E., Filippini, N. & Smith, S. M. et al. Group comparison of resting-state fMRI data using multi-subject ICA and dual regression. NeuroImage 47, S148 (2009).

    Google Scholar 

  89. Marcus, D. S. et al. Human connectome project informatics: quality control, database services, and data visualization. NeuroImage 80, 202–219 (2013).

    PubMed  Google Scholar 

  90. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the participants and families recruited in the dHCP, and all the neonatal staff at the Evelina Newborn Imaging Center, St Thomas’ Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London, UK. The authors acknowledge use of the research computing facility at King’s College London, Rosalind (https://rosalind.kcl.ac.uk), which is delivered in partnership with the National Institute for Health Research (NIHR) Biomedical Research Centres at South London & Maudsley and Guy’s & St Thomas’ NHS Foundation Trusts, and part-funded by capital equipment grants from the Maudsley Charity (award 980) and Guy’s & St Thomas’ Charity (TR130505). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, King’s College London or the Department of Health and Social Care. The dHCP project was funded by the European Research Council (ERC) under the European Union Seventh Framework Programme (FR/2007-2013)/ERC grant agreement no. 319,456. This study was supported in part by the Wellcome Engineering and Physical Sciences Research Council Centre for Medical Engineering at King’s College London (grant WT 203,148/Z/16/Z) and the Medical Research Council (UK) (grant MR/K006355/1). Data were provided (in part) by the HCP, WU-Minn Consortium (Principal Investigators: D.V.E. and K.U.; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. L.Z.J.W. is supported by funding from the Commonwealth Scholarship Commission, UK. E.C.R. is supported by an Academy of Medical Sciences/the British Heart Foundation/the Government Department of Business, Energy and Industrial Strategy/the Wellcome Trust Springboard Award (SBF003/1116) and E.C.R. and S.M.S. are supported by a Wellcome Collaborative Award (215573/Z/19/Z). J.O. and A.D.E. received support from the Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London (grant MR/N026063/1). J.O. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 206,675/Z/17/Z). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.Z.J.W., S.P.F., A.M.W., T.P., J.O., E.P.D., S.M.S., A.D.E. and E.C.R. designed the research. L.Z.J.W., S.P.F., J.B., A.S., A.M. and J.C. performed research. L.Z.J.W. analysed data. L.Z.J.W., A.D.E. and E.C.R. wrote the manuscript. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Logan Z. J. Williams or Emma C. Robinson.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Rhodri Cusack, Clyde Francks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L.Z.J., Fitzgibbon, S.P., Bozek, J. et al. Structural and functional asymmetry of the neonatal cerebral cortex. Nat Hum Behav 7, 942–955 (2023). https://doi.org/10.1038/s41562-023-01542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01542-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing