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Positive assortative mating (AM) is a commonly observed phe-
nomenon in human mating, where individuals with similar 
phenotypes are more likely to form partnerships than expected 

by chance (that is, random mating)1. Partner similarities involve 
a wide range of factors: age, geographical factors, racial/ethnic 
background, religion, socioeconomic status and educational back-
ground, as well as physical, personality and psychological traits1,2, 
and AM for many of these traits has been demonstrated by com-
paring partner phenotypes3–8. In the field of population genetics, 
we know that AM increases the homozygosity of genotypes of the 
trait-associated variants, induces long-range correlations between 
alleles across the genome and increases genetically determined vari-
ance of the traits in a population scale9.

Quantitative impacts of AM in human genetics have been investi-
gated by focusing on the deviation from the Hardy–Weinberg equi-
librium (HWE) in trait-associated variants. However, this approach 
requires large sample sizes, especially when the effect sizes of the 
associated variants are small. Furthermore, ancestral endogamy 
(mating within the limits of a specific social group) could confound 
these relationships10–12. An alternative approach is to study genetic 
similarities between partners. This approach revealed the existence 
of AM in Europeans on anthropometric traits (height and body 
mass index (BMI)), and social and behavioural phenotypes (educa-
tional attainment and alcohol consumption)13–17. Although partner 
genotype–phenotype data have been analysed in these studies, it has 
been relatively challenging to achieve biobank-scale sample sizes in 
populations of diverse ancestries.

Recently, Yengo et al. developed a new method to quantify the 
impact of AM using data from large-scale genome-wide association 
studies (GWAS) without partner data18. The authors focused on 

the gametic phase disequilibrium (GPD) between trait-associated 
alleles19. Under AM, physically distant trait-associated alleles cor-
relate with each other beyond local linkage disequilibrium (LD) 
in polygenic traits. Thus, the genetic effects of AM from parents 
are reflected as the correlation between two polygenic scores 
(PGS) from physically distant sets of chromosomes (for example, 
PGS from odd-numbered chromosomes, PGSodd, and that from 
even-numbered chromosomes, PGSeven). The application of PGS 
to United Kingdom Biobank (UKB) GWAS data has provided evi-
dence of AM for adult height and educational background, and the 
researchers further validated these results via AM estimation using 
spousal pairs. While this method has advantages in that it only 
requires GWAS data without partner information, its applications 
have so far been limited to European-ancestry populations. More 
generally, there have been very few investigations of the genetic 
effects of AM outside of the European-ancestry populations.

Here, we report a PGS-based analysis of AM in a Japanese cohort 
using BioBank Japan Project (BBJ) GWAS data, one of the largest 
non-European biobanks with deep phenotype information20. We 
estimate the AM-induced GPD across 81 human complex traits by 
calculating the correlation between PGSodd and PGSeven with robust 
adjustments for population stratification. We then compare our 
results with those derived from the UKB genotype–phenotype data. 
Our study provides evidence of AM in the previous generation of the 
current Japanese cohort, and highlights the importance of studying 
AM in populations representative of non-European ancestries.

Results
Study overview. As biobank-scale GWAS results for multiple traits 
in East Asian ancestry populations (EAS) are not publicly available, 

Genetic footprints of assortative mating in the 
Japanese population
Kenichi Yamamoto   1,2,3, Kyuto Sonehara1,4, Shinichi Namba   1, Takahiro Konuma1, Hironori Masuko5, 
Satoru Miyawaki6, The BioBank Japan Project*, Yoichiro Kamatani7, Nobuyuki Hizawa5, 
Keiichi Ozono   2, Loic Yengo   8 and Yukinori Okada   1,3,4,9,10,11 ✉

Assortative mating (AM) is a pattern characterized by phenotypic similarities between mating partners. Detecting the evidence 
of AM has been challenging due to the lack of large-scale datasets that include phenotypic data on both partners, especially in 
populations of non-European ancestries. Gametic phase disequilibrium between trait-associated alleles is a signature of paren-
tal AM on a polygenic trait, which can be detected even without partner data. Here, using polygenic scores for 81 traits in the 
Japanese population using BioBank Japan Project genome-wide association studies data (n = 172,270), we found evidence of 
AM on the liability to type 2 diabetes and coronary artery disease, as well as on dietary habits. In cross-population comparison 
using United Kingdom Biobank data (n = 337,139) we found shared but heterogeneous impacts of AM between populations.

NaTuRe HuMaN BeHaviOuR | VOL 7 | JANUARY 2023 | 65–73 | www.nature.com/nathumbehav 65

mailto:yokada@sg.med.osaka-u.ac.jp
http://orcid.org/0000-0001-9594-7050
http://orcid.org/0000-0002-7486-3146
http://orcid.org/0000-0002-6517-8825
http://orcid.org/0000-0002-4272-9305
http://orcid.org/0000-0002-0311-8472
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-022-01438-z&domain=pdf
http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviour

we adopted the tenfold leave-one-group-out (LOGO) meta-analysis 
method for BBJ to estimate AM-induced GPD21 (see Fig. 1 for an 
overview). In brief, we selected individuals from the BBJ mainland 
cluster (n = 156,151) for phenotypic uniformity (Supplementary 
Table 1 and Supplementary Fig. 1)22 and then randomly separated 
individuals into ten subsets. For each of the target subsets, we con-
ducted GWAS in the other nine subgroups using GCTA-fastGWA, 
a mixed linear model (MLM) approach to control for population 
stratification and relatedness23,24. Then, we calculated PGSodd and 
PGSeven for the individuals in the target subset using the posterior 
variant effect sizes inferred by PRS-CS25 from GWAS results gener-
ated with GCTA-fastGWA. We estimated GPD for each trait from 
correlations between PGSodd and PGSeven (θeven_to_odd and θodd_to_even) 
adjusted for 20 principal components (PCs) derived from odd-/
even-numbered chromosomes (PCsodd/even) to correct for population 
stratification (see details in Methods). Finally, we meta-analysed the 
GPD estimates across ten subsets.

We replicated our findings in six independent cohorts of East 
Asian ancestry: n = 8,947 from the BBJ Ryukyu cluster, n = 1,275 
from the Osaka University healthy cohort, two datasets from the 
Nagahama cohort study (n = 1,543 as Nagahama_1 and n = 1,452 
as Nagahama_2), n = 1,110 from the Japan Biological Informatics 
Consortium (JBIC) and n = 1,842 from UKB EAS. For each cohort, 
we derived PGSodd and PGSeven using the whole-sample MLM-GWAS 
in the BBJ mainland cluster, and estimated the GPD from correla-
tions between PGSeven and PGSodd as described above. Finally, we 
meta-analysed the GPD estimates across all EAS. Regarding the 
UKB data, we applied the LOGO method and quantified GPD in 
the same way as described in the BBJ part (n = 337,139).

GPD analysis across 81 complex traits in the Japanese popu-
lation. We estimated GPD across 81 complex traits measured in  
BBJ participants (57 anthropometric and biomarker traits, 17 
dietary habits and behavioural traits, six diseases and one negative 
control; Supplementary Tables 2–5). As θeven_to_odd and θodd_to_even 
values of each trait were similar but not completely identical due 
to the difference in the single nucleotide polymorphism (SNP) 
selected for PGS calculation, we conservatively adopted the value 
with larger variance as the GPD estimate of the trait (θ). We set 
a study-wide significance threshold at P = 6.2 × 10−4 (= 0.05/81) 
by applying Bonferroni’s correction based on the number of  
traits analysed.

We detected significant GPD estimates in five traits. The 
most significant trait was type 2 diabetes (T2D; θT2D = 0.018, 
standard error (s.e.) = 0.0025, P = 5.2 × 10−14; Fig. 2, Table 1 
and Supplementary Table 6), followed by coronary artery dis-
ease (CAD; θCAD = 0.015, s.e. = 0.0025, P = 2.2 × 10−9). Among  
dietary and behavioural traits, we detected significant GPD 
estimates for the frequency of light physical activity (light-PA; 
θlight-PA = 0.012, s.e. = 0.0025, P = 2.0 × 10−6), natto (θnatto = 0.010, 
s.e. = 0.0024, P = 2.4 × 10−5) and yoghurt consumption 
(θyoghurt = 0.010, s.e. = 0.0024, P = 5.6 × 10−5). We did not detect 
significant evidence of AM on alcohol consumption and smok-
ing status (θalcohol = 0.006, s.e. = 0.0026, P = 0.04 and θsmoking = 0.004, 
s.e. = 0.0025, P = 0.14), which have been previously reported in 
other studies14,16.

In summary, in our biobank-based analyses we found robust 
genetic evidence of AM in the Japanese population, mostly observed 
in cardiometabolic diseases and dietary habits.
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Fig. 1 | an overview of the study design. We randomly divided the BBJ mainland samples into ten subsets to apply the LOGO method. We conducted 
GWAS using training samples and withholding the target subset using GCTA-fastGWA. We derived PGS for even-/odd-numbered chromosomes (PGSodd/
PGSeven) in the target subset using the PRS-CS method and estimated GPD for even-/odd-numbered chromosomes (θeven_to_odd and θodd_to_even). We then 
meta-analysed the GPD estimates across the ten subsets. For the six independent Japanese or EAS cohorts, we derived PGSodd/PGSeven based on fastGWA 
results from the whole mainland sample in BBJ. Finally, we performed a meta-analysis of the GPD estimates across all EAS datasets (n = 172,270). We 
adopted the same LOGO method to estimate GPD in the UKB data (n = 337,139).
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Transchromosomal characteristics of GPD estimates. Next, we 
compared θodd_to_even and θeven_to_odd, the GPD estimates from regres-
sion of PGSodd onto PGSeven, and that of PGSeven onto PGSodd, under 
robust controls for population stratification (Fig. 3). Although 
θodd_to_even and θeven_to_odd were similar for almost all traits, we 
detected a notable difference for the history of alcohol consumption  

(θodd_to_even = 0.002 but θeven_to_odd = 0.006 in ever versus never drink-
ing, Grubbs test P = 4.6 × 10−7). This observation can be explained 
by the genetic architecture of alcohol-related behaviours, which 
involves a subset of variants with strong effects in EAS populations. 
These variants are mainly located on even-numbered chromo-
somes (that is, GCKR on chromosome 2, ADH1B on chromosome 
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Fig. 2 | estimates of GPD for 81 complex traits in the Japanese population. For 81 human complex traits, we quantified GPD as the correlation between 
trait-specific PGSs for odd-/even-numbered chromosomes. We selected the meta-analysed GPD estimate (θ) with the larger variance between θeven_to_odd 
and θodd_to_even in all Japanese or EAS cohorts (n = 172,270). P values were determined by two-sided Wald test. We set a study-wide significance threshold at 
P < 6.2 × 10−4 (=0.05/81) by applying Bonferroni’s correction for multiple comparison. Statistically significant traits are marked with an asterisk and in bold. 
Detailed results are presented in Supplementary Table 6. The bar plots represent the point estimates, and error bars represent the s.e. Freq., frequency.
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4 and ALDH2 on chromosome 12)26, and they are related to natural 
selection and population stratification in EAS and the Japanese27,28. 
Thus, there is a stronger correlation between PGSeven and PCseven 
than between PGSodd and PCsodd (Supplementary Fig. 3): namely, 
even-chromosome-specific correlation of alcohol consumption 
PGS and population stratification. Collinearity in the multivariate 
regression model destabilized the even to odd GPD estimate, result-
ing in transchromosomal imbalance. We did not detect strong LD 
nor excess homozygosity at these top four variants associated with 
alcohol consumption (R2 < 0.1 for each variant pair, and inbreeding 
coefficient (F) < 0.1 at each variant)26.

Cross-population comparison of AM using UKB data. We esti-
mated GPD for six traits in the UKB GWAS data: T2D, CAD, 
light-PA and yoghurt consumption as traits with significant AM sig-
natures in the Japanese, and adult height and obesity (BMI) as gold 
standard controls for AM (Fig. 4). We robustly replicated the GPD 
estimate for adult height in the European-ancestry population as a 
sanity check (θheight in UKB = 0.030 and 0.030 for the current and previ-
ous studies18, respectively). The GPD estimate of BMI in our work 
was slightly higher than in the previous study (θBMI in UKB = 0.0079 
and 0.0001 for the current and previous studies18, respectively). It is 
noteworthy that the GPD estimates for adult height were relatively 
higher than those for BMI in both European-ancestry and Japanese 

populations (that is, θheight in EAS = 0.0073 and θBMI in EAS = 0.0067). 
However, the GPD estimate for adult height was not as high in 
Japanese compared with the European-ancestry cohort. This result 
was consistent with previous epidemiological reports5, in which 
the correlation of height between spousal pairs in Western coun-
tries was higher than those in non-Western regions. We note that 
height was one of the traits with the strongest positive natural selec-
tion among Europeans29, whereas it was not in the Japanese27,28. The 
GPD estimates of T2D, CAD, light-PA and yoghurt consumption 
were higher in Japanese than in European-ancestry populations 
(θT2D in EAS = 0.018 versus θT2D in UKB = 0.003, θCAD in EAS = 0.014 versus 
θCAD in UKB = 0.002, θlight-PA in EAS = 0.012 versus θlight-PA in UKB = 0.002, 
θyoghurt in EAS = 0.010 versus θyoghurt in UKB = 0.001). This result suggests a 
population-specific effect of AM.

Sensitivity analyses. We performed sensitivity analyses to confirm 
the robustness of our findings. We investigated the potential effect 
of cryptic population stratification of the Japanese population in two 
ways. First, we simulated a heritable dummy phenotype as a nega-
tive control (see details in Methods). Regarding the GPD estimates 
of the dummy phenotype, we could not observe transchromosomal 
correlation (θdummy = 0.0010, s.e. = 0.0024, P = 0.69; Fig. 1). Second, 
we sequentially changed the number of the PCs used for the adjust-
ment of PGSs from 0 to 30 for the traits with significant AM (T2D, 
CAD, light-PA, natto consumption and yoghurt consumption). We 
confirmed that the GPD estimates did not apparently change when 
varying the number of PCs (Supplementary Fig. 4).

The positive GPD estimates in the significant traits were not 
always consistent between cohorts (Fig. 5 and PHet in Supplementary 
Table 6). We varied the grouping of the chromosomes in different 
ways as (1) first half and second half, and (2) pseudo-random (see 
details in Methods). We estimated the meta-analysed GPD for sig-
nificant traits and confirmed that there was no apparent difference 
in the GPD estimates between the original grouping and alternative 
groupings (Supplementary Fig. 5).

Next, we compared our observed GPD estimate with the theo-
retical expectation described in the original study (see details in 
Methods)18. The expected value of GPD depends on various param-
eters: phenotypic correlation between partners (r), equilibrium 
heritability (h2eq), SNP-based heritability (h2snp), the number of causal 
variants (M) and sample size (n). Based on r and h2eq estimated 

Table 1 | a list of traits with a significant GPD estimate in the 
Japanese and eaS meta-analysis

Trait Category θ s.e. P value

Type 2 diabetes Disease 0.018 0.0025 5.2 × 10−14

Coronary artery disease Disease 0.015 0.0025 2.2 × 10−9

Frequency of light 
physical activity

Behaviour 0.012 0.0025 2.0 × 10−6

Natto consumption Diet 0.010 0.0024 2.4 × 10−5

Yoghurt consumption Diet 0.010 0.0024 5.6 × 10−5

Full results for all traits are listed in Supplementary Table 6. P values were determined by two-sided 
Wald test. We set a study-wide significance threshold at P < 6.2 × 10−4 (=0.05/81) by applying 
Bonferroni’s correction for multiple comparison.
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from published studies30–35, h2snp estimated from GREML-LDMS, 
M assumed between 10,000 and 100,000 and n from the reference 
GWAS size, we calculated the expected GPD in the dummy data, 
adult height, BMI, T2D and CAD (Supplementary Table 7). Although 
part of the tested data showed a match between the theoretical and 
the observed GPD values, there were mismatches, which we believe 
are due to the parameter dependence of the theoretical GPD.

Finally, we considered the impact of geographical factors 
not captured by PCs for partner similarities and AM36. First, we 
assessed regional differences in the 81 complex traits based on the 
registered area information in the BBJ mainland (from northeast 
to southwest) and detected strong regional differences in light-PA, 
natto consumption, yoghurt consumption, T2D and CAD. To cor-
rect for the influence of the regional differences in GPD estimates, 
we adopted the leave-one-region-out (LORO) approach (see details 
in Supplementary Note). After the LORO approach, the GPD esti-
mates of T2D, CAD and vegetable consumption were statistically 
significant (Supplementary Fig. 7). These significant GPD estimates 
in T2D, CAD and vegetable consumption might reflect the effects of 
parental AM not influenced by the geographical factors.

Discussion
In this study, we investigated genetic footprints of AM for 81 com-
plex traits in the Japanese population using a PGS-based approach18. 
Our study successfully detected significant GPD among alleles 
associated with five human complex traits, with T2D showing the 
strongest AM signature. Our cross-population comparisons using 
the UKB data suggest shared AM signatures between Japanese 
and European-ancestry populations, but with heterogeneous 
impacts among traits. We further found that accounting for geo-
graphical factors could improve the robustness of the results in the  
Japanese sample.

Previous studies have reported spousal concordance of T2D 
and CAD in populations of East Asian ancestries34,37,38. Our results  
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suggest that mate choice (as opposed to shared environmental fac-
tors such as urbanization or local culture) on traits associated with 
the liability to these diseases could be the cause of the observational 
similarity between partners.

Several behavioural and dietary habits showed significant AM sig-
natures: light-PA, natto, yoghurt and vegetable consumption. Natto 
consumption is a unique dietary habit of East Asian and Japanese 
populations. Our results suggest behavioural and dietary habits are 
a driving force of AM in Japan, and dietary habits are known to be 
involved in the natural selection pressure of Japanese27,28. Population 
admixture and natural selection represent other potential causes of 
GPD, and they are entangled with AM. Although admixture and 
population stratification could create positive GPD, we empirically 
assessed the potential cause by robustly controlling for sample selec-
tion and population stratification. As natural stabilizing selection 
would induce a negative correlation between alleles and lead to neg-
ative GPD, it would result in an opposite effect to AM39.

Applying the LORO approach as an adjustment for geography- 
related effects not captured by PCs, we detected statistically sig-
nificant GPD estimates in T2D, CAD and vegetable consump-
tion. Given the difference in the geographical distribution in many 
traits and the decrease of the GPD estimates when using the LORO 
approach, our initial GPD estimates could reflect not only AM, but 
also include the effects of social homogamy related to geography. 
This genetic correlation induced by geography-related effect could 
be especially high in natto and yoghurt consumption. This insight 
corroborates the results provided by Okbay et al.40, in which partner 
PGS correlation would be influenced by background geographical 
factors not captured by PCs.

Our study has several limitations. One potential limitation is 
that we did not assess AM in educational attainment (EA), as such 
information was not collected in BBJ, a hospital-based biobank. In 
European-ancestry populations, EA is among the traits strongly 
influencing AM13,18, but it is also associated with common dis-
eases and cognitive traits40. Observational studies in the Japanese 
population have likewise reported both educational AM and asso-
ciations between EA and cardiometabolic diseases and dietary 
habits41–43. On the other hand, other studies found that spousal 
similarities in cardiometabolic diseases were independent of EA34,38. 
As our results could reflect the potential involvement of EA, fur-
ther work will be required in Japanese cohorts, including data on  
educational attainment.

Furthermore, we could not conduct a confirmation analy-
sis using spousal or partner data due to the lack of available 
biobank-scale data. We therefore have not examined correlations 
between our GPD estimates and partner genetic similarities. As BBJ 
is a hospital-based medical cohort, the distribution of phenotypes 
and genotypes may not fully reflect that of a healthy population. 
Furthermore, due to the lack of information on birth places or resi-
dences in BBJ, our results may not fully account for geographical 
differences. Large sample size differences between geographical 
regions (n = 7,645 in Hokkaido to n = 91,743 in Kanto-Koshinetsu) 
could also affect the power of GWAS and the estimation of local 
GPD using our LORO approach. While some social homogamy 
(such as geographical proximity) and AM could not be completely 
independent40,44,45, these limitations could be mitigated through 
future enhancement of cohorts and collaborations.

In summary, we found genetic evidence of AM in the Japanese 
population for a set of complex traits, using the PGSs-based 
approach and large-scale biobank data. Our results contribute to 
our understanding of AM in humans and warrant further investiga-
tions of AM in populations of more diverse ancestries.

Methods
Study cohort description. We used data on a total of 172,270 individuals of 
Japanese and East Asian ancestry. Of these, data on 165,098 individuals were 

obtained from BBJ, which has enrolled ≥200,000 participants to date. BBJ is a 
multi-institutional hospital-based genome cohort that collected participants 
affected with at least one of 47 diseases20. We excluded (1) individuals with low 
genotyping call rates (<98%), (2) closely related individuals (PI_HAT ≥ 0.125 by 
PLINK, v.1.90b4.4; https://www.cog-genomics.org/plink/) and (3) outliers from 
the Japanese cluster based on principal component analysis (PCA) using PLINK2 
(v.2.00a2.3 and v.2.00a3; https://www.cog-genomics.org/plink/2.0/) with samples 
of the 1000 Genomes Projects. Further, we separated the BBJ individuals into 
two Japanese clusters22,27 the mainland cluster (n = 156,151) and Ryukyu cluster 
(n = 8,947), by visual inspection based on the PCA plot (Supplementary Fig. 1). 
All the participants provided written informed consent approved from ethics 
committees of RIKEN Center for Integrative Medical Sciences, and the Institute of 
Medical Sciences, the University of Tokyo.

The Japanese subjects in replication cohorts were collected from three Japanese 
population-based cohorts (the Nagahama cohort study, JBIC and the Osaka 
University healthy cohort). The Nagahama cohort study is a community-based 
cohort in Nagahama city, Shiga prefecture, Japan. The study recruited healthy 
individuals between the ages of 30 and 74 (ref. 46). JBIC consists of Epstein–Barr 
virus-transformed B lymphoblast cell lines of unrelated Japanese individuals47. 
Osaka University healthy cohort is a volunteer-based cohort study recruited from 
the Osaka University Graduate School of Medicine, the University of Tokyo and 
the University of Tsukuba48. For each cohort, we also excluded individuals with 
a low genotyping call rate, a high heterozygosity rate, closely related individuals 
(PI_HAT ≥ 0.125) and PCA outliers from EAS populations28,48,49. In addition, we 
extracted the EAS individuals from UKB. UKB is a population-based cohort that 
recruited approximately 500,000 individuals between 40 and 69 years of age from 
across the United Kingdom50. We obtained EAS individuals from unrelated UKB 
individuals based on PCA visualization combined with the 1000 Genomes Projects 
(Supplementary Fig. 2). Finally, we included 16,119 individuals in the replication 
study (n = 8,947 from BBJ Ryukyu, n = 1,275 from Osaka University healthy cohort, 
n = 2,945 from the Nagahama cohort study, n = 1,110 from JBIC and n = 1,842 from 
UKB EAS). This study was approved by the ethical committee of Osaka University 
Graduate School of Medicine.

Phenotype curation. BBJ collected baseline clinical information and dietary and 
activity habits information through interviews and reviews of medical records 
using a standardized questionnaire. We selected 81 traits (57 anthropometric 
traits and biomarkers, 11 dietary habits, six behavioural traits, six diseases and one 
dummy; Supplementary Tables 2–4). We used these data from participants above 
the age of 18, and drinking and smoking traits from those above the age of 20. We 
normalized each anthropometric trait and biomarker traits by applying rank-based 
inverse normal transformation as previously reported (Supplementary Table 
8)51–53. For each dietary habit, the participants were asked to clarify the frequency 
of consumption on a four-point scale, and we assigned the corresponding values 
to their responses as previously described26, where almost every day = 7, 3–4 days 
per week = 3.5, 1–2 days per week = 1.5 and rarely = 0. Behavioural traits included 
ever versus never drinking and ever versus never smoking54 as binary traits, and 
the frequency of four PAs (light-PA, gymnastics, walking and sports). For each 
PA, participants were also asked for the frequency and the length of time per week 
on a seven-point scale, and we quantified the activity by converting the responses 
to total minutes of activity time per week (min week–1), where ≥30 (15) min day–

1 = 210 (105), <30 (15) min day–1 = 140 (70), three to four times a week for ≥30  
(15) min = 105 (52.5), three to four times a week for <30 (15) min = 70 (35), one 
to two times a week for ≥30 (15) min = 45 (22.5), one to two times a week for <30 
(15) min = 30 (15) and rarely = 0 (the number in parentheses indicates  
gymnastics time).

For disease phenotypes, cases with myocardial infarction, stable angina and 
unstable angina were reclassified as CAD. We then selected six diseases from 
the target disease of BBJ (T2D, dyslipidaemia, cataract, CAD, arrhythmia and 
ischaemic stroke), where the number of cases exceeded 10,000 individuals55.

In addition, we set a dummy phenotype as a negative control. We generated 
a phenotype with heritability (h2 = 0.5) from 10,000 causal variants randomly 
sampled from BBJ GWAS data using GCTA GWAS simulation56. The phenotype 
followed the model yj = gj + ej, where gj = Σi(Wijβi) and Wij = (xij – 2pi)[2pi(1 – pi)]−1/2, 
where xij is the genotype for the ith causal variant of the jth individual, pi is the 
allele frequency of the ith causal variant within a population and ej is the residual 
effect generated from a normal distribution with mean 0 and variance Var(gj)
(1 − h2)/h2. βi is the effect size of the ith causal variant generated from a normal 
distribution with mean 0 and variance 1 (ref. 57). The values were normalized by 
applying a rank-based inverse normal transformation.

Genotyping, quality control and imputation of GWAS data. The BBJ GWAS  
data were genotyped using the Illumina HumanOmniExpressExome BeadChip  
or a combination of the Illumina HumanOmniExpress and HumanExome 
BeadChips. The quality control of the genotypes was described elsewhere51. In 
brief, we excluded variants satisfying the following criteria: (1) call rate <99%,  
(2) P value for HWE < 1.0 × 10−6, (3) number of heterozygotes <5 and (4) a 
concordance rate <99.5% or a non-reference concordance rate between the GWAS 
array and whole genome sequencing. The genotype data were phased by Eagle  

NaTuRe HuMaN BeHaviOuR | VOL 7 | JANUARY 2023 | 65–73 | www.nature.com/nathumbehav70

https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink/2.0/
http://www.nature.com/nathumbehav


ArticlesNature HumaN BeHaviour

(v.2; https://alkesgroup.broadinstitute.org/Eagle/), and imputed with the 1000 
Genomes Project Phase3 (v.5) and BBJ1K using Minimac3 software (v.2.0.1; 
https://genome.sph.umich.edu/wiki/Minimac3). After imputation, we excluded 
variants with an imputation quality of R-square (Rsq) < 0.7 and those with a minor 
allele frequency (MAF) < 1%.

As for the other Japanese datasets, JBIC was genotyped using Illumina 
HumanCoreExome Beadchip. As stringent quality control filters, we excluded the 
variants that satisfied (1) call rate < 0.99, (2) MAF < 1% and (3) HWE P < 1.0 × 10−7 
(ref. 47). Osaka University healthy cohort was genotyped using Illumina Infinium 
Asian Screening Array. We excluded the variants that satisfied (1) call rate < 0.99, 
(2) minor allele count < 5 and (3) HWE P < 1.0 × 10−5 (ref. 48). The Nagahama 
cohort study was genotyped using six genotype arrays. We then selected two 
platforms (Illumina Human610-Quad Beadchip and Illumina HumanOmni2.5-4v1 
Beadchip) with a large number of samples. For each of the two datasets, 
we excluded variants with (1) call rate < 0.98, (2) MAF < 1% and (3) HWE 
P < 1.0 × 10−6 (ref. 28). Genotype data were phased by Shapeit (v.2; https://mathgen.
stats.ox.ac.uk/genetics_software/shapeit/shapeit.html) or Eagle, and imputed with 
the reference panel from the 1000 Genomes Project Phase3 (v.5) and BBJ1K using 
Mimimac3. After imputation, we excluded variants with an imputation quality of 
Rsq < 0.7 and MAF < 1%.

The UKB project was genotyped using either Applied Biosystems UK BiLEVE 
Axiom Array or Applied Biosystems UKB Axiom Array. The genotypes were 
imputed using the Haplotype Reference Consortium, UK10K and the 1000 
Genomes Phase 3 reference panel by IMPUTE4. The detailed characteristics of the 
cohort and genotype–phenotype data were described elsewhere50. We extracted 
EAS individuals and excluded variants with INFO score ≤0.8 and MAF ≤ 1%.

GWAS. As independent external reference GWASs or genotype data of Japanese 
ancestry were not publicly available, we adopted a tenfold LOGO meta-analysis 
to maintain both the accuracy of the GWAS statistics and the statistical power 
in PGS21. We first randomly split the BBJ mainland samples into the 10 target 
subsets. GWAS was performed on 81 complex traits for samples excluding 
the target subset using GCTA-fastGWA (v.1.93.3beta2; https://cnsgenomics.
com/software/gcta/#Overview) as a MLM approach with 7,401,847 autosomal 
variants23,24. For GCTA-fastGWA, we computed a sparse genetic relationship 
matrix (GRM) for BBJ participants (n = 182,961) using slightly LD-pruning 
variants (LD-pruning parameters in PLINK: –indep-pairwise 1000 100 0.9, and 
MAF ≥ 1%, sparse GRM parameter: –make-bK-sparse 0.05). Regarding the 57 
anthropometric traits and biomarkers, the 11 dietary traits, the four PA traits and 
the two binary traits in the behavioural traits, we fitted age, age-squared, sex,  
the top 20 PCs and 47 disease status as covariates. For the six diseases, we also 
fitted age, age-squared, sex and the top 20 PCs as covariates. We also performed 
GWAS using GCTA-fastGWA for all individuals in the BBJ mainland cluster 
to apply to other Japanese or EAS datasets. LD score regression (LDSC, v.1.0.0; 
https://github.com/bulik/ldsc) was applied to the summary statistics of the 
whole-sample GWAS to estimate potential population stratification. We adopted 
the HapMap3 SNPs, excluding the human leukocyte antigen region, using 
precomputed LD scores from 1KG EAS downloaded from the LDSC software 
website (Supplementary Table 5)58.

To estimate phenotypic variances explained by imputed data for some of the 
traits, we applied GREML-LDMS using GCTA (v.1.93.2beta; https://cnsgenomics.
com/software/gcta/#Overview)57. We created the GRM using all variants for BBJ 
mainland samples. We estimated LD scores using default parameters in GCTA, 
and stratified SNPs into LD score quartiles. Next, we divided the SNPs within 
each LD score quartile into six MAF groups (MAF < 5%, 5% ≤ MAF < 10%, 
10% ≤ MAF < 20%, 20% ≤ MAF < 30%, 30% ≤ MAF < 40%, 40% ≤ MAF) and 
generated 24 GRMs. We calculated the phenotypic variance for each GRM and 
summed them to derive the total phenotypic variance (Supplementary Table 7). In 
the calculations, we randomly sampled 50,000 unrelated individuals (GRM < 0.05) 
randomly downsampled from BBJ mainland individuals to avoid computational 
burden and used the same normalized values for quantitative traits and covariates 
for binary traits as used in the GWAS analysis.

Polygenic risk score derivation and GPD estimation. To derive PGSs of 
individuals in each of the target subsets, we applied PRS-CS (https://github.
com/getian107/PRScs) to construct PGSs that included genome-wide HapMap3 
variants. PRS-CS is one of the beta shrinkage methods, which applies a Bayesian 
regression framework to identify posterior variant effect sizes based on continuous 
shrinkage before using both GWAS summary data and the external LD reference 
panel25. When the training sample size was large enough and the case–control 
imbalance was small, the automated optimization model (PRS-CS-auto) had the 
same precision as the grid model59,60. Therefore, for each of the target folds, we 
estimated the posterior mean effects of SNPs from the MLM-GWAS summary 
data of all training samples using PRS-CS-auto with the precomputed HapMap3 
SNP LD reference panel from 1KG EAS downloaded from the PRS-CS website. 
We calculated PGSodd and PGSeven of individuals within the target subset using 
the estimated posterior effect of SNPs by PLINK2 score function. We normalized 
the calculated PGSs for each trait in each target subset to compare the effect sizes 
across the phenotypes.

We quantified the trait variance explained by the derived PGSs in individuals 
within one withheld subgroup. Each trait was modelled as a combination of PGS 
and all covariates. The null hypothesis used the same model without the PGS term. 
We calculated the adjusted R2 for quantitative traits and the Nagelkerke’s R2 for 
binary traits (Supplementary Table 5).

For GPD estimation, we performed PCA of even and odd number 
chromosomes for each of the target subsets. We then estimated GPD using a linear 
regression method following the formula based on the original study18:

PGSodd ≈ θeven_to_oddPGSeven + 20PCseven

PGSeven ≈ θodd_to_evenPGSodd + 20PCsodd

where PGS is the scaled polygenic score, PCs are the results of the PCA and θ 
is the estimate of GPD. We further meta-analysed the GPD estimate from each 
of the ten subsets using the fixed effect method using metafor (v.1.9-9; http://
www.metafor-project.org/doku.php/metafor) implemented in R (v.3.4.0; https://
www.r-project.org/). We also estimated the GPD for the other Japanese and 
EAS datasets using the summary results of the whole BBJ sample GWASs by 
PRS-CS-auto. Finally, we performed a meta-analysis on the GPD estimates from 
the BBJ and other Japanese and EAS datasets by the fixed effect method using 
metafor. We estimated the P value of meta-analysed GPD using the Wald test.

To assess the robustness of our analysis to the chosen grouping of 
chromosomes, we altered the combinations of chromosomes such that the 
number of SNPs was the same in the two groups: (1) first half and second 
half; chromosomes 1–8 versus chromosomes 9–22, and (2) pseudo-random 
chromosomes; chromosomes 1, 3, 5, 6, 9, 10, 13, 14, 17 and 18 versus chromosomes 
2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 21 and 22. Using the two alternative combinations, 
we estimated the GPD for each cohort and meta-analysed the results.

We also calculated the theoretical GPD derived in the original study18. The 
theoretical value (θ) followed the formula,

θ =

ρf0
2 − ρ(2 − f0)

[

1 +

M(1 − ρ)
nh2eq

{

1 +

ρf0
2(1 − ρ)

}

−3
]

−1

where ρ = rh2eq, r is a phenotypic correlation between spouses, h2eq is an 
equilibrium heritability of the phenotype, f0 ≈ feq/(1 − ρ), feq = h2snp/h2eq, h2snp is 
a SNP-based heritability, M is the number of causal variants and n is the sample size 
of the GWAS.

Cross-population analysis using the UKB GWAS data. We analysed individuals 
of white British ancestry determined by PCA (n = 337,139) from UKB by adopting 
the tenfold LOGO approach to the six available traits (adult height, BMI, T2D, 
CAD, duration of light-PA and yoghurt consumption)50. When adult height and 
BMI were measured multiple times, we adopted the mean value to obtain a single 
value per participant and normalized the values using the rank-based inverse 
normal transformation method. Regarding T2D, the case was defined following 
the ICD-10 codes and ‘probable T2D’ and ‘possible T2D’ in a T2D inference 
algorithm based on Eastwood et al.61. We also defined individuals without any 
diabetes status as the T2D control based on ICD-10 and the inference algorithm. 
As for CAD, the case was extracted following ICD-10 codes, surgical procedure 
recodes, self-reported illness codes and self-reported operation codes based on 
Fall et al.62. Regarding the duration of light-PA (Data-Field 104920), we extracted 
the data from instance 0 (n = 70,692) and converted the coding to categorical 
values. Regarding the consumption of yoghurt, we extracted data from instance 0 
within consumers of yoghurt/ice cream as binary traits (n = 70,692 and Data-Field 
102080). From the imputed GWAS data, we excluded the variants that satisfied 
MAF ≤ 1% and INFO score ≤0.8, and fastGWA conducted generalized MLM 
approaches for nine subset samples with adjustment for age, age-squared, sex, top 
20 PCs, ascertainment centre information and batch information as covariates. 
For the six phenotypes, we estimated the PGSs for odd and even chromosomes by 
PRS-CS-auto using genome-wide HapMap SNPs and the 1KG EUR LD reference 
panel, and the GPD was estimated in the same way as described in the Japanese 
study. We further meta-analysed the GPD estimate from each of the ten subgroups 
by the fixed effect method using metafor.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
GWAS data of the BioBank Japan Project are available at the National Bioscience 
Database Center (NBDC) Human Database with the research ID: hum0014 
(https://humandbs.biosciencedbc.jp/hum0014-v26). GWAS data of Nagahama 
cohort are available at NBDC Human Database with the research ID: hum0012.v1 
(https://humandbs.biosciencedbc.jp/hum0012-v1). The analysis of UKB  
GWAS data was conducted via the application number 47821 (https://www.
ukbiobank.ac.uk/).

NaTuRe HuMaN BeHaviOuR | VOL 7 | JANUARY 2023 | 65–73 | www.nature.com/nathumbehav 71

https://alkesgroup.broadinstitute.org/Eagle/
https://genome.sph.umich.edu/wiki/Minimac3
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
https://cnsgenomics.com/software/gcta/#Overview
https://cnsgenomics.com/software/gcta/#Overview
https://github.com/bulik/ldsc
https://cnsgenomics.com/software/gcta/#Overview
https://cnsgenomics.com/software/gcta/#Overview
https://github.com/getian107/PRScs
https://github.com/getian107/PRScs
http://www.metafor-project.org/doku.php/metafor
http://www.metafor-project.org/doku.php/metafor
https://www.r-project.org/
https://www.r-project.org/
https://humandbs.biosciencedbc.jp/hum0014-v26
https://humandbs.biosciencedbc.jp/hum0012-v1
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviour

Code availability
We used the publicly available software packages for data analyses. The software is 
described in the Methods.
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