Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sleep during travel balances individual sleep needs

Abstract

Travel is expected to have a deleterious effect on sleep, but an epidemiological-scale understanding of sleep changes associated with travel has been limited by a lack of large-scale data. Our global dataset of ~20,000 individuals and 3.17 million nights (~218,000 travel nights), while focused mainly on short, non-time-zone-crossing trips, reveals that travel has a balancing effect on sleep. Underslept individuals typically sleep more during travel than when at home, while individuals who average more than 7.5 hours of sleep at home typically sleep less when travelling. The difference in travel sleep quantity depends linearly on home sleep quantity and decreases as median sleep duration increases. On average, travel wake time advances to later hours on weekdays but earlier hours on weekends. Our study emphasizes the potential for consumer-grade wearable device data to explore how environment and behaviour affect sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sleep activity patterns and the relative change in sleep duration for travel nights.
Fig. 2: Disproportionate effect of travel on individuals with high social jet lag and the connection between weekends and weekdays.
Fig. 3: Change in sleep onset and offset on travel nights.

Similar content being viewed by others

Data availability

The raw data are not publicly available to preserve individuals’ privacy (according to the privacy policy for the wearable devices). Aggregated and anonymized data supporting the key findings in the paper are available from Figshare (https://doi.org/10.6084/m9.figshare.17207231); researchers interested in single-night data resolution may contact the corresponding authors regarding full data access.

Code availability

The code used to generate the results of this paper is available for download on GitHub (https://github.com/siggasvala/Travel-and-sleep).

References

  1. Irwin, M. R. Why sleep is important for health: a psychoneuroimmunology perspective. Annu. Rev. Psychol. 66, 143–172 (2015).

    Article  PubMed  Google Scholar 

  2. Cappuccio, F. P., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33, 585–592 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grandner, M. A. et al. Social and behavioral determinants of perceived insufficient sleep. Front. Neurol. 6, 112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Luyster, F. S., Strollo, P. J., Zee, P. C. & Walsh, J. K. Sleep: a health imperative. Sleep 35, 727–734 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cappuccio, F. P. et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31, 619–626 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. King, C. R. et al. Short sleep duration and incident coronary artery calcification. JAMA 300, 2859–2866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cappuccio, F. P., Cooper, D., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    Article  PubMed  Google Scholar 

  8. Pilcher, J. J. & Huffcutt, A. I. Effects of sleep deprivation on performance: a meta-analysis. Sleep 19, 318–326 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein, A. N. & Walker, M. P. The role of sleep in emotional brain function. Annu. Rev. Clin. Psychol. 10, 679–708 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bernert, R. A., Kim, J. S., Iwata, N. G. & Perlis, M. L. Sleep disturbances as an evidence-based suicide risk factor. Curr. Psychiatry Rep. 17, 15–24 (2015).

    Article  Google Scholar 

  11. Ford, E. S., Cunningham, T. J. & Croft, J. B. Trends in self-reported sleep duration among US adults from 1985 to 2012. Sleep 38, 829–832 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Walker, M. P. A societal sleep prescription. Neuron 103, 559–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Czeisler, C. A. Perspective: casting light on sleep deficiency. Nature 497, S13 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Air Transport, Passengers Carried (World Bank, 2018); https://data.worldbank.org/indicator/IS.AIR.PSGR

  15. Agnew, H. W., Webb, W. B. & Williams, R. L. The first night effect: an EEG study of sleep. Psychophysiology 2, 263–266 (1966).

    Article  PubMed  Google Scholar 

  16. Tamaki, M., Nittono, H., Hayashi, M. & Hori, T. Examination of the first-night effect during the sleep-onset period. Sleep 28, 195–202 (2005).

    Article  PubMed  Google Scholar 

  17. Tamaki, M., Bang, J. W., Watanabe, T. & Sasaki, Y. Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol. 26, 1190–1194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waterhouse, J., Reilly, T. & Edwards, B. The stress of travel. J. Sports Sci. 22, 946–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Reilly, T., Waterhouse, J. & Edwards, B. Jet lag and air travel: implications for performance. Clin. Sports Med. 24, 367–380 (2005).

    Article  PubMed  Google Scholar 

  20. Reilly, T., Waterhouse, J. & Edwards, B. Some chronobiological and physiological problems associated with long-distance journeys. Travel Med. Infect. Dis. 7, 88–101 (2009).

    Article  PubMed  Google Scholar 

  21. Lastella, M., Roach, G. D. & Sargent, C. Travel fatigue and sleep/wake behaviors of professional soccer players during international competition. Sleep Health 5, 141–147 (2019).

    Article  PubMed  Google Scholar 

  22. Waterhouse, J., Reilly, T., Atkinson, G. & Edwards, B. Jet lag: trends and coping strategies. Lancet 369, 1117–1129 (2007).

    Article  PubMed  Google Scholar 

  23. Srinivasan, V., Spence, D. W., Pandi-Perumal, S. R., Trakht, I. & Cardinali, D. P. Jet lag: therapeutic use of melatonin and possible application of melatonin analogs. Travel Med. Infect. Dis. 6, 17–28 (2008).

    Article  PubMed  Google Scholar 

  24. Morgenthaler, T. I. et al. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. Sleep 30, 1445–1459 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wittmann, M., Dinich, J., Merrow, M. & Roenneberg, T. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23, 497–509 (2006).

    Article  PubMed  Google Scholar 

  26. Roenneberg, T., Allebrandt, K. V., Merrow, M. & Vetter, C. Social jetlag and obesity. Curr. Biol. 22, 939–943 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ishibashi, Y. & Shimura, A. Association between work productivity and sleep health: a cross-sectional study in Japan. Sleep Health 6, 270–276 (2020).

    Article  PubMed  Google Scholar 

  28. Åkerstedt, T. et al. Sleep disturbances, work stress and work hours. J. Psychosom. Res. 53, 741–748 (2002).

    Article  PubMed  Google Scholar 

  29. Basner, M. et al. American time use survey: sleep time and its relationship to waking activities. Sleep 30, 1085–1095 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. K. Pavlova, M. & Latreille, V. Sleep disorders. Am. J. Med. 132, 292–299 (2019).

    Article  PubMed  Google Scholar 

  31. Nédélec, M., Halson, S., Abaidia, A.-E., Ahmaidi, S. & Dupont, G. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 45, 1387–1400 (2015).

    Article  PubMed  Google Scholar 

  32. Fowler, P., Duffield, R. & Vaile, J. Effects of domestic air travel on technical and tactical performance and recovery in soccer. Int. J. Sports Physiol. 9, 378–386 (2014).

    Article  Google Scholar 

  33. Forbes-Robertson, S. et al. Circadian disruption and remedial interventions. Sports Med. 42, 185–208 (2012).

    Article  PubMed  Google Scholar 

  34. Reilly, T. et al. Coping with jet-lag: a position statement for the European College of Sport Science. Eur. J. Sport Sci. 7, 1–7 (2007).

    Article  Google Scholar 

  35. Fowler, P. M. et al. Greater effect of east versus west travel on jet lag, sleep, and team sport performance. Med. Sci. Sports Exerc. 49, 2548–2561 (2017).

    Article  PubMed  Google Scholar 

  36. Bourgeois-Bougrine, S., Carbon, P., Gounelle, C., Mollard, R. & Coblentz, A. Perceived fatigue for short- and long-haul flights: a survey of 739 airline pilots. Aviat. Space Environ. Med. 74, 1072–1077 (2003).

    PubMed  Google Scholar 

  37. Sallinen, M. et al. Sleep, alertness and alertness management among commercial airline pilots on short-haul and long-haul flights. Accid. Anal. Prev. 98, 320–329 (2017).

    Article  PubMed  Google Scholar 

  38. Reis, C., Mestre, C., Canhão, H., Gradwell, D. & Paiva, T. Sleep complaints and fatigue of airline pilots. Sleep Sci. 9, 73–77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fowler, P., Duffield, R. & Vaile, J. Effects of simulated domestic and international air travel on sleep, performance, and recovery for team sports. Scand. J. Med. Sci. Sports 25, 441–451 (2014).

    Article  PubMed  Google Scholar 

  40. Richmond, L. K. et al. The effect of interstate travel on the sleep patterns and performance of elite Australian rules footballers. J. Sci. Med. Sport 10, 252–258 (2007).

    Article  PubMed  Google Scholar 

  41. McGuckin, T. A., Sinclair, W. H., Sealey, R. M. & Bowman, P. The effects of air travel on performance measures of elite Australian rugby league players. Eur. J. Sport Sci. 14, S116–S122 (2012).

    Article  PubMed  Google Scholar 

  42. Arendt, J. Managing jet lag: some of the problems and possible new solutions. Sleep Med. Rev. 13, 249–256 (2009).

    Article  PubMed  Google Scholar 

  43. Reilly, T., Atkinson, G. & Waterhouse, J. Travel fatigue and jet-lag. J. Sports Sci. 15, 365–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

    PubMed  Google Scholar 

  45. Daan, S., Beersma, D. G. & Borbely, A. A. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R161–R183 (1984).

    Article  CAS  Google Scholar 

  46. Roenneberg, T. et al. Epidemiology of the human circadian clock. Sleep Med. Rev. 11, 429–438 (2007).

    Article  PubMed  Google Scholar 

  47. Luca, G. et al. Age and gender variations of sleep in subjects without sleep disorders. Ann. Med. 47, 482–491 (2015).

    Article  PubMed  Google Scholar 

  48. Kuula, L. et al. Using big data to explore worldwide trends in objective sleep in the transition to adulthood. Sleep Med. 62, 69–76 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Ong, J. L., Tandi, J., Patanaik, A., Lo, J. C. & Chee, M. W. L. Large-scale data from wearables reveal regional disparities in sleep patterns that persist across age and sex. Sci. Rep. 9, 3415 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Walch, O. J., Cochran, A. & Forger, D. B. A global quantification of “normal” sleep schedules using smartphone data. Sci. Adv. 2, e1501705 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lo, J. C., Leong, R. L. F., Loh, K.-K., Dijk, D.-J. & Chee, M. W. L. Young adults’ sleep duration on work days: differences between east and west. Front. Neurol. 5, 81 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jonasdottir, S. S., Minor, K. & Lehmann, S. Gender differences in nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study. Sleep https://doi.org/10.1093/sleep/zsaa169 (2020).

  53. Hours Worked (Indicator) (Organisation for Economic Co-operation and Development, 2021); https://doi.org/10.1787/a452d2eb-en

  54. Macridis, S., Johnston, N., Johnson, S. & Vallance, J. K. Consumer physical activity tracking device ownership and use among a population-based sample of adults. PLoS ONE 13, e0189298 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Depner, C. M. et al. Wearable technologies for developing sleep and circadian biomarkers: a summary of workshop discussions. Sleep 43, zsz254 (2019).

    Article  PubMed Central  Google Scholar 

  56. Silva, M.-R. G., Pascoal, A., Silva, H.-H. & Paiva, T. Assessing sleep, travelling habits and jet lag in kite surfers according to competition level. Biol. Rhythm Res. 47, 677–689 (2016).

    Article  Google Scholar 

  57. Girschik, J., Fritschi, L., Heyworth, J. & Waters, F. Validation of self-reported sleep against actigraphy. J. Epidemiol. 22, 462–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ancoli-Israel, S. et al. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 26, 342–392 (2003).

    Article  PubMed  Google Scholar 

  59. Althoff, T., Horvitz, E., White, R. W. & Zeitzer, J. Harnessing the web for population-scale physiological sensing. In Proc. 26th International Conference on World Wide Web 113–122 (International World Wide Web Conferences Steering Committee, 2017); https://doi.org/10.1145/3038912.3052637

  60. Doherty, A. et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank study. PLoS ONE 12, e0169649 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Winnebeck, E. C., Fischer, D., Leise, T. & Roenneberg, T. Dynamics and ultradian structure of human sleep in real life. Curr. Biol. 28, 49–59.e5 (2018).

    Article  PubMed  CAS  Google Scholar 

  62. Palotti, J. et al. Benchmark on a large cohort for sleep–wake classification with machine learning techniques. NPJ Digit. Med. 2, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aslak, U. & Alessandretti, L. Infostop: scalable stop-location detection in multi-user mobility data. Preprint at https://arxiv.org/abs/2003.14370 (2020).

  64. Faraway, J. J. Extending the Linear Model with R (Chapman and Hall/CRC, 2016); https://doi.org/10.1201/9781315382722

  65. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/

  66. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmertest package: tests in linear mixed effects models. J. Stat. Soft. https://doi.org/10.18637/jss.v082.i13 (2017).

  67. Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. 49, 1494–1502 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

S.L. thanks the DISTRACT project (European Research Council) and the Nation-Scale Social Networks Project (Villum Foundation) for support of this work. J.B. acknowledges support from Google Open Source under the Open-Source Complex Ecosystems and Networks (OCEAN) project. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.S.J., S.L. and J.B. designed the research. S.S.J. preprocessed the data, performed the data analysis and created the figures. S.S.J., S.L. and J.B. analysed the results and wrote the paper.

Corresponding author

Correspondence to Sune Lehmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Shahab Haghayegh, Eva Winnebeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–20, Methods and Discussion.

Reporting Summary.

Peer Review Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonasdottir, S.S., Bagrow, J. & Lehmann, S. Sleep during travel balances individual sleep needs. Nat Hum Behav 6, 691–699 (2022). https://doi.org/10.1038/s41562-022-01291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01291-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing