Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring frequency-dependent selection in culture

Abstract

The frequency of a cultural trait can influence its tendency to be copied. We develop a maximum-likelihood method to measure such frequency-dependent selection from time series data, and we apply it to baby names and purebred dog preferences over the past century. The form of negative frequency dependence we infer among names explains their diversity patterns, and it replicates across the United States, France, Norway and the Netherlands. We find different growth rates for male versus female names, attributable to different rates of innovation, whereas biblical names enjoy a genuine selective advantage at all frequencies, which explains their predominance among top names. We show how frequency dependence emerges from a host of underlying selective mechanisms, including a preference for novelty that recapitulates boom–bust fads among dog owners. Our analysis of cultural evolution through frequency-dependent selection provides a quantitative account of social pressures to conform or to be different.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Cultural evolution of baby names.
Fig. 2: Frequency-dependent selection on first names.
Fig. 3: Female, male and biblical names.
Fig. 4: Frequency dependence and novelty preference in dog breeds.

Data availability

All data are drawn from public sources and archived in a GitHub repository along with scripts to reproduce the analysis (https://github.com/mnewberry/fdsel-analysis).

Code availability

The inference software fdsel is open source and available on GitHub (https://github.com/mnewberry/fdsel). Scripts used to reproduce the analysis, packaged with archived public input data, are available in a separate repository (https://github.com/mnewberry/fdsel-analysis).

References

  1. Hahn, M. W. & Bentley, R. A. Drift as a mechanism for cultural change: an example from baby names. Proc. Biol. Soc. 270, S120–S123 (2003).

    Google Scholar 

  2. Ghirlanda, S., Acerbi, A., Herzog, H. & Serpell, J. Fashion vs function in cultural evolution: the case of dog breed popularity. PLoS ONE 8, e74770 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pagel, M., Atkinson, Q. D. & Meade, A. Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449, 717–720 (2007).

    CAS  PubMed  Google Scholar 

  4. Curran, L. An analysis of cycles in skirt lengths and widths in the UK and Germany, 1954-1990. Cloth. Text. Res. J. 17, 65–72 (1999).

    Google Scholar 

  5. Katz, M. L. & Shapiro, C. Technology adoption in the presence of network externalities. J. Polit. Econ. 94, 822–841 (1986).

  6. Lieberman, E., Michel, J.-B., Jackson, J., Tang, T. & Nowak, M. Quantifying the evolutionary dynamics of language. Nature 449, 713–716 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Neiman, F. D. Stylistic variation in evolutionary perspective: inferences from decorative diversity and interassemblage distance in Illinois woodland ceramic assemblages. Am. Antiq. 60, 7–36 (1995).

  8. Wagner, A., Ortman, S. & Maxfield, R. From the primordial soup to self-driving cars: standards and their role in natural and technological innovation. J. R. Soc. Interface 13, 20151086 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  10. Bentley, R. A., Hahn, M. W. & Stephen, S. J. Random drift and culture change. Proc. R. Soc. Lond. B 271, 1443–1450 (2004).

    Google Scholar 

  11. Trudgill, P. New-Dialect Formation: The Inevitability of Colonial Englishes (Univ. Edinburgh Press, 2004).

  12. Reali, F. & Griffiths, T. L. Words as alleles: connecting language evolution with Bayesian learners to models of genetic drift. Proc. R. Soc. Lond. B 277, 429–436 (1680).

    Google Scholar 

  13. Kandler, A. & Shennan, S. A non-equilibrium neutral model for analysing cultural change. J. Theor. Biol. 330, 18–25 (2013).

    PubMed  Google Scholar 

  14. Leroi, A. M. et al. Neutral syndrome. Nat. Hum. Behav. 4, 780–790 (2020).

  15. Pagel, M., Beaumont, M., Meade, A., Verkerk, A. & Calude, A. Dominant words rise to the top by positive frequency-dependent selection. Proc. Natl Acad. Sci. USA 116, 7397–7402 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (Univ. Chicago Press, 1985).

  17. Mesoudi, A. Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences (Univ. Chicago Press, 2011).

  18. Ewens, W. J. Mathematical Population Genetics 1: Theoretical Introduction (Springer Science & Business Media, 2012).

  19. Cavalli-Sforza, L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton Univ. Press, 1981).

  20. Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. 12, 123–135 (2003).

    Google Scholar 

  21. Henrich, J. Cultural group selection, coevolutionary processes and large-scale cooperation. J. Econ. Behav. Organ. 53, 3–35 (2004).

    Google Scholar 

  22. Newberry, M. G., Ahern, C. A., Clark, R. & Plotkin, J. B. Detecting evolutionary forces in language change. Nature 551, 223–226 (2017).

    CAS  PubMed  Google Scholar 

  23. Volkov, I., Banavar, J. R., He, F. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005).

    Google Scholar 

  24. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, 2001).

  25. Maynard Smith, J. Evolution and the Theory of Games (Cambridge Univ. Press, 1982).

  26. Richerson, P. J. & Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution (Univ. Chicago Press, 2008).

  27. Asch, S. In Groups, Leadership, and Men (ed. Guetzkow, H. S.) 222–235 (Russell & Russell, 1951).

  28. Aguilar, A., Roemer, G., Debenham, S., Binns, M., Garcelon, D. & Wayne, R. K. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl Acad. Sci. USA 101, 3490–3494 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lande, R. Effective deme sizes during long-term evolution estimated from rates of chromosome rearrangement. Evolution 33, 234–251 (1979).

    PubMed  Google Scholar 

  30. Futuyma, D. J. Evolution 2nd edn (Sinauer, 2009).

  31. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1930).

  32. Levin, B. R. Frequency-dependent selection in bacterial populations. Phil. Trans. R. Soc. Lond. B 319, 459–472 (1988).

    CAS  Google Scholar 

  33. Matessi, C. & Jayakar, S. D. Conditions for the evolution of altruism under Darwinian selection. Theor. Popul. Biol. 9, 360–387 (1976).

    CAS  PubMed  Google Scholar 

  34. Weatherhead, P. J. & Robertson, R. J. Offspring quality and the polygyny threshold: the sexy son hypothesis. Am. Nat. 113, 201–208 (1979).

    Google Scholar 

  35. Janzen, D. H. Why bamboos wait so long to flower. Annu. Rev. Ecol. Syst. 7, 347–391 (1976).

    Google Scholar 

  36. Wright, S. On the probability of fixation of reciprocal translocations. Am. Nat. 75, 761 (1941).

  37. Hori, M. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).

    CAS  PubMed  Google Scholar 

  38. Olendorf, R. et al. Frequency-dependent survival in natural guppy populations. Nature 441, 633–636 (2006).

    CAS  PubMed  Google Scholar 

  39. Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).

    CAS  PubMed  Google Scholar 

  40. de Rouzic, A. L., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).

    PubMed  Google Scholar 

  41. Ribeck, N. & Lenski, R. E. Modeling and quantifying frequency-dependent fitness in microbial populations with cross-feeding interactions. Evolution 69, 1313–1320 (2015).

    PubMed  Google Scholar 

  42. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Michel, J.-B. & Shen, Y. K. et al. Quantitative analysis of culture using millions of digitized books. Science 331, 176–182 (2011).

    CAS  PubMed  Google Scholar 

  44. Efferson, C., Lalive, R., Richerson, P. J., McElreath, R. & Lubell, M. Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evol. Hum. Behav. 29, 56–64 (2008).

    Google Scholar 

  45. Bowles, S. Microeconomics: Behavior, Institutions, and Evolution (Princeton Univ. Press, 2009).

  46. Watson, H. W. & Galton, F. On the probability of the extinction of families. J. Anthropol. Inst. Br. Ir. 4, 138–144 (1875).

    Google Scholar 

  47. Lotka, A. J. Population analysis-the extinction of families I. J. Wash. Acad. Sci. 21, 377–380 (1931).

    Google Scholar 

  48. Feller, W. Diffusion processes in genetics. In Proc. Second Berkeley Symposium on Mathematical Statistics and Probability Vol. 2 (ed. Neyman, J.) 227–246 (Univ. California Press, 1951).

  49. Lieberson, S. & Bell, E. O. Children’s first names: an empirical study of social taste. Am. J. Sociol. 98, 511–554 (1992).

    Google Scholar 

  50. Lieberson, S. D. A Matter of Taste: How Names, Fashions, and Culture Change (Yale Univ. Press, 2000).

  51. O’Dwyer, J. P. & Kandler, A. Inferring processes of cultural transmission: the critical role of rare variants in distinguishing neutrality from novelty biases. Phil. Trans. R. Soc. Lond. B372, 20160426 (1735).

    Google Scholar 

  52. Gureckis, T. M. & Goldstone, R. L. How you named your child: understanding the relationship between individual decision making and collective outcomes. Top. Cogn. Sci. 1, 651–674 (2009).

    PubMed  Google Scholar 

  53. Jonah, B. & Mens, Le. G. How adoption speed affects the abandonment of cultural tastes. Proc. Natl Acad. Sci. USA 106, 8146–8150 (2009).

    Google Scholar 

  54. Kessler, D. A., Maruvka, Y. E., Ouren, J. & Shnerb, N. M. You name it-how memory and delay govern first name dynamics. PLoS ONE 7, e38790 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barucca, P., Rocchi, J., Marinari, E., Parisi, G. & Ricci-Tersenghi, F. Cross-correlations of American baby names. Proc. Natl Acad. Sci. USA 112, 7943–7947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldstein, J. R. & Stecklov, G. From Patrick to John F.: ethnic names and occupational success in the last era of mass migration. Am. Sociol. Rev. 81, 85–106 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Berger, J., Bradlow, E. T., Braunstein, A. & Zhang, Y. From Karen to Katie: using baby names to understand cultural evolution. Psychol. Sci. 23, 1067–1073 (2012).

    PubMed  Google Scholar 

  58. Mutsukawa, M. Phonological and semantic gender differences in English and Japanese given names. In Congrés Internacional d’ICOS sobre Ciències Onomàstiques, XXIV 370–377 (Generalitat de Catalunya, 2011).

  59. Acerbi, A. & Bentley, R. A. Biases in cultural transmission shape the turnover of popular traits. Evol. Hum. Behav. 35, 228–236 (2014).

    Google Scholar 

  60. Zipf, G. K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Addison-Wesley, 1949).

  61. Ewens, W. J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).

    CAS  PubMed  Google Scholar 

  62. Barry, H. & Harper, A. S. Racial and gender differences in diversity of first names. Names 58, 47–54 (2010).

    Google Scholar 

  63. Gerhards, J. & Hackenbroch, R. Trends and causes of cultural modernization: an empirical study of first names. Int. Sociol. 15, 501–531 (2000).

    Google Scholar 

  64. Perl, P. & Wiggins, J. L. Don’t call me Ishmael: religious naming among Protestants and Catholics in the United States. J. Sci. Study Relig. 43, 209–228 (2004).

    Google Scholar 

  65. Ghirlanda, S., Acerbi, A. & Herzog, H. Dog movie stars and dog breed popularity: a case study in media influence on choice. PLoS ONE 9, e106565 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Herzog, H. A., Bentley, R. A. & Hahn, M. W. Random drift and large shifts in popularity of dog breeds. Proc. R. Soc. Lond. B Biol. Sci. 271, S353–S356 (2004).

    Google Scholar 

  67. Ghirlanda, S., Acerbi, A. & Herzog, H. American Kennel Club breed popularity statistics. Figshare https://figshare.com/articles/American_Kennel_Club_Breed_Popularity_Statistics/715895/1 (2013).

  68. Bentley, R. A., Lipo, C. P., Herzog, H. A. & Hahn, M. W. Regular rates of popular culture change reflect random copying. Evol. Hum. Behav. 28, 151–158 (2007).

    Google Scholar 

  69. Acerbi, A., Ghirlanda, S. & Enquist, M. The logic of fashion cycles. PLoS ONE 7, e32541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Herzog, H. Forty-two thousand and one Dalmatians: fads, social contagion, and dog breed popularity. Soc. Anim. 14, 383–397 (2006).

    Google Scholar 

  71. Stadler, K., Blythe, R. A., Smith, K. & Kirby, S. Momentum in language change. Lang. Dyn. Change 6, 171–198 (2016).

    Google Scholar 

  72. Brisson, D. Negative frequency-dependent selection is frequently confounding. Front. Ecol. Evol. 6, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Haldane, J. B. S. Disease and evolution. Ric. Sc. 19, 68–76 (1949).

    Google Scholar 

  74. Kendall, M. G. & Stuart, A. The Advanced Theory of Statistics 2nd edn (Charles Griffin & Co., 1946).

  75. White, H. Maximum likelihood estimation of misspecified models. Econometrica 50, 1–25 (1982).

  76. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Google Scholar 

  77. Hobbie, J. E., Carpenter, S. R., Grimm, N. B., Gosz, J. R. & Seastedt, T. R. The US long term ecological research program. BioScience 53, 21–32 (2003).

    Google Scholar 

  78. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. West-Eberhard, M. J. Sexual selection, social competition, and evolution. Proc. Am. Phil. Soc. 123, 222–234 (1979).

    Google Scholar 

  80. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Google Scholar 

  81. Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul. 298, 312 (1971).

    Google Scholar 

  82. Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Google Scholar 

  83. Newberry, M. fdsel. GitHub https://github.com/mnewberry/fdsel (2021).

  84. Lange, K., Hunter, D. R. & Yang, I. Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9, 1–20 (2000).

    Google Scholar 

  85. Ruggles, S. et al. U.S. Census data for social, economic, and health reasearch. IPUMS USA https://doi.org/10.18128/D010.V11.0 (2021).

    Article  Google Scholar 

  86. Lange, K. Applied Probability (Springer Science & Business Media, 2010).

  87. Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of p-hacking in science. PLoS Biol. 13, e1002106 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Simmons, J. P., Nelson, L. D. & Simonsohn, Y. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

    PubMed  Google Scholar 

  89. Preston, F. W. The canonical distribution of commonness and rarity: part 1. Ecology 43, 185–215 (1962).

    Google Scholar 

  90. Kimura, M. Diffusion models in population genetics. J. Appl. Prob. 1, 177–232 (1964).

    Google Scholar 

  91. Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).

    Google Scholar 

  92. Efron, B. & Hinkley, D. V. Assessing the accuracy of the maximum likelihood estimator: observed versus expected fisher information. Biometrika 65, 457–483 (1978).

    Google Scholar 

  93. Politis, D. N. The impact of bootstrap methods on time series analysis. Stat. Sci. 18, 219–230 (2003).

  94. Lewens, T. Cultural Evolution: Conceptual Challenges (Oxford Univ. Press, 2015).

  95. Acerbi, A. & Mesoudi, A. If we are all cultural Darwinians what was the fuss about? Clarifying recent disagreements in the field of cultural evolution. Biol. Phil. 30, 481–503 (2015).

    Google Scholar 

  96. Krauss, M. in Language Diversity Endangered (ed. Brenzinger, M.) Ch. 1 (Mouton de Gruyter, 2007).

  97. Durrett, R. Probability Models for DNA Sequence Evolution (Springer, 2008).

  98. Feder, A. F., Kryazhimskiy, S. & Plotkin, J. B. Identifying signatures of selection in genetic time series. Genetics 196, 509–522 (2014).

    PubMed  Google Scholar 

  99. Akey, J. M. et al. Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol. 2, e286 (2004).

    PubMed  PubMed Central  Google Scholar 

  100. Bloothooft, G., Kunst, P. J. & Brouwer, M. Corpus of first names in the Netherlands. Meertens Instituut http://www.meertens.knaw.nl/nvb/english (2015).

Download references

Acknowledgements

We thank G. Bloothooft (Meertens Instituut Nederlandse Voornamenbank) for preparation of anonymized first name data. The authors thank the John Templeton Foundation for funding (grant no. 62281). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.G.N. and J.B.P. conceived the study, designed the analysis and wrote the paper.

Corresponding authors

Correspondence to Mitchell G. Newberry or Joshua B. Plotkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Newberry, M.G., Plotkin, J.B. Measuring frequency-dependent selection in culture. Nat Hum Behav (2022). https://doi.org/10.1038/s41562-022-01342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-022-01342-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing