Abstract
The frequency of a cultural trait can influence its tendency to be copied. We develop a maximum-likelihood method to measure such frequency-dependent selection from time series data, and we apply it to baby names and purebred dog preferences over the past century. The form of negative frequency dependence we infer among names explains their diversity patterns, and it replicates across the United States, France, Norway and the Netherlands. We find different growth rates for male versus female names, attributable to different rates of innovation, whereas biblical names enjoy a genuine selective advantage at all frequencies, which explains their predominance among top names. We show how frequency dependence emerges from a host of underlying selective mechanisms, including a preference for novelty that recapitulates boom–bust fads among dog owners. Our analysis of cultural evolution through frequency-dependent selection provides a quantitative account of social pressures to conform or to be different.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All data are drawn from public sources and archived in a GitHub repository along with scripts to reproduce the analysis (https://github.com/mnewberry/fdsel-analysis).
Code availability
The inference software fdsel is open source and available on GitHub (https://github.com/mnewberry/fdsel). Scripts used to reproduce the analysis, packaged with archived public input data, are available in a separate repository (https://github.com/mnewberry/fdsel-analysis).
References
Hahn, M. W. & Bentley, R. A. Drift as a mechanism for cultural change: an example from baby names. Proc. Biol. Soc. 270, S120–S123 (2003).
Ghirlanda, S., Acerbi, A., Herzog, H. & Serpell, J. Fashion vs function in cultural evolution: the case of dog breed popularity. PLoS ONE 8, e74770 (2013).
Pagel, M., Atkinson, Q. D. & Meade, A. Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449, 717–720 (2007).
Curran, L. An analysis of cycles in skirt lengths and widths in the UK and Germany, 1954-1990. Cloth. Text. Res. J. 17, 65–72 (1999).
Katz, M. L. & Shapiro, C. Technology adoption in the presence of network externalities. J. Polit. Econ. 94, 822–841 (1986).
Lieberman, E., Michel, J.-B., Jackson, J., Tang, T. & Nowak, M. Quantifying the evolutionary dynamics of language. Nature 449, 713–716 (2007).
Neiman, F. D. Stylistic variation in evolutionary perspective: inferences from decorative diversity and interassemblage distance in Illinois woodland ceramic assemblages. Am. Antiq. 60, 7–36 (1995).
Wagner, A., Ortman, S. & Maxfield, R. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation. J. R. Soc. Interface 13, 20151086 (2016).
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).
Bentley, R. A., Hahn, M. W. & Stephen, S. J. Random drift and culture change. Proc. R. Soc. Lond. B 271, 1443–1450 (2004).
Trudgill, P. New-Dialect Formation: The Inevitability of Colonial Englishes (Univ. Edinburgh Press, 2004).
Reali, F. & Griffiths, T. L. Words as alleles: connecting language evolution with Bayesian learners to models of genetic drift. Proc. R. Soc. Lond. B 277, 429–436 (1680).
Kandler, A. & Shennan, S. A non-equilibrium neutral model for analysing cultural change. J. Theor. Biol. 330, 18–25 (2013).
Leroi, A. M. et al. Neutral syndrome. Nat. Hum. Behav. 4, 780–790 (2020).
Pagel, M., Beaumont, M., Meade, A., Verkerk, A. & Calude, A. Dominant words rise to the top by positive frequency-dependent selection. Proc. Natl Acad. Sci. USA 116, 7397–7402 (2019).
Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (Univ. Chicago Press, 1985).
Mesoudi, A. Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences (Univ. Chicago Press, 2011).
Ewens, W. J. Mathematical Population Genetics 1: Theoretical Introduction (Springer Science & Business Media, 2012).
Cavalli-Sforza, L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton Univ. Press, 1981).
Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. 12, 123–135 (2003).
Henrich, J. Cultural group selection, coevolutionary processes and large-scale cooperation. J. Econ. Behav. Organ. 53, 3–35 (2004).
Newberry, M. G., Ahern, C. A., Clark, R. & Plotkin, J. B. Detecting evolutionary forces in language change. Nature 551, 223–226 (2017).
Volkov, I., Banavar, J. R., He, F. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005).
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, 2001).
Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).
Richerson, P. J. & Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution (Univ. Chicago Press, 2008).
Asch, S. In Groups, Leadership, and Men (ed. Guetzkow, H. S.) 222–235 (Russell & Russell, 1951).
Aguilar, A., Roemer, G., Debenham, S., Binns, M., Garcelon, D. & Wayne, R. K. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl Acad. Sci. USA 101, 3490–3494 (2004).
Lande, R. Effective deme sizes during long-term evolution estimated from rates of chromosome rearrangement. Evolution 33, 234–251 (1979).
Futuyma, D. J. Evolution 2nd edn (Sinauer, 2009).
Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1930).
Levin, B. R. Frequency-dependent selection in bacterial populations. Phil. Trans. R. Soc. Lond. B 319, 459–472 (1988).
Matessi, C. & Jayakar, S. D. Conditions for the evolution of altruism under Darwinian selection. Theor. Popul. Biol. 9, 360–387 (1976).
Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: the sexy son hypothesis. Am. Nat. 113, 201–208 (1979).
Janzen, D. H. Why bamboos wait so long to flower. Annu. Rev. Ecol. Syst. 7, 347–391 (1976).
Wright, S. On the probability of fixation of reciprocal translocations. Am. Nat. 75, 761 (1941).
Hori, M. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).
Olendorf, R. et al. Frequency-dependent survival in natural guppy populations. Nature 441, 633–636 (2006).
Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).
de Rouzic, A. L., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).
Ribeck, N. & Lenski, R. E. Modeling and quantifying frequency-dependent fitness in microbial populations with cross-feeding interactions. Evolution 69, 1313–1320 (2015).
Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).
Michel, J.-B. & Shen, Y. K. et al. Quantitative analysis of culture using millions of digitized books. Science 331, 176–182 (2011).
Efferson, C., Lalive, R., Richerson, P. J., McElreath, R. & Lubell, M. Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evol. Hum. Behav. 29, 56–64 (2008).
Bowles, S. Microeconomics: Behavior, Institutions, and Evolution (Princeton Univ. Press, 2009).
Watson, H. W. & Galton, F. On the probability of the extinction of families. J. Anthropol. Inst. Br. Ir. 4, 138–144 (1875).
Lotka, A. J. Population analysis-the extinction of families I. J. Wash. Acad. Sci. 21, 377–380 (1931).
Feller, W. Diffusion processes in genetics. In Proc. Second Berkeley Symposium on Mathematical Statistics and Probability Vol. 2 (ed. Neyman, J.) 227–246 (Univ. California Press, 1951).
Lieberson, S. & Bell, E. O. Children’s first names: an empirical study of social taste. Am. J. Sociol. 98, 511–554 (1992).
Lieberson, S. D. A Matter of Taste: How Names, Fashions, and Culture Change (Yale Univ. Press, 2000).
O’Dwyer, J. P. & Kandler, A. Inferring processes of cultural transmission: the critical role of rare variants in distinguishing neutrality from novelty biases. Phil. Trans. R. Soc. Lond. B372, 20160426 (1735).
Gureckis, T. M. & Goldstone, R. L. How you named your child: understanding the relationship between individual decision making and collective outcomes. Top. Cogn. Sci. 1, 651–674 (2009).
Jonah, B. & Mens, Le. G. How adoption speed affects the abandonment of cultural tastes. Proc. Natl Acad. Sci. USA 106, 8146–8150 (2009).
Kessler, D. A., Maruvka, Y. E., Ouren, J. & Shnerb, N. M. You name it-how memory and delay govern first name dynamics. PLoS ONE 7, e38790 (2012).
Barucca, P., Rocchi, J., Marinari, E., Parisi, G. & Ricci-Tersenghi, F. Cross-correlations of American baby names. Proc. Natl Acad. Sci. USA 112, 7943–7947 (2015).
Goldstein, J. R. & Stecklov, G. From Patrick to John F.: ethnic names and occupational success in the last era of mass migration. Am. Sociol. Rev. 81, 85–106 (2016).
Berger, J., Bradlow, E. T., Braunstein, A. & Zhang, Y. From Karen to Katie: using baby names to understand cultural evolution. Psychol. Sci. 23, 1067–1073 (2012).
Mutsukawa, M. Phonological and semantic gender differences in English and Japanese given names. In Congrés Internacional d’ICOS sobre Ciències Onomàstiques, XXIV 370–377 (Generalitat de Catalunya, 2011).
Acerbi, A. & Bentley, R. A. Biases in cultural transmission shape the turnover of popular traits. Evol. Hum. Behav. 35, 228–236 (2014).
Zipf, G. K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Addison-Wesley, 1949).
Ewens, W. J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).
Barry, H. & Harper, A. S. Racial and gender differences in diversity of first names. Names 58, 47–54 (2010).
Gerhards, J. & Hackenbroch, R. Trends and causes of cultural modernization: an empirical study of first names. Int. Sociol. 15, 501–531 (2000).
Perl, P. & Wiggins, J. L. Don’t call me Ishmael: religious naming among Protestants and Catholics in the United States. J. Sci. Study Relig. 43, 209–228 (2004).
Ghirlanda, S., Acerbi, A. & Herzog, H. Dog movie stars and dog breed popularity: a case study in media influence on choice. PLoS ONE 9, e106565 (2014).
Herzog, H. A., Bentley, R. A. & Hahn, M. W. Random drift and large shifts in popularity of dog breeds. Proc. R. Soc. Lond. B Biol. Sci. 271, S353–S356 (2004).
Ghirlanda, S., Acerbi, A. & Herzog, H. American Kennel Club breed popularity statistics. Figshare https://figshare.com/articles/American_Kennel_Club_Breed_Popularity_Statistics/715895/1 (2013).
Bentley, R. A., Lipo, C. P., Herzog, H. A. & Hahn, M. W. Regular rates of popular culture change reflect random copying. Evol. Hum. Behav. 28, 151–158 (2007).
Acerbi, A., Ghirlanda, S. & Enquist, M. The logic of fashion cycles. PLoS ONE 7, e32541 (2012).
Herzog, H. Forty-two thousand and one Dalmatians: fads, social contagion, and dog breed popularity. Soc. Anim. 14, 383–397 (2006).
Stadler, K., Blythe, R. A., Smith, K. & Kirby, S. Momentum in language change. Lang. Dyn. Change 6, 171–198 (2016).
Brisson, D. Negative frequency-dependent selection is frequently confounding. Front. Ecol. Evol. 6, 10 (2018).
Haldane, J. B. S. Disease and evolution. Ric. Sc. 19, 68–76 (1949).
Kendall, M. G. & Stuart, A. The Advanced Theory of Statistics 2nd edn (Charles Griffin & Co., 1946).
White, H. Maximum likelihood estimation of misspecified models. Econometrica 50, 1–25 (1982).
Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).
Hobbie, J. E., Carpenter, S. R., Grimm, N. B., Gosz, J. R. & Seastedt, T. R. The US long term ecological research program. BioScience 53, 21–32 (2003).
Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).
West-Eberhard, M. J. Sexual selection, social competition, and evolution. Proc. Am. Phil. Soc. 123, 222–234 (1979).
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).
Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul. 298, 312 (1971).
Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Newberry, M. fdsel. GitHub https://github.com/mnewberry/fdsel (2021).
Lange, K., Hunter, D. R. & Yang, I. Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9, 1–20 (2000).
Ruggles, S. et al. U.S. Census data for social, economic, and health reasearch. IPUMS USA https://doi.org/10.18128/D010.V11.0 (2021).
Lange, K. Applied Probability (Springer Science & Business Media, 2010).
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of p-hacking in science. PLoS Biol. 13, e1002106 (2015).
Simmons, J. P., Nelson, L. D. & Simonsohn, Y. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).
Preston, F. W. The canonical distribution of commonness and rarity: part 1. Ecology 43, 185–215 (1962).
Kimura, M. Diffusion models in population genetics. J. Appl. Prob. 1, 177–232 (1964).
Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).
Efron, B. & Hinkley, D. V. Assessing the accuracy of the maximum likelihood estimator: observed versus expected fisher information. Biometrika 65, 457–483 (1978).
Politis, D. N. The impact of bootstrap methods on time series analysis. Stat. Sci. 18, 219–230 (2003).
Lewens, T. Cultural Evolution: Conceptual Challenges (Oxford Univ. Press, 2015).
Acerbi, A. & Mesoudi, A. If we are all cultural Darwinians what was the fuss about? Clarifying recent disagreements in the field of cultural evolution. Biol. Phil. 30, 481–503 (2015).
Krauss, M. in Language Diversity Endangered (ed. Brenzinger, M.) Ch. 1 (Mouton de Gruyter, 2007).
Durrett, R. Probability Models for DNA Sequence Evolution (Springer, 2008).
Feder, A. F., Kryazhimskiy, S. & Plotkin, J. B. Identifying signatures of selection in genetic time series. Genetics 196, 509–522 (2014).
Akey, J. M. et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2, e286 (2004).
Bloothooft, G., Kunst, P. J. & Brouwer, M. Corpus of first names in the Netherlands. Meertens Instituut http://www.meertens.knaw.nl/nvb/english (2015).
Acknowledgements
We thank G. Bloothooft (Meertens Instituut Nederlandse Voornamenbank) for preparation of anonymized first name data. The authors thank the John Templeton Foundation for funding (grant no. 62281). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
M.G.N. and J.B.P. conceived the study, designed the analysis and wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Newberry, M.G., Plotkin, J.B. Measuring frequency-dependent selection in culture. Nat Hum Behav 6, 1048–1055 (2022). https://doi.org/10.1038/s41562-022-01342-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-022-01342-6