Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experiential values are underweighted in decisions involving symbolic options

Abstract

Standard models of decision-making assume each option is associated with subjective value, regardless of whether this value is inferred from experience (experiential) or explicitly instructed probabilistic outcomes (symbolic). In this study, we present results that challenge the assumption of unified representation of experiential and symbolic value. Across nine experiments, we presented participants with hybrid decisions between experiential and symbolic options. Participants’ choices exhibited a pattern consistent with a systematic neglect of the experiential values. This normatively irrational decision strategy held after accounting for alternative explanations, and persisted even when it bore an economic cost. Overall, our results demonstrate that experiential and symbolic values are not symmetrically considered in hybrid decisions, suggesting they recruit different representational systems that may be assigned different priority levels in the decision process. These findings challenge the dominant models commonly used in value-based decision-making research.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Behavioural tasks, hypotheses, option values and experimental protocol.
Fig. 2: Raw behavioural results and inferred option values in Exp. 1–4.
Fig. 3: Raw behavioural results and inferred option values in Exp. 5 and 6.
Fig. 4: Option values and behavioural results in Exp. 6 and 7.
Fig. 5: Hypothetical decision model and reaction time analyses.
Fig. 6: Experiment parameters.
Fig. 7: Structure of choice-based post-LE phase.

Data availability

The data for the analysis are available in the following code repository: https://github.com/bsgarcia/RetrieveAndCompareAnalysis.

Code availability

The analysis was performed using Matlab R2021a. The code is available here: https://github.com/bsgarcia/RetrieveAndCompareAnalysis. The different experiments were conducted on a website programmed in Javascript ES6, HTML 5, CSS 3 (client-side) and PHP 8.1 (server-side). The code for the task is available here: https://github.com/bsgarcia/RetrieveAndCompare. A simple version of the task can be tested here: https://human-rl.scicog.fr/RandCTesting.

References

  1. Von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior (Princeton Univ. Press, 1944).

  2. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  CAS  Google Scholar 

  3. Herrnstein, R. J. Relative and absolute strength of response as a function of frequency of reinforcement. J. Exp. Anal. Behav. 4, 267 (1961).

    Article  CAS  Google Scholar 

  4. Skinner, B. F. Science and Human Behavior (Simon and Schuster, 1965).

  5. Bernoulli, D. Exposition of a new theory on the measurement of risk. Econometrica 22, 23–36 (1738).

    Article  Google Scholar 

  6. Wakker, P. & Tversky, A. An axiomatization of cumulative prospect theory. J. Risk Uncertain. 7, 147–175 (1993).

    Article  Google Scholar 

  7. Kahneman, D. & Tversky, A. Choices, values, and frames. American psychologist 39, 341 (1984).

    Article  Google Scholar 

  8. De Martino, B., Kumaran, D., Seymour, B. & Dolan, R. J. Frames, biases, and rational decision-making in the human brain. Science 313, 684–687 (2006).

    Article  Google Scholar 

  9. Glimcher, P. W. Foundations of Neuroeconomic Analysis (OUP USA, 2011).

  10. Camerer, C. F. A review essay about foundations of neuroeconomic analysis by Paul Glimcher. J. Econ. Lit. 51, 1155–1182 (2013).

    Article  Google Scholar 

  11. Vlaev, I., Chater, N., Stewart, N. & Brown, G. D. A. Does the brain calculate value? Trend. Cogn. Sci. 15, 546–554 (2011).

    Article  Google Scholar 

  12. Stewart, N. EPS Prize Lecture: Decision by sampling: the role of the decision environment in risky choice. Q. J. Exp. Psychol. 62, 1041–1062 (2009).

    Article  Google Scholar 

  13. Erev, I., Ert, E., Plonsky, O., Cohen, D. & Cohen, O. From anomalies to forecasts: toward a descriptive model of decisions under risk, under ambiguity, and from experience. Psychol. Rev. 124, 369 (2017).

    Article  Google Scholar 

  14. Pessiglione, M. & Daunizeau, J. Bridging across functional models: the OFC as a value-making neural network. Behav. Neurosci. 135, 277 (2021).

    Article  Google Scholar 

  15. Glimcher, P. W. Efficiently irrational: deciphering the riddle of human choice. Trend. Cogn. Sci. https://doi.org/10.1016/j.tics.2022.04.007 (2022).

    Article  Google Scholar 

  16. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).

    Article  Google Scholar 

  17. Fouragnan, E., Retzler, C. & Philiastides, M. G. Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum. Brain Mapp. 39, 2887–2906 (2018).

    Article  Google Scholar 

  18. Hertwig, R. & Erev, I. The description–experience gap in risky choice. Trend. Cogn. Sci. 13, 517–523 (2009).

    Article  Google Scholar 

  19. Madan, C. R., Ludvig, E. A. & Spetch, M. L. The role of memory in distinguishing risky decisions from experience and description. Q. J. Exp. Psychol. 70, 2048–2059 (2017).

    Article  Google Scholar 

  20. Garcia, B., Cerrotti, F. & Palminteri, S. The description–experience gap: a challenge for the neuroeconomics of decision-making under uncertainty. Philos. Trans. R. Soc. B. 376, 20190665 (2021).

    Article  Google Scholar 

  21. Kellen, D., Pachur, T. & Hertwig, R. How (in)variant are subjective representations of described and experienced risk and rewards? Cognition 157, 126–138 (2016).

    Article  Google Scholar 

  22. Erev, I. et al. A choice prediction competition: choices from experience and from description. J. Behav. Decis. Mak. 23, 15–47 (2010).

    Article  Google Scholar 

  23. FitzGerald, T. H. B., Seymour, B., Bach, D. R. & Dolan, R. J. Differentiable neural substrates for learned and described value and risk. Curr. Biol. 20, 1823–1829 (2010).

    Article  CAS  Google Scholar 

  24. Heilbronner, S. R. & Hayden, B. Y. The description-experience gap in risky choice in nonhuman primates. Psychon. Bull. Rev. 23, 593–600 (2016).

    Article  Google Scholar 

  25. Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A.H. Black & W.F. Prokasy (eds.), Classical conditioning II: current research and theory (pp. 64-99). New York: Appleton-Century-Crofts.

  26. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  Google Scholar 

  27. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  28. Collins, A. G. E. The tortoise and the hare: interactions between reinforcement learning and working memory. J. Cogn. Neurosci. 30, 1422–1432 (2018).

    Article  Google Scholar 

  29. Palminteri, S., Khamassi, M., Joffily, M. & Coricelli, G. Contextual modulation of value signals in reward and punishment learning. Nat. Commun. 6, 1–14 (2015).

    Article  Google Scholar 

  30. Bavard, S., Rustichini, A. & Palminteri, S. Two sides of the same coin: beneficial and detrimental consequences of range adaptation in human reinforcement learning. Sci. Adv. 7, eabe0340 (2021).

    Article  Google Scholar 

  31. Becker, G. M., DeGroot, M. H. & Marschak, J. Measuring utility by a single-response sequential method. Behav. Sci. 9, 226–232 (1964).

    Article  CAS  Google Scholar 

  32. Rieskamp, J. & Otto, P. E. SSL: a theory of how people learn to select strategies. J. Exp. Psychol. Gen. 135, 207–236 (2006).

    Article  Google Scholar 

  33. Savage, L. J. The Foundations of Statistics (Courier Corporation, 1972).

  34. Lipman, B. L. Information processing and bounded rationality: a survey. Can. J. Econ. Rev. Can. Econ. 28, 42–67 (1995).

    Article  Google Scholar 

  35. Chase, V. M., Hertwig, R. & Gigerenzer, G. Visions of rationality. Trends Cogn. Sci. 2, 206–214 (1998).

    Article  CAS  Google Scholar 

  36. Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

    Article  Google Scholar 

  37. Maćkowiak, Bartosz and Matějka, Filip and Wiederholt, Mirko, Rational Inattention: A Review (June 1, 2021). ECB Working Paper No. 2021/2570. https://doi.org/10.2139/ssrn.3871534

  38. Simon, H. A. Theories of bounded rationality. Decis. Organ. 1, 161–176 (1972).

    Google Scholar 

  39. Simon, H. A. & Newell, A. Human problem solving: the state of the theory in 1970. Am. Psychol. 26, 145 (1971).

    Article  Google Scholar 

  40. Gigerenzer, G. E., Hertwig, R. E. & Pachur, T. E. Heuristics: The Foundations of Adaptive Behavior. (Oxford Univ. Press, 2011).

  41. Simon, H. A. Administrative Behavior (Simon and Schuster, 2013).

  42. R. Morgenstern, M. Heldmann and B. Vogt, "Portfolio Choice vs. Single Choice: Neural Differences in Cognitive Control," 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), 2015, pp. 415-420, https://doi.org/10.1109/SmartCity.2015.106

  43. Ellsberg, D. Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961).

    Article  Google Scholar 

  44. Frisch, D. & Baron, J. Ambiguity and rationality. J. Behav. Decis. Mak. 1, 149–157 (1988).

    Article  Google Scholar 

  45. Camerer, C. & Weber, M. Recent developments in modeling preferences: uncertainty and ambiguity. J. Risk Uncertain. 5, 325–370 (1992).

    Article  Google Scholar 

  46. Krajbich, I., Bartling, B., Hare, T. & Fehr, E. Rethinking fast and slow based on a critique of reaction-time reverse inference. Nat. Commun. 6, 7455 (2015).

    Article  Google Scholar 

  47. Holt, C. A. & Laury, S. K. Risk aversion and incentive effects. Am. Econ. Rev. 92, 1644–1655 (2002).

    Article  Google Scholar 

  48. Tversky, A. & Kahneman, D. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Article  Google Scholar 

  49. Tversky, A. & Kahneman, D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992).

    Article  Google Scholar 

  50. Prelec, D. The probability weighting function. Econometrica 66, 497 (1998).

    Article  Google Scholar 

  51. Quiggin, J. Generalized Expected Utility Theory: The Rank-dependent Model (Springer Science & Business Media, 2012).

  52. Soltani, A. & Koechlin, E. Computational models of adaptive behavior and prefrontal cortex. Neuropsychopharmacology 47, 1–14 (2021).

    Google Scholar 

  53. Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 372 (1998).

    Article  CAS  Google Scholar 

  54. Glöckner, A. & Herbold, A.-K. An eye-tracking study on information processing in risky decisions: evidence for compensatory strategies based on automatic processes. J. Behav. Decis. Mak. 24, 71–98 (2011).

    Article  Google Scholar 

  55. Fiedler, S. & Glöckner, A. The dynamics of decision making in risky choice: an eye-tracking analysis. Front. Psychol. 3, 335 (2012).

    Article  Google Scholar 

  56. Venkatraman, V., Payne, J. W. & Huettel, S. A. An overall probability of winning heuristic for complex risky decisions: choice and eye fixation evidence. Organ. Behav. Hum. Decis. Process. 125, 73–87 (2014).

    Article  Google Scholar 

  57. Aimone, J. A., Ball, S. & King-Casas, B. It’s not what you see but how you see it: using eye-tracking to study the risky decision-making process. J. Neurosci. Psychol. Econ. 9, 137–144 (2016).

    Article  Google Scholar 

  58. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (Computational Neuroscience Series, 2001).

  59. Hayden, B. Y. & Niv, Y. The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). Behav. Neurosci. 135, 192 (2021).

    Article  Google Scholar 

  60. Bennett, D., Niv, Y. & Langdon, A. J. Value-free reinforcement learning: policy optimization as a minimal model of operant behavior. Curr. Opin. Behav. Sci. 41, 114–121 (2021).

    Article  Google Scholar 

  61. Frank, M. J., D’Lauro, C. & Curran, T. Cross-task individual differences in error processing: neural, electrophysiological, and genetic components. Cogn. Affect. Behav. Neurosci. 7, 297–308 (2007).

    Article  Google Scholar 

  62. Collins, A. G. & Frank, M. J. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337 (2014).

    Article  Google Scholar 

  63. Möller, M. & Bogacz, R. Learning the payoffs and costs of actions. PLoS Comput. Biol. 15, e1006285 (2019).

    Article  Google Scholar 

  64. Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    Article  CAS  Google Scholar 

  65. Bar-Gad, I. & Bergman, H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr. Opin. Neurobiol. 11, 689–695 (2001).

    Article  CAS  Google Scholar 

  66. Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic decisions. J. Neurophysiol. 114, 1382–1398 (2015).

    Article  Google Scholar 

  67. Padoa-Schioppa, C. & Conen, K. E. Orbitofrontal cortex: a neural circuit for economic decisions. Neuron. 96, 736–754 (2017).

    Article  CAS  Google Scholar 

  68. Farashahi, S. et al. Metaplasticity as a neural substrate for adaptive learning and choice under uncertainty. Neuron. 94, 401–414.e6 (2017).

    Article  CAS  Google Scholar 

  69. Zilker, V., Hertwig, R. & Pachur, T. Age differences in risk attitude are shaped by option complexity. J. Exp. Psychol. Gen. 149, 1644–1683 (2020).

    Article  Google Scholar 

  70. Dukas, R. Costs of memory: ideas and predictions. J. Theor. Biol. 197, 41–50 (1999).

    Article  CAS  Google Scholar 

  71. Afrouzi, H., Kwon, S. & Ma, Y. A model of costly recall (working paper, Columbia Univ., 2020).

  72. Miller, K. J., Shenhav, A. & Ludvig, E. A. Habits without values. Psychol. Rev. 126, 292 (2019).

    Article  Google Scholar 

  73. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    Article  CAS  Google Scholar 

  74. Sepulveda, P. et al. Visual attention modulates the integration of goal-relevant evidence and not value. eLife 9, e60705 (2020).

    Article  CAS  Google Scholar 

  75. Lichtenstein, S. & Slovic, P. The Construction of Preference (Cambridge Univ. Press, 2006).

  76. Hayden BY, Niv Y. The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). Behav. Neurosci. 135, 192–201 (2021).

    Article  Google Scholar 

  77. Prissé‚ B. & Jorrat, D. Lab vs online experiments: no differences. J. Behav. Exp. Econ. 100, 101910 (2022).

    Article  Google Scholar 

  78. Peer, E., Rothschild, D., Gordon A., Evernden, Z. & Damer, E. Data quality of platforms and panels for online behavioral research. Behav. Res. Methods. https://doi.org/10.3758/s13428-021-01694-3 (2021).

  79. DuCharme, W. M. & Donnell, M. L. Intrasubject comparison of four response modes for “subjective probability” assessment. Organ. Behav. Hum. Perform. 10, 108–117 (1973).

    Article  Google Scholar 

  80. Luce, R. D. The choice axiom after twenty years. J. Math. Psychol. 15, 215–233 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Baillon, J. Daunizeau and S. Deneve for their helpful comments. S.P. is supported by the Agence National de la Recherche (CogFinAgent: ANR-21-CE23-0002-02; RELATIVE: ANR-21-CE37-0008-01; RANGE: ANR-21-CE28-0024-01). The article was prepared in the framework of a research grant of the Departement d’études cognitives (FrontCog ANR-17-EURE-0017). M.L. is supported by an SNSF Ambizione grant (PZ00P3_174127) and an ERC Starting Grant (948671). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and S.P. designed the study. B.G. performed the experiments and curated the data. B.G. and S.P. defined the data analyses that were implemented by B.G. M.L. provided feedback on data analysis and the interpretation of the results. S.B.G. provided feedback on the interpretation of the results. B.G., S.P. and M.L. wrote the manuscript with input from S.B.G. All authors approved the final version of the manuscript for submission.

Corresponding authors

Correspondence to Basile Garcia or Stefano Palminteri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks J. Traczyk, L. Polonio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Results, Figs. 1–12 and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia, B., Lebreton, M., Bourgeois-Gironde, S. et al. Experiential values are underweighted in decisions involving symbolic options. Nat Hum Behav (2023). https://doi.org/10.1038/s41562-022-01496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-022-01496-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing