Abstract
Flexibility in the design, analysis and interpretation of scientific studies creates a multiplicity of possible research outcomes. Scientists are granted considerable latitude to selectively use and report the hypotheses, variables and analyses that create the most positive, coherent and attractive story while suppressing those that are negative or inconvenient. This creates a risk of bias that can lead to scientists fooling themselves and fooling others. Preregistration involves declaring a research plan (for example, hypotheses, design and statistical analyses) in a public registry before the research outcomes are known. Preregistration (1) reduces the risk of bias by encouraging outcome-independent decision-making and (2) increases transparency, enabling others to assess the risk of bias and calibrate their confidence in research outcomes. In this Perspective, we briefly review the historical evolution of preregistration in medicine, psychology and other domains, clarify its pragmatic functions, discuss relevant meta-research, and provide recommendations for scientists and journal editors.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bacon, F. Novum Organum (P. F. Collier, 1620).
Gilovich, T. How We Know What Isn’t So: The Fallibility of Human Reason in Everyday Life (Free Press, 1991).
Laplace, P. S. Essai Philosophique sur les Probabilités (Springer, 1825).
Nosek, B. A., Spies, J. R. & Motyl, M. Scientific utopia: II. restructuring incentives and practices to promote truth over publishability. Perspect. Psychol. Sci. 7, 615–631 (2012).
Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).
Young, N. S., Ioannidis, J. P. A. & Al-Ubaydli, O. Why current publication practices may distort science. PLoS Med. 5, e201 (2008).
Glasziou, P. et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276 (2014).
Nissen, S. B., Magidson, T., Gross, K. & Bergstrom, C. T. Publication bias and the canonization of false facts. eLife 5, e21451 (2016).
IJzerman, H. et al. Use caution when applying behavioural science to policy. Nat. Hum. Behav. 4, 1092–1094 (2020).
Prasad, V. K. & Cifu, A. S. Ending Medical Reversal: Improving Outcomes, Saving Lives (John Hopkins Univ. Press, 2019).
Christensen, G. & Miguel, E. Transparency, reproducibility, and the credibility of economics research. J. Econ. Lit. 56, 920–980 (2018).
Pashler, H. & Wagenmakers, E.-J. Editors’ introduction to the special section on replicability in psychological science: a crisis of confidence? Perspect. Psychol. Sci. 7, 528–530 (2012).
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).
Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, e124 (2005).
Feynman, R. P. Cargo Cult Science (California Institute of Technology, 1974).
Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J. & Kievit, R. A. An agenda for purely confirmatory research. Perspect. Psychol. Sci. 7, 632–638 (2012).
Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).
de Groot, A. D. The meaning of “significance” for different types of research. Acta Psychol. 148, 188–194 (2014).
Keynes, J. M. Treatise on Probability (Macmillan & Co, 1921).
Mill, J. S. A System of Logic (George Routledge & Sons, 1843).
Peirce, C. S. in Studies in Logic (ed. Peirce, C. S.) 126–281 (Little, Brown, 1883).
Bakan, D. The test of significance in psychological research. Psychol. Bull. 66, 423–437 (1966).
Walster, G. W. & Cleary, T. A. A proposal for a new editorial policy in the social sciences. Am. Stat. 24, 16–19 (1970).
Wiseman, R., Watt, C. & Kornbrot, D. Registered reports: an early example and analysis. PeerJ 7, e6232 (2019).
Spellman, B. A. A short (personal) future history of Revolution 2.0. Perspect. Psychol. Sci. 10, 886–899 (2015).
Simes, R. J. Publication bias: the case for an international registry of clinical trials. J. Clin. Oncol. 4, 1529–1541 (1986).
Serghiou, S., Axford, C. & Ioannidis, J. P. A. Lessons learnt from registration of biomedical research. Nat. Hum. Behav., https://doi.org/10.1038/s41562-022-01499-0 (2023).
De Angelis, C. et al. Clinical trial registration: a statement from the International Committee of Medical Journal Editors. N. Engl. J. Med. 351, 1250–1251 (2004).
Dickersin, K. & Rennie, D. The evolution of trial registries and their use to assess the clinical trial enterprise. JAMA 307, 1861–1864 (2012).
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310, 2191 (2013).
Chan, A.-W., Hróbjartsson, A., Haahr, M. T., Gøtzsche, P. C. & Altman, D. G. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 291, 2457–2465 (2004).
Dwan, K. et al. Evidence for the selective reporting of analyses and discrepancies in clinical trials: a systematic review of cohort studies of clinical trials. PLoS Med. 11, e1001666 (2014).
Zarin, D. A., Tse, T., Williams, R. J. & Rajakannan, T. Update on trial registration 11 years after the ICMJE policy was established. N. Engl. J. Med. 376, 383–391 (2017).
Greenberg, L., Jairath, V., Pearse, R. & Kahan, B. C. Pre-specification of statistical analysis approaches in published clinical trial protocols was inadequate. J. Clin. Epidemiol. 101, 53–60 (2018).
Chan, A.-W., Hróbjartsson, A., Jørgensen, K. J., Gøtzsche, P. C. & Altman, D. G. Discrepancies in sample size calculations and data analyses reported in randomised trials: comparison of publications with protocols. Brit. Med. J. 337, a2299 (2008).
Humphreys, M., Sierra, R. Sdela & van der Windt, P. Fishing, commitment, and communication: a proposal for comprehensive nonbinding research registration. Polit. Anal. 21, 1–20 (2013).
Dal-Ré, R. et al. Making prospective registration of observational research a reality. Sci. Transl. Med. 6, 1–4 (2014).
Lash, T. L. Preregistration of study protocols is unlikely to improve the yield from our science, but other strategies might. Epidemiology 21, 612–613 (2010).
Boccia, S. et al. Registration practices for observational studies on ClinicalTrials.gov indicated low adherence. J. Clin. Epidemiol. 70, 176–182 (2016).
Weber, W. E. J., Merino, J. G. & Loder, E. Trial registration 10 years on. Brit. Med. J. 351, H3572 (2015).
Nosek, B. A. et al. Preregistration is hard, and worthwhile. Trends Cogn. Sci. 23, 815–818 (2019).
Szollosi, A. et al. Is preregistration worthwhile? Trends Cogn. Sci. 24, 94–95 (2020).
Devezer, B., Navarro, D. J., Vandekerckhove, J. & Buzbas, E. O. The case for formal methodology in scientific reform. R. Soc. Open Sci. 8, 200805 (2020).
Rubin, M. Does preregistration improve the credibility of research findings? Quant. Methods Psychol. 16, 15 (2020).
Simmons, J. P., Nelson, L. D. & Simonsohn, U. Pre-registration: why and how. J. Consum. Psychol. 31, 151–162 (2021).
Monogan, J. E. Research preregistration in political science: the case, counterarguments, and a response to critiques. PS Polit. Sci. Polit. 48, 425–429 (2015).
Olken, B. A. Promises and perils of pre-analysis plans. J. Econ. Perspect. 29, 61–80 (2015).
Casey, K., Glennerster, R. & Miguel, E. Reshaping institutions: evidence on aid impacts using a preanalysis plan*. Q. J. Econ. 127, 1755–1812 (2012).
Coffman, L. C. & Niederle, M. Pre-analysis plans have limited upside, especially where replications are feasible. J. Econ. Perspect. 29, 81–98 (2015).
Shiffrin, R. M. Commentary on “robust modeling in cognitive science: misunderstanding the goal of modeling”. Comput. Brain Behav. 2, 176–178 (2019).
Crüwell, S. & Evans, N. J. Preregistration in diverse contexts: a preregistration template for the application of cognitive models. R. Soc. Open Sci. 8, 210155 (2021).
Paul, M., Govaart, G. H. & Schettino, A. Making ERP research more transparent: guidelines for preregistration. Int. J. Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2021.02.016 (2021).
van den Akker, O. et al. Preregistration of secondary data analysis: a template and tutorial. https://psyarxiv.com/hvfmr/ (2019).
Haven, T. L. & Grootel, D. L. V. Preregistering qualitative research. Account. Res. 26, 229–244 (2019).
Ofosu, G. K. & Posner, D. N. Pre-analysis plans: an early stocktaking. Perspect. Polit. https://doi.org/10.1017/S1537592721000931 (2020).
Nosek, B. A. et al. Replicability, robustness, and reproducibility in psychological science. Annu. Rev. Psychol. https://doi.org/10.1146/annurev-psych-020821-114157 (2022).
Christensen, G. et al. Open science practices are on the rise: the state of social science (3s) survey. Preprint at https://doi.org/10.31222/osf.io/5rksu (2019).
Wallach, J. D., Boyack, K. W. & Ioannidis, J. P. A. Reproducible research practices, transparency, and open access data in the biomedical literature, 2015–2017. PLoS Biol. 16, e2006930 (2018).
Hardwicke, T. E. et al. Estimating the prevalence of transparency and reproducibility-related research practices in psychology (2014–2017). Perspect. Psychol. Sci. https://doi.org/10.1177/1745691620979806 (2021).
Hardwicke, T. E. et al. An empirical assessment of transparency and reproducibility-related research practices in the social sciences (2014–2017). R. Soc. Open Sci. 7, 190806 (2020).
Chambers, C. D. & Tzavella, L. The past, present and future of Registered Reports. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01193-7 (2021).
Montoya, A. K., Krenzer, W. L. D. & Fossum, J. L. Opening the door to registered reports: census of journals publishing registered reports (2013–2020). Collabra Psychol. 7, 24404 (2021).
Hardwicke, T. E. & Ioannidis, J. P. A. Mapping the universe of registered reports. Nat. Hum. Behav. 2, 793–796 (2018).
Leamer, E. E. Let’s take the con out of econometrics. Am. Econ. Rev. 73, 31–43 (1983).
Page, M. J., McKenzie, J. E. & Forbes, A. Many scenarios exist for selective inclusion and reporting of results in randomized trials and systematic reviews. J. Clin. Epidemiol. 66, 524–537 (2013).
Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).
Oberauer, K. & Lewandowsky, S. Addressing the theory crisis in psychology. Psychon. Bull. Rev. 26, 1596–1618 (2019).
Szollosi, A. & Donkin, C. Arrested theory development: the misguided distinction between exploratory and confirmatory research. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691620966796 (2021).
Forstmeier, W., Wagenmakers, E.-J. & Parker, T. H. Detecting and avoiding likely false-positive findings – a practical guide. Biol. Rev. 92, 1941–1968 (2017).
Gelman, A. & Loken, E. The statistical crisis in science. Am. Sci. 102, 460–465 (2014).
Duhem, P. The Aim and Structure of Physical Theory (Princeton Univ. Press, 1954).
Gigerenzer, G. Surrogates for theories. Theory Psychol. 8, 195–204 (1998).
Meehl, P. E. Theory-testing in psychology and physics: a methodological paradox. Phil. Sci. 34, 103–115 (1967).
Muthukrishna, M. & Henrich, J. A problem in theory. Nat. Hum. Behav. 3, 221–229 (2019).
Sackett, D. L. Bias in analytic research. J. Chronic Dis. 32, 51–63 (1979).
Higgins, J. P. T. & Green, S. (eds) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (The Cochrane Collaboration, 2011).
DeCoster, J., Sparks, E. A., Sparks, J. C., Sparks, G. G. & Sparks, C. W. Opportunistic biases: their origins, effects, and an integrated solution. Am. Psychol. 70, 499–514 (2015).
Greenland, S. Analysis goals, error‐cost sensitivity, and analysis hacking: essential considerations in hypothesis testing and multiple comparisons. Paediatr. Perinat. Epidemiol. 35, 8–23 (2021).
Scott, J. G. & Berger, J. O. Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Stat. 38, 2587–2619 (2010).
Dienes, Z. Bayesian versus orthodox statistics: which side are you on? Perspect. Psychol. Sci. 6, 274–290 (2011).
Howson, C. & Urbach, P. Scientific Reasoning: The Bayesian Approach (Open Court, 2006).
Dienes, Z. How Bayes factors change scientific practice. J. Math. Psychol. 72, 78–89 (2016).
Wasserstein, R. L. & Lazar, N. A. The ASA’s statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).
Armitage, P., McPherson, C. K. & Rowe, B. C. Repeated significance tests on accumulating data. J. R. Stat. Soc. A 132, 235–244 (1969).
Stefan, A. & Schönbrodt, F. Big little lies: a compendium and simulation of p-hacking strategies. Preprint at https://doi.org/10.31234/osf.io/xy2dk (2022).
Austin, P. C., Mamdani, M. M., Juurlink, D. N. & Hux, J. E. Testing multiple statistical hypotheses resulted in spurious associations: a study of astrological signs and health. J. Clin. Epidemiol. 59, 964–969 (2006).
Bennett, C., Miller, M. & Wolford, G. Neural correlates of interspecies perspective taking in the post-mortem Atlantic salmon: an argument for multiple comparisons correction. NeuroImage 47, S125 (2009).
Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing transparency through a multiverse analysis. Perspect. Psychol. Sci. 11, 702–712 (2016).
Patel, C. J., Burford, B. & Ioannidis, J. P. A. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J. Clin. Epidemiol. 68, 1046–1058 (2015).
Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. https://doi.org/10.1038/s41562-020-0912-z (2020).
Botvinik-Nezer, R. et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582, 84–88 (2020).
Silberzahn, R. et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/2515245917747646 (2018).
van Dongen, N. N. N. et al. Multiple perspectives on inference for two simple statistical scenarios. Am. Stat. 73, 328–339 (2019).
Klau, S., Hoffmann, S., Patel, C. J., Ioannidis, J. P. A. & Boulesteix, A.-L. Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework. Int. J. Epidemiol. 50, 266–278 (2021).
Fanelli, D. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE 4, e5738 (2009).
Fraser, H., Parker, T., Nakagawa, S., Barnett, A. & Fidler, F. Questionable research practices in ecology and evolution. PLoS ONE 13, e0200303 (2018).
John, L. K., Loewenstein, G. & Prelec, D. Measuring the prevalence of questionable research practices with incentives for truth telling. Psychol. Sci. 23, 524–532 (2012).
Wang, M. Q., Yan, A. F. & Katz, R. V. Researcher requests for inappropriate analysis and reporting: a U.S. survey of consulting biostatisticians. Ann. Intern. Med. 169, 554–558 (2018).
Chavalarias, D., Wallach, J. D., Li, A. H. T. & Ioannidis, J. P. A. Evolution of reporting P values in the biomedical literature, 1990–2015. JAMA 315, 1141–1148 (2016).
Fanelli, D. Negative results are disappearing from most disciplines and countries. Scientometrics 90, 891–904 (2012).
Sterling, T. D. Publication decisions and their possible effects on inferences drawn from tests of significance–or vice versa. J. Am. Stat. Assoc. 54, 30–34 (1959).
Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).
Szucs, D. & Ioannidis, J. P. A. Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol. 15, e2000797 (2017).
Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).
Camerer, C. F. et al. Evaluating replicability of laboratory experiments in economics. Science 351, 1433–1436 (2016).
Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac416 (2015).
Williamson, P. R., Gamble, C., Altman, D. G. & Hutton, J. L. Outcome selection bias in meta-analysis. Stat. Methods Med. Res. https://doi.org/10.1191/0962280205sm415oa (2016).
Carter, E. C., Schönbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods. Adv. Methods Pract. Psychol. Sci. 2, 115–144 (2019).
Sterne, J. A. C. et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Brit. Med. J. 343, d4002 (2011).
O’Boyle, E. H., Banks, G. C. & Gonzalez-Mulé, E. The chrysalis effect: how ugly initial results metamorphosize into beautiful articles. J. Manage. 43, 376–399 (2017).
Mazzola, J. J. & Deuling, J. K. Forgetting what we learned as graduate students: HARKing and selective outcome reporting in I–O journal articles. Ind. Organ. Psychol. 6, 279–284 (2013).
Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A. & Rosenthal, R. Selective publication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. 358, 252–260 (2008).
Cooper, H., DeNeve, K. & Charlton, K. Finding the missing science: the fate of studies submitted for review by a human subjects committee. Psychol. Methods 2, 447–452 (1997).
Hahn, S., Williamson, P. R. & Hutton, J. L. Investigation of within-study selective reporting in clinical research: follow-up of applications submitted to a local research ethics committee. J. Eval. Clin. Pract. 8, 353–359 (2002).
Franco, A., Malhotra, N. & Simonovits, G. Underreporting in psychology experiments: evidence from a study registry. Soc. Psychol. Personal. Sci. 7, 8–12 (2016).
Franco, A., Malhotra, N. & Simonovits, G. Publication bias in the social sciences: unlocking the file drawer. Science 345, 1502–1505 (2014).
Becker, J. E., Krumholz, H. M., Ben-Josef, G. & Ross, J. S. Reporting of results in ClinicalTrials.gov and high-impact journals. JAMA 311, 1063–1065 (2014).
Hartung, D. M. et al. Reporting discrepancies between the clinicaltrials.gov results database and peer-reviewed publications. Ann. Intern. Med. 160, 477–483 (2014).
Fife, D. & Rodgers, J. L. Understanding the exploratory/confirmatory data analysis continuum: moving beyond the ‘replication crisis’. Am. Psychol. 77, 453–466 (2022).
Kimmelman, J., Mogil, J. S. & Dirnagl, U. Distinguishing between exploratory and confirmatory preclinical research will improve translation. PLoS Biol. 12, e1001863 (2014).
Sterne, J. A. C. et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Brit. Med. J. 366, l4898 (2019).
Turner, L., Boutron, I., Hróbjartsson, A., Altman, D. G. & Moher, D. The evolution of assessing bias in Cochrane systematic reviews of interventions: celebrating methodological contributions of the Cochrane Collaboration. Syst. Rev. 2, 79 (2013).
Page, M. J., McKenzie, J. E. & Higgins, J. P. T. Tools for assessing risk of reporting biases in studies and syntheses of studies: a systematic review. BMJ Open 8, e019703 (2018).
MacEachern, S. N. & Zandt, T. V. Preregistration of modeling exercises may not be useful. Comput. Brain Behav. 2, 179–182 (2019).
Tukey, J. W. We need both exploratory and confirmatory. Am. Stat. 34, 23–25 (1980).
Wagenmakers, E.-J., Dutilh, G. & Sarafoglou, A. The creativity-verification cycle in psychological science: new methods to combat old idols. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691618771357 (2018).
Reichenbach, H. Experience and Prediction. An Analysis of the Foundations and the Structure of Knowledge (Univ. of Chicago Press, 1938).
Kerr, N. L. HARKing: hypothesizing after the results are known. Personal. Soc. Psychol. Rev. 2, 196–217 (1998).
Scheel, A. M., Tiokhin, L., Isager, P. M. & Lakens, D. Why hypothesis testers should spend less time testing hypotheses. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691620966795 (2020).
Toth, A. A. et al. Study preregistration: an evaluation of a method for transparent reporting. J. Bus. Psychol. https://doi.org/10.1007/s10869-020-09695-3 (2020).
Sarafoglou, A., Kovacs, M., Bakos, B. E., Wagenmakers, E.-J. & Aczel, B. A survey on how preregistration affects the research workflow: better science but more work. R. Soc. Open Sci. 9, 211997 (2021).
Bosnjak, M. et al. A template for preregistration of quantitative research in psychology: report of the joint psychological societies preregistration task force. Am. Psychol. 77, 602–615 (2022).
Nosek, B. A. & Lakens, D. Registered reports: a method to increase the credibility of published results. Soc. Psychol. 45, 137–141 (2014).
Hardwicke, T. E. et al. Calibrating the scientific ecosystem through meta-research. Annu. Rev. Stat. Appl. 7, 11–37 (2020).
Lilburn, S. D., Little, D. R., Osth, A. F. & Smith, P. L. Cultural problems cannot be solved with technical solutions alone. Comput. Brain Behav. 2, 170–175 (2019).
Navarro, D. Paths in strange spaces: a comment on preregistration. Preprint at https://doi.org/10.31234/osf.io/wxn58 (2020).
Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).
Mathieu, S., Chan, A.-W. & Ravaud, P. Use of trial register information during the peer review process. PLoS ONE 8, e59910 (2013).
TARG Meta-Research Group & Collaborators. Discrepancy review: a feasibility study of a novel peer review intervention to reduce undisclosed discrepancies between registrations and publications. R. Soc. Open. Sci. 9, 220142 (2022).
Brainerd, C. J. & Reyna, V. F. Replication, registration, and scientific creativity. Perspect. Psychol. Sci. https://doi.org/10.1177/1745691617739421 (2018).
Appelbaum, M. et al. Journal article reporting standards for quantitative research in psychology: the APA Publications and Communications Board task force report. Am. Psychol. 73, 3–25 (2018).
Simera, I., Moher, D., Hoey, J., Schulz, K. F. & Altman, D. G. A catalogue of reporting guidelines for health research. Eur. J. Clin. Invest 40, 35–53 (2010).
Haven, T. L. et al. Preregistering qualitative research: a Delphi study. Int. J. Qual. Methods https://doi.org/10.1177/1609406920976417 (2020).
Ioannidis, J. P. A. Handling the fragile vase of scientific practices. Addiction 110, 9–10 (2015).
Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D. & Etchells, P. J. Instead of “playing the game” it is time to change the rules: registered reports at AIMS Neuroscience and beyond. AIMS Neurosci. 1, 4–17 (2014).
Veldkamp, C. L. S., Hartgerink, C. H. J., van Assen, M. A. L. M. & Wicherts, J. M. Who believes in the storybook image of the scientist? Account. Res. 24, 127–151 (2017).
Barber, T. X. Pitfalls in Human Research: Ten Pivotal Points (Pergamon Press, 1976).
Bakker, M., van Dijk, A. & Wicherts, J. M. The rules of the game called psychological science. Perspect. Psychol. Sci. 7, 543–554 (2012).
Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).
Giner-Sorolla, R. Science or art? How aesthetic standards grease the way through the publication bottleneck but undermine science. Perspect. Psychol. Sci. 7, 562–571 (2012).
Brewer, W. F. & Chinn, C. A. Scientists’ responses to anomalous data: evidence from psychology, history, and philosophy of science. PSA Proc. Bienn. Meet. Phil. Sci. Assoc. 1994, 304–313 (1994).
Edwards, K. & Smith, E. E. A disconfirmation bias in the evaluation of arguments. J. Personal. Soc. Psychol. 71, 5–24 (1996).
Mynatt, C. R., Doherty, M. E. & Tweney, R. D. Confirmation bias in a simulated research environment: an experimental study of scientific inference. Q. J. Exp. Psychol. https://doi.org/10.1080/00335557743000053 (1977).
Hoekstra, R. & Vazire, S. Aspiring to greater intellectual humility in science. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01203-8 (2021).
Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).
Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108, 480–498 (1990).
Fischhoff, B. Hindsight does not equal foresight: the effect of outcome knowledge on judgment under uncertainty. J. Exp. Psychol. Hum. Percept. Perform. 1, 288–299 (1975).
Slovic, P. & Fischhoff, B. On the psychology of experimental surprises. J. Exp. Psychol. Hum. Percept. Perform. 3, 544–551 (1977).
Gilovich, T., Vallone, R. & Tversky, A. The hot hand in basketball: on the misperception of random sequences. Cogn. Psychol. 17, 295–314 (1985).
Pronin, E. Perception and misperception of bias in human judgment. Trends Cogn. Sci. 11, 37–43 (2007).
Srivastava, S. Sound inference in complicated research: a multi-strategy approach. Preprint at https://doi.org/10.31234/osf.io/bwr48 (2018).
Baldwin, J. R., Pingault, J.-B., Schoeler, T., Sallis, H. M. & Munafò, M. R. Protecting against researcher bias in secondary data analysis: challenges and potential solutions. Eur. J. Epidemiol. https://doi.org/10.1007/s10654-021-00839-0 (2022).
Thabane, L. et al. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how. BMC Med. Res. Methodol. 13, 92 (2013).
Young, C. Model uncertainty and the crisis in science. Socius https://doi.org/10.1177/2378023117737206 (2018).
Haaf, J. M., Hoogeveen, S., Berkhout, S., Gronau, Q. F. & Wagenmakers, E.-J. A Bayesian multiverse analysis of Many Labs 4: quantifying the evidence against mortality salience. Preprint at https://doi.org/10.31234/osf.io/cb9er (2020).
Orben, A. & Przybylski, A. K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 3, 173–182 (2019).
Giudice, M. D. & Gangestad, S. A traveler’s guide to the multiverse: promises, pitfalls, and a framework for the evaluation of analytic decisions. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/2515245920954925 (2021).
Klein, J. R. & Roodman, A. Blind analysis in nuclear and particle physics. Annu. Rev. Nucl. Part. Sci. 55, 141–163 (2005).
Dutilh, G., Sarafoglou, A. & Wagenmakers, E.-J. Flexible yet fair: blinding analyses in experimental psychology. Synthese https://doi.org/10.1007/s11229-019-02456-7 (2019).
MacCoun, R. & Perlmutter, S. Blind analysis: hide results to seek the truth. Nature 526, 187–189 (2015).
Schorfheide, F. & Wolpin, K. I. On the use of holdout samples for model selection. Am. Econ. Rev. 102, 477–481 (2012).
Lin, W. & Green, D. P. Standard operating procedures: a safety net for pre-analysis plans. Polit. Sci. Polit. 49, 495–500 (2016).
McIntosh, R. D. Exploratory reports: a new article type for Cortex. Cortex 96, A1–A4 (2017).
Button, K. S., Bal, L., Clark, A. & Shipley, T. Preventing the ends from justifying the means: withholding results to address publication bias in peer-review. BMC Psychol. 4, 1–7 (2016).
DeVito, N. J., Bacon, S. & Goldacre, B. Compliance with legal requirement to report clinical trial results on ClinicalTrials.gov: a cohort study. Lancet 395, 361–369 (2020).
Wieschowski, S. et al. Result dissemination from clinical trials conducted at German university medical centers was delayed and incomplete. J. Clin. Epidemiol. 115, 37–45 (2019).
André, Q. Outlier exclusion procedures must be blind to the researcher’s hypothesis. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0001069 (2021).
Goldacre, B. et al. COMPare: a prospective cohort study correcting and monitoring 58 misreported trials in real time. Trials 20, 118 (2019).
Cramer, A. O. J. et al. Hidden multiplicity in exploratory multiway ANOVA: prevalence and remedies. Psychon. Bull. Rev. 23, 640–647 (2016).
White, T. K., Reiter, J. P. & Petrin, A. Imputation in U.S. manufacturing data and its implications for productivity dispersion. Rev. Econ. Stat. 100, 502–509 (2018).
Wallach, J. D. et al. Evaluation of evidence of statistical support and corroboration of subgroup claims in randomized clinical trials. JAMA Intern. Med. 177, 554–560 (2017).
Page, M. J. & Higgins, J. P. T. Rethinking the assessment of risk of bias due to selective reporting: a cross-sectional study. Syst. Rev. 5, 108 (2016).
Babbage, C. Reflections on the Decline of Science in England, and on Some of its Causes (Franklin Classics, 1830).
Goldacre, B. Bad Science (Fourth Estate, 2008).
Barnes, E. C. The Paradox of Predictivism (Cambridge Univ. Press, 2008).
Douglas, H. & Magnus, P. D. State of the field: why novel prediction matters. Stud. Hist. Phil. Sci. A 44, 580–589 (2013).
Howson, C. in Scientific Theories (ed. Savage, C. W.) 224–244 (Univ. Minnesota Press, 1990).
Rubin, M. When does HARKing hurt? Identifying when different types of undisclosed post hoc hypothesizing harm scientific progress. Rev. Gen. Psychol. 21, 308–320 (2017).
Hitchcock, C. & Sober, E. Prediction versus accommodation and the risk of overfitting. Br. J. Phil. Sci. 55, 1–34 (2004).
Lipton, P. Testing hypotheses: prediction and prejudice. Science 307, 219–221 (2005).
Lakens, D. The value of preregistration for psychological science: a conceptual analysis. Jpn Psychol. Rev. 62, 272–280 (2019).
Mayo, D. G. Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars (Cambridge Univ. Press, 2018).
Vanpaemel, W. The really risky registered modeling report: incentivizing strong tests and HONEST modeling in cognitive science. Comput. Brain Behav. 2, 218–222 (2019).
Popper, K. Conjectures and Refutations: The Growth of Scientific Knowledge (Harper & Row, 1963).
Lakatos, I. in Criticism and the Growth of Knowledge (eds Musgrave, A. & Lakatos, I.) 91–196 (Cambridge Univ. Press, 1970).
Maher, P. Prediction, accommodation, and the logic of discovery. PSA Proc. Bienn. Meet. Phil. Sci. Assoc. 1988, 273–285 (1988).
Worrall, J. Prediction and accommodation revisited. Stud. Hist. Phil. Sci. A 45, 54–61 (2014).
Zou, C. X. et al. Registration, results reporting, and publication bias of clinical trials supporting FDA approval of neuropsychiatric drugs before and after FDAAA: a retrospective cohort study. Trials 19, 581 (2018).
Phillips, A. T. et al. Association of the FDA Amendment Act with trial registration, publication, and outcome reporting. Trials 18, 333 (2017).
Dal-Ré, R., Ross, J. S. & Marušić, A. Compliance with prospective trial registration guidance remained low in high-impact journals and has implications for primary end point reporting. J. Clin. Epidemiol. 75, 100–107 (2016).
Abrams, E., Libgober, J. & List, J. A. Research registries: taking stock and looking forward. https://uploads.strikinglycdn.com/files/840dd740-4a8d-4f09-8dbd-e6498f5661c2/January2021Version.pdf (2021).
Bakker, M. et al. Ensuring the quality and specificity of preregistrations. PLoS Biol. 18, e3000937 (2020).
Claesen, A., Gomes, S., Tuerlinckx, F. & Vanpaemel, W. Comparing dream to reality: an assessment of adherence of the first generation of preregistered studies. R. Soc. Open Sci. 8, 211037 (2019).
TARG Meta-Research Group.et al. Estimating the prevalence of discrepancies between study registrations and publications: a systematic review and meta-analyses. Preprint at https://doi.org/10.1101/2021.07.07.21259868 (2021).
Tan, A. C. et al. Prevalence of trial registration varies by study characteristics and risk of bias. J. Clin. Epidemiol. 113, 64–74 (2019).
Allen, C. & Mehler, D. M. A. Open science challenges, benefits and tips in early career and beyond. PLoS Biol. 17, e3000246 (2019).
Papageorgiou, S. N., Xavier, G. M., Cobourne, M. T. & Eliades, T. Registered trials report less beneficial treatment effects than unregistered ones: a meta-epidemiological study in orthodontics. J. Clin. Epidemiol. 100, 44–52 (2018).
Kaplan, R. M. & Irvin, V. L. Likelihood of null effects of large NHLBI clinical trials has increased over time. PLoS ONE 10, e0132382 (2015).
Scheel, A. M., Schijen, M. & Lakens, D. An excess of positive results: comparing the standard psychology literature with registered reports. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/25152459211007467 (2020).
Odutayo, A. et al. Association between trial registration and positive study findings: cross sectional study (Epidemiological Study of Randomized Trials—ESORT). Brit. Med. J. 356, j917 (2017).
Acknowledgements
T.E.H. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 841188.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Ana Marusic, Ulf Toelch, Charles Ebersole and Timothy Errington for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Tutorials, templates, case studies and registries.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hardwicke, T.E., Wagenmakers, EJ. Reducing bias, increasing transparency and calibrating confidence with preregistration. Nat Hum Behav 7, 15–26 (2023). https://doi.org/10.1038/s41562-022-01497-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-022-01497-2
This article is cited by
-
Addressing researcher degrees of freedom through minP adjustment
BMC Medical Research Methodology (2024)
-
Supporting study registration to reduce research waste
Nature Ecology & Evolution (2024)
-
Developmental, Behavioural and NDBI Interventions in Autistic Children or at Elevated Likelihood of Autism: A Systematic Review of Neural Outcomes
Review Journal of Autism and Developmental Disorders (2024)
-
Transparency in Cognitive Training Meta-analyses: A Meta-review
Neuropsychology Review (2024)
-
Optimizing the methodology of human sleep and memory research
Nature Reviews Psychology (2023)