Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding

Abstract

Emotional events comprise our strongest and most valuable memories. Here we examined how the brain prioritizes emotional information for storage using direct brain recording and deep brain stimulation. First, 148 participants undergoing intracranial electroencephalographic (iEEG) recording performed an episodic memory task. Participants were most successful at remembering emotionally arousing stimuli. High-frequency activity (HFA), a correlate of neuronal spiking activity, increased in both the hippocampus and the amygdala when participants successfully encoded emotional stimuli. Next, in a subset of participants (N = 19), we show that applying high-frequency electrical stimulation to the hippocampus selectively diminished memory for emotional stimuli and specifically decreased HFA. Finally, we show that individuals with depression (N = 19) also exhibit diminished emotion-mediated memory and HFA. By demonstrating how direct stimulation and symptoms of depression unlink HFA, emotion and memory, we show the causal and translational potential of neural activity in the amygdalohippocampal circuit for prioritizing emotionally arousing memories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emotional features of stimuli in a verbal free recall task influence recall performance.
Fig. 2: High-frequency activity predicts successful emotional memory encoding in the hippocampus and amygdala.
Fig. 3: Direct stimulation of the hippocampus during encoding impairs emotion-mediated memory and decreases HFA.
Fig. 4: Participants with depression exhibit diminished arousal-mediated memory and HFA.

Similar content being viewed by others

Data availability

The raw electrophysiological data used in this study are available at http://memory.psych.upenn.edu/RAM. Word valence and arousal ratings are available at http://saifmohammad.com/WebPages/lexicons.html34 and http://crr.ugent.be/archives/100373. The CIT168 atlas is available at https://osf.io/r2hvk/74.

Code availability

Custom analysis and modelling code is available at https://github.com/seqasim/NHB_EmotionMemory_Models.

References

  1. Kensinger, E. A. & Corkin, S. Memory enhancement for emotional words: are emotional words more vividly remembered than neutral words? Mem. Cogn. 31, 1169–1180 (2003).

    Article  Google Scholar 

  2. Klein-Koerkamp, Y., Baciu, M. & Hot, P. Preserved and impaired emotional memory in Alzheimer’s disease. Front. Psychol. 3, 331 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol. 49, 381–391 (1956).

    Article  CAS  PubMed  Google Scholar 

  4. Poulin, S. P. et al. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res. 194, 7–13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tulving, E. & Markowitsch, H. J. Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Adolphs, R., Cahill, L., Schul, R. & Babinsky, R. Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn. Mem. 4, 291–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D. & Cahill, L. Event-related activation in the human amygdala associates with later memory for individual emotional experience. J. Neurosci. 20, RC99 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson, A. K. & Phelps, E. A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411, 305–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Sharot, T. & Phelps, E. A. How arousal modulates memory: disentangling the effects of attention and retention. Cogn. Affect. Behav. Neurosci. 4, 294–306 (2004).

    Article  PubMed  Google Scholar 

  10. Dolcos, F., LaBar, K. & Cabeza, R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron 42, 855–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. McGaugh, J. L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 27, 1–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Atucha, E. et al. Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory. Proc. Natl Acad. Sci. USA 114, 9176–9181 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cahill, L. & Alkire, M. T. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol. Learn. Mem. 79, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Hurlemann, R. et al. Noradrenergic modulation of emotion-induced forgetting and remembering. J. Neurosci. 25, 6343–6349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cahill, L., Prins, B., Weber, M. & McGaugh, J. L. Beta-adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. van Stegeren, A. H. The role of the noradrenergic system in emotional memory. Acta Psychol. 127, 532–541 (2008).

    Article  Google Scholar 

  17. Hagena, H., Hansen, N. & Manahan-Vaughan, D. β-adrenergic control of hippocampal function: subserving the choreography of synaptic information storage and memory. Cereb. Cortex 26, 1349–1364 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bacon, T. J., Pickering, A. E. & Mellor, J. R. Noradrenaline release from locus coeruleus terminals in the hippocampus enhances excitation–spike coupling in CA1 pyramidal neurons via β-adrenoceptors. Cereb. Cortex 30, 6135–6151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haggerty, D. C., Glykos, V., Adams, N. E. & Lebeau, F. E. N. Bidirectional modulation of hippocampal gamma (20–80 Hz) frequency activity in vitro via alpha(α)- and beta(β)-adrenergic receptors (AR). Neuroscience 253, 142–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Cape, E. G. & Jones, B. E. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep–wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J. Neurosci. 18, 2653–2666 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ridout, N., Astell, A., Reid, I., Glen, T. & O’Carroll, R. Memory bias for emotional facial expressions in major depression. Cogn. Emot. 17, 101–122 (2003).

    Article  PubMed  Google Scholar 

  22. Pringle, A., McCabe, C., Cowen, P. J. & Harmer, C. J. Antidepressant treatment and emotional processing: can we dissociate the roles of serotonin and noradrenaline? J. Psychopharmacol. 27, 719–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    Article  PubMed  Google Scholar 

  25. Madan, C. R. Exploring word memorability: how well do different word properties explain item free-recall probability? Psychon. Bull. Rev 28, 583–595 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aka, A., Phan, T. D. & Kahana, M. J. Predicting recall of words and lists. J. Exp. Psychol. Learn. Mem. Cogn 47, 765–784 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Larsen, R. S. & Waters, J. Neuromodulatory correlates of pupil dilation. Front. Neural Circuits 12, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kucewicz, M. T. et al. Pupil size reflects successful encoding and recall of memory in humans. Sci. Rep. 8, 4949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–734 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. LaBar, K. S. & Cabeza, R. Cognitive neuroscience of emotional memory. Nat. Rev. Neurosci. 7, 54–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Schildkraut, J. J. The catecholamine hypothesis of affective disorders: a review of supporting evidence. J. Neuropsychiatry Clin. Neurosci. 7, 524–533 (1965).

    Google Scholar 

  33. Popov, V., Marevic, I., Rummel, J. & Reder, L. M. Forgetting is a feature, not a bug: intentionally forgetting some things helps us remember others by freeing up working memory resources. Psychol. Sci. 30, 1303–1317 (2019).

    Article  PubMed  Google Scholar 

  34. Mohammad, S. M. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words. In Proc. Annual Conference of the Association for Computational Linguistics, 174–184 (ACL, 2018).

  35. Long, N. M., Burke, J. F. & Kahana, M. J. Subsequent memory effect in intracranial and scalp EEG. NeuroImage 84, 488–494 (2014).

    Article  PubMed  Google Scholar 

  36. Kramer, J. H. et al. Hippocampal volume and retention in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 10, 639–643 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Paller, K. A. & Wagner, A. D. Observing the transformation of experience into memory. Trends Cogn. Sci. 6, 93–102 (2002).

    Article  PubMed  Google Scholar 

  38. Prince, S., Daselaar, S. & Cabeza, R. Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations. J. Neurosci. 25, 1203–1210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lega, B., Jacobs, J. & Kahana, M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 22, 748–761 (2012).

    Article  PubMed  Google Scholar 

  40. Burke, J. F. et al. Human intracranial high-frequency activity maps episodic memory formation in space and time. NeuroImage 85, 834–843 (2014).

    Article  PubMed  Google Scholar 

  41. Fellner, M.-C. et al. Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLoS Biol. 17, e3000403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kucewicz, M. T. et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain 137, 2231–2244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Long, N. M. et al. Contextually mediated spontaneous retrieval is specific to the hippocampus. Curr. Biol. 27, 1074–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohan, U. R. et al. The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimul. 13, 1183–1195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jacobs, J. et al. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92, 983–990 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Deese, J. & Kaufman, R. A. Serial effects in recall of unorganized and sequentially organized verbal material. J. Exp. Psychol. 54, 180–187 (1957).

    Article  CAS  PubMed  Google Scholar 

  47. Ilsley, J. E., Moffoot, A. P. & O’Carroll, R. E. An analysis of memory dysfunction in major depression. J. Affect. Disord. 35, 1–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, J. et al. Amygdala–hippocampal dynamics during salient information processing. Nat. Commun. 8, 14413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costa, M. et al. Aversive memory formation in humans involves an amygdala–hippocampus phase code. Nat. Commun. 13, 6403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, H. et al. Awake ripples enhance emotional memory encoding in the human brain. Preprint at bioRxiv https://doi.org/10.1101/2021.11.17.469047 (2021).

  51. Inman, C. S. et al. Direct electrical stimulation of the amygdala enhances declarative memory in humans. Proc. Natl Acad. Sci. USA 115, 98–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Sendi, M. S. E. et al. Identifying the neurophysiological effects of memory-enhancing amygdala stimulation using interpretable machine learning. Brain Stimul. 14, 1511–1519 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kensinger, E. A. & Corkin, S. Two routes to emotional memory: distinct neural processes for valence and arousal. Proc. Natl Acad. Sci. USA 101, 3310–3315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leal, S. L., Tighe, S. K., Jones, C. K. & Yassa, M. A. Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus 24, 1146–1155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roozendaal, B., Okuda, S., Van der Zee, E. A. & McGaugh, J. L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 103, 6741–6746 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abercrombie, H. C. et al. Cortisol’s effects on hippocampal activation in depressed patients are related to alterations in memory formation. J. Psychiatr. Res. 45, 15–23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Marzo, A., Totah, N. K., Neves, R. M., Logothetis, N. K. & Eschenko, O. Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. J. Neurophysiol. 111, 2570–2588 (2014).

    Article  PubMed  Google Scholar 

  58. Hajós, M., Hoffmann, W. E., Robinson, D. D., Yu, J. H. & Hajós-Korcsok, É. Norepinephrine but not serotonin reuptake inhibitors enhance theta and gamma activity of the septo-hippocampal system. Neuropsychopharmacology 28, 857–864 (2003).

    Article  PubMed  Google Scholar 

  59. Headley, D. B. & Weinberger, N. M. Fear conditioning enhances γ oscillations and their entrainment of neurons representing the conditioned stimulus. J. Neurosci. 33, 5705–5717 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ul Haq, R. et al. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices. Hippocampus 22, 516–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Buchanan, T. W., Etzel, J. A., Adolphs, R. & Tranel, D. The influence of autonomic arousal and semantic relatedness on memory for emotional words. Int J. Psychophysiol. 61, 26–33 (2006).

    Article  PubMed  Google Scholar 

  62. Bennett, C., Liang, K. C. & McGaugh, J. L. Depletion of adrenal catecholamines alters the amnestic effect of amygdala stimulation. Behav. Brain Res. 15, 83–91 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Manns, J. R. & Bass, D. I. The amygdala and prioritization of declarative memories. Curr. Dir. Psychol. Sci. 25, 261–265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y., Cui, L., Schwarz, M. K., Dong, Y. & Schlüter, O. M. Adrenergic gate release for spike timing-dependent synaptic potentiation. Neuron 93, 394–408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Voogd, L. D., Fernández, G. & Hermans, E. J. Disentangling the roles of arousal and amygdala activation in emotional declarative memory. Soc. Cogn. Affect. Neurosci. 11, 1471–1480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dahl, M. J., Mather, M. & Werkle-Bergner, M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 26, 38–52 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2016).

    Article  Google Scholar 

  68. Capretto, T. et al. Bambi: a simple interface for fitting Bayesian linear models in Python. J. Stat. Software 103, 1–29 (2022).

    Article  Google Scholar 

  69. Gelman, A., Jakulin, A., Pittau, M. G. & Su, Y.-S. A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat. 2, 1360–1383 (2008).

    Article  Google Scholar 

  70. Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D. & Wagenmakers, E.-J. The fallacy of placing confidence in confidence intervals. Psychon. Bull. Rev. 23, 103–123 (2016).

    Article  PubMed  Google Scholar 

  71. Bartsch, L. M. & Oberauer, K. The effects of elaboration on working memory and long-term memory across age. J. Mem. Lang. 118, 104215 (2021).

    Article  Google Scholar 

  72. Weidemann, C. T. et al. Neural activity reveals interactions between episodic and semantic memory systems during retrieval. J. Exp. Psychol. Gen 148, 1–12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Warriner, A. B., Kuperman, V. & Brysbaert, M. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 45, 1191–1207 (2013).

    Article  PubMed  Google Scholar 

  74. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23, 1655–1665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  PubMed  Google Scholar 

  78. Tort, A. et al. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl Acad. Sci. USA 105, 20517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shannon, R. V. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39, 424–426 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Beck, A. T., Steer, R. A., Ball, R. & Ranieri, W. Comparison of beck depression inventories -IA and -II in psychiatric outpatients. J. Pers. Assess. 67, 588–597 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients for participating in our study. This work was supported by the National Science Foundation (NSF) and National Institute of Health (NIH) grants U01-NS113198 and R01-MH104606 (to J.J.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank M. Hermiller and L. Kunz for helpful comments and suggestions. We thank M. Kahana for help with data collection.

Author information

Authors and Affiliations

Authors

Contributions

S.E.Q. conceived the study; S.E.Q. and U.R.M. analysed the data; J.M.S. processed neuroimaging data; all authors interpreted the results, and S.E.Q. and J.J. wrote the manuscript.

Corresponding authors

Correspondence to Salman E. Qasim or Joshua Jacobs.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Jon Kleen and Tommaso Fedele for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Emotional context modulates recall dynamics.

A) Conditional response probability based on valence, averaged across sessions for each participant (n=147). The height of each bar depicts the probability, averaged across participants, of making a transition to a particular valence word (denoted by the color of the bar) as a function of the just recalled word’s valence (denoted by the x-axis label). Error bars denote standard deviation. T-statistics denote the relative proportion of within-valence transitions versus across-valence transitions, across participants. The largest t-statistic is bolded, denoting the relative prevalence of neutral-neutral transitions. B) Conditional response probability based on arousal, averaged across sessions for each participant (n=140). The height of each bar depicts the probability, averaged across participants, of making a transition to a particular arousal word (denoted by the color of the bar) as a function of the just recalled word’s arousal (denoted by the x-axis label). Error bars denote standard deviation. T-statistics denote the relative proportion of within-arousal transitions versus across-arousal transitions, across participants. The largest t-statistic is bolded, denoting the relative prevalence of arousing-arousing transitions. Related to Fig. 1.

Extended Data Fig. 2 Segmentation of electrodes to different amygdala nuclei.

Count of electrodes categorized to different amygdala nuclei on the basis of post-implant imaging. BLN = basolateral nuclei, ATA = amygdala transition areas, AAA = anterior amygdala area, CMN = cortical and medial nuclei, CEN = central nucleus, AMY = could not be localized to specific subregion. Related to Fig. 2.

Extended Data Fig. 3 Memory-related power changes are not due to changes in spectra characteristics.

A) Power spectra slope across the entire session for both remembered (dark shade) and forgotten (light shade) trials in both hippocampus (purple) and amygdala (orange) for all participants (n=147). Asterisk denote significant difference (t(3397)= 4.4, p= 1.1 x 10−5, Cohen’s d= 0.14, CI= [0.03, 0.09], two-sided t-test). Error bars denote standard deviation. B) Peak frequency across the entire session for both remembered and forgotten trials in both hippocampus and amygdala for all participants (n=147). Asterisk denote significant difference (t(3262)= -7.6, p= 4.3 x 10−14, Cohen’s d= -0.24, CI= [-2.2, 1.3], two-sided t-test). Error bars denote standard deviation. C) Peak height across the entire session for both remembered and forgotten trials in both hippocampus and amygdala for all participants (n=147). Asterisk denote significant difference (t(3030)= 4.6, p= 4 x 10−6, d= 0.15, CI= [0.01, 0.03], two-sided t-test). Error bars denote standard deviation. Related to Fig. 2.

Extended Data Fig. 4 Word-level SME for high arousal and low arousal words averaged across the population.

A) Heatmaps of hippocampal power (z-scored within session) for specific words from the task wordpool, averaged across sessions and participants. Words were selected from the 30 words with the highest arousal ratings (left) or lowest arousal ratings (right). Warm colors indicate higher values while cool colors indicate lower values. Above each heatmap is the averaged z-scored power across the words in the heatmap. B) Same as panel A), but for amygdalar power. Related to Fig. 2.

Extended Data Fig. 5 Regional differences in the relationship between neuronal activity, memory and valence.

A) Probability of recall as a function of HFA (z-scored) in the hippocampus and amygdala, binned by valence and split by hemisphere, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. B) Probability of recall as a function of HFA (z-scored), binned by valence and split by region, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. C) Probability of recall as a function of HFA (z-scored) in the hippocampus, binned by valence and split by longitudinal axis position, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. Related to Fig. 2.

Extended Data Fig. 6 Hippocampal and amygdalar spectrogram depicting difference in power between remembered and forgotten trials across all electrodes.

A) Median z-scored spectrogram for hippocampal (left) and amygdalar (right) electrodes showing difference between remembered and forgotten words. Warm colors indicate an increase in power during encoding of remembered words, while cool colors indicate a decrease in power. B) Median HFA difference between remembered and forgotten words across all electrodes in the hippocampus (left) and amygdala (right), split by binned arousal rating. Horizontal bars indicate significant clusters of time-points when comparing remembered and forgotten high arousal words (t(1)’s > 2.5, p’s < 0.05, Cohen’s d’s > 0.1, two-sided cluster-based permutation test). Related to Fig. 2.

Extended Data Fig. 7 Location of stimulation electrodes.

Hippocampal electrodes (purple), amygdala electrodes (orange) and nonhippocampal MTL electrodes (teal) where direct stimulation was applied. Black electrodes were used for recording, only. Related to Fig. 3.

Extended Data Fig. 8 Stimulation does not impair early-position words more than late-position words.

Probability of recall as a function of serial position for both the stimulation off (black) and on (yellow) conditions, in participants who underwent hippocampal stimulation, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. Related to Fig. 3.

Extended Data Fig. 9 Hippocampal stimulation selectively decreases HFA.

Change in hippocampal power (post–pre) when stimulation was applied to the hippocampus (left, averaged across n=16 electrodes) and nearby control regions (right, averaged across n=8 electrodes), compared between stimulation (dark) and no stimulation (light) conditions. Frequency bands are defined as follows: theta (2–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and HFA (30–128 Hz). Error bars denote standard deviation. Related to Fig. 3.

Extended Data Fig. 10 Depression reverses HFA-memory relationship for negative words.

A) Probability of recall as a function of valence for both depressed and non-depressed participants, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. B) Probability of recall as a function of HFA (z-scored), binned by valence and depression level, fit by a logistic regression model (solid line). Shading indicates standard deviation of bootstrapped model fits. Related to Fig. 4.

Supplementary information

Supplementary Information

Supplementary Tables 1–12 and Figs. 1–3.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, S.E., Mohan, U.R., Stein, J.M. et al. Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding. Nat Hum Behav 7, 754–764 (2023). https://doi.org/10.1038/s41562-022-01502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01502-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing