Abstract
Response speeds in simple decision-making tasks begin to decline from early and middle adulthood. However, response times are not pure measures of mental speed but instead represent the sum of multiple processes. Here we apply a Bayesian diffusion model to extract interpretable cognitive components from raw response time data. We apply our model to cross-sectional data from 1.2 million participants to examine age differences in cognitive parameters. To efficiently parse this large dataset, we apply a Bayesian inference method for efficient parameter estimation using specialized neural networks. Our results indicate that response time slowing begins as early as age 20, but this slowing was attributable to increases in decision caution and to slower non-decisional processes, rather than to differences in mental speed. Slowing of mental speed was observed only after approximately age 60. Our research thus challenges widespread beliefs about the relationship between age and mental speed.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The raw data are available on the Project Implicit OSF page (https://osf.io/y9hiq/). The processed data, including the DM parameter estimates, can be found on our GitHub page (https://github.com/stefanradev93/DataSizeMatters).
Code availability
We provide open-source code for replicating all analyses and pretrained neural networks for preprocessing and obtaining the Bayesian diffusion model parameter estimates on our GitHub page (https://github.com/stefanradev93/DataSizeMatters).
References
National Prevalence Survey of Age Discrimination in the Workplace (Australian Human Rights Commission, 2015).
Erber, J. T. & Long, B. A. Perceptions of forgetful and slow employees: does age matter? J. Gerontol. B 61, 333–339 (2006).
Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760 (2010).
Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, 2006).
Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).
Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004).
Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).
Schaie, K. W. What can we learn from longitudinal studies of adult development? Res. Hum. Dev. 2, 133–158 (2005).
Zimprich, D. & Martin, M. Can longitudinal changes in processing speed explain longitudinal age changes in fluid intelligence? Psychol. Aging 17, 690–695 (2002).
Oschwald, J. et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev. Neurosci. 31, 1–57 (2019).
Frischkorn, G. T. & Schubert, A.-L. Cognitive models in intelligence research: advantages and recommendations for their application. J. Intell. 6, 34 (2018).
Pachella, R. G. The Interpretation of Reaction Time in Information Processing Research Technical Report (Michigan Univ. Ann Arbor Human Performance Center, 1973).
Schubert, A.-L. & Frischkorn, G. T. Neurocognitive psychometrics of intelligence: how measurement advancements unveiled the role of mental speed in intelligence differences. Curr. Dir. Psychol. Sci. 29, 140–146 (2020).
Ratcliff, R., Thapar, A. & McKoon, G. Individual differences, aging, and IQ in two-choice tasks. Cogn. Psychol. 60, 127–157 (2010).
Lerche, V. et al. Diffusion modeling and intelligence: drift rates show both domain-general and domain-specific relations with intelligence. J. Exp. Psychol. Gen. 149, 2207–2249 (2020).
Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).
Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).
Voss, A., Nagler, M. & Lerche, V. Diffusion models in experimental psychology: a practical introduction. Exp. Psychol. 60, 385–402 (2013).
Fudenberg, D., Newey, W., Strack, P. & Strzalecki, T. Testing the drift–diffusion model. Proc. Natl Acad. Sci. USA 117, 33141–33148 (2020).
Lerche, V. & Voss, A. Experimental validation of the diffusion model based on a slow response time paradigm. Psychol. Res. 83, 1194–1209 (2019).
Voss, A., Rothermund, K. & Voss, J. Interpreting the parameters of the diffusion model: an empirical validation. Mem. Cogn. 32, 1206–1220 (2004).
Arnold, N. R., Bröder, A. & Bayen, U. J. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychol. Res. 79, 882–898 (2015).
McGovern, D. P., Hayes, A., Kelly, S. P. & O’Connell, R. G. Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making. Nat. Hum. Behav. 2, 955–966 (2018).
Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L. & Segraves, M. A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).
Kühn, S. et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J. Cogn. Neurosci. 23, 2147–2158 (2011).
Ball, B. H. & Aschenbrenner, A. J. The importance of age-related differences in prospective memory: evidence from diffusion model analyses. Psychon. Bull. Rev. 25, 1114–1122 (2018).
Dully, J., McGovern, D. P. & O’Connell, R. G. The impact of natural aging on computational and neural indices of perceptual decision making: a review. Behav. Brain Res. 355, 48–55 (2018).
Janczyk, M., Mittelstädt, P. & Wienrich’s, C. Parallel dual-task processing and task-shielding in older and younger adults: behavioral and diffusion model results. Exp. Aging Res. 44, 95–116 (2018).
McKoon, G. & Ratcliff, R. Aging and IQ effects on associative recognition and priming in item recognition. J. Mem. Lang. 66, 416–437 (2012).
Ratcliff, R., Thapar, A. & McKoon, G. The effects of aging on reaction time in a signal detection task. Psychol. Aging 16, 323–341 (2001).
Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).
Thapar, A., Ratcliff, R. & McKoon, G. A diffusion model analysis of the effects of aging on letter discrimination. Psychol. Aging 18, 415–429 (2003).
Spaniol, J., Madden, D. J. & Voss, A. A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 32, 101–117 (2006).
Spaniol, J., Voss, A., Bowen, H. J. & Grady, C. L. Motivational incentives modulate age differences in visual perception. Psychol. Aging 26, 932–939 (2011).
von Krause, M., Lerche, V., Schubert, A.-L. & Voss, A. Do non-decision times mediate the association between age and intelligence across different content and process domains? J. Intell. 8, 33 (2020).
Schubert, A.-L., Hagemann, D., Löffler, C. & Frischkorn, G. T. Disentangling the effects of processing speed on the association between age differences and fluid intelligence. J. Intell. 8, 1 (2020).
McKoon, G. & Ratcliff, R. Aging and predicting inferences: a diffusion model analysis. J. Mem. Lang. 68, 240–254 (2013).
Theisen, M., Lerche, V., von Krause, M. & Voss, A. Age differences in diffusion model parameters: a meta-analysis. Psychol. Res. 85, 2012–2021 (2020).
Ratcliff, R. & Childers, R. Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision 2, 237–279 (2015).
Lerche, V., Voss, A. & Nagler, M. How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behav. Res. Methods 49, 513–537 (2017).
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).
Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L. & Köthe, U. BayesFlow: learning complex stochastic models with invertible neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2020).
Xu, K., Nosek, B. & Greenwald, A. Psychology data from the race implicit association test on the Project Implicit demo website. J. Open Psychol. Data 2, e3 (2014).
Ratcliff, R. Modeling aging effects on two-choice tasks: response signal and response time data. Psychol. Aging 23, 900–916 (2008).
Ratcliff, R., Love, J., Thompson, C. A. & Opfer, J. E. Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses. Child Dev. 83, 367–381 (2012).
Reuter-Lorenz, P. A. & Park, D. C. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355–370 (2014).
Payne, B. K. Prejudice and perception: the role of automatic and controlled processes in misperceiving a weapon. J. Pers. Soc. Psychol. 81, 181–192 (2001).
Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K. & Groom, C. J. Separating multiple processes in implicit social cognition: the quad model of implicit task performance. J. Pers. Soc. Psychol. 89, 469–487 (2005).
Meissner, F. & Rothermund, K. Estimating the contributions of associations and recoding in the implicit association test: the real model for the IAT. J. Pers. Soc. Psychol. 104, 45–69 (2013).
Stahl, C. & Degner, J. Assessing automatic activation of valence: a multinomial model of EAST performance. Exp. Psychol. 54, 99–112 (2007).
Nadarevic, L. & Erdfelder, E. Cognitive processes in implicit attitude tasks: an experimental validation of the trip model. Eur. J. Soc. Psychol. 41, 254–268 (2011).
Heck, D. W. & Erdfelder, E. Extending multinomial processing tree models to measure the relative speed of cognitive processes. Psychon. Bull. Rev. 23, 1440–1465 (2016).
Klauer, K. C. & Kellen, D. RT-MPTs: process models for response-time distributions based on multinomial processing trees with applications to recognition memory. J. Math. Psychol. 82, 111–130 (2018).
Hartmann, R. & Klauer, K. C. Extending RT-MPTs to enable equal process times. J. Math. Psychol. 96, 102340 (2020).
Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).
Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).
Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).
Klauer, K. C., Voss, A., Schmitz, F. & Teige-Mocigemba, S. Process components of the implicit association test: a diffusion-model analysis. J. Pers. Soc. Psychol. 93, 353–368 (2007).
Matzke, D. & Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychon. Bull. Rev. 16, 798–817 (2009).
Schad, D. J., Betancourt, M. & Vasishth, S. Toward a principled Bayesian workflow in cognitive science. Psychol. Methods 26, 103–126 (2020).
Lindeløv, J. K. mcp: an R package for regression with multiple change points. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).
Van Rossum, G. & Drake Jr, F. L. Python Tutorial (Centrum voor Wiskunde en Info rmatica, 2006).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bloem-Reddy, B. & Teh, Y. W. Probabilistic symmetries and invariant neural networks. J. Mach. Learn. Res. 21(90), 1–61 (2020).
Acknowledgements
This research was supported by a grant from the German Research Foundation to the Graduate School 530 SMiP (GRK 2277; Statistical Modeling in Psychology; to all authors). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Project Implicit for openly sharing their data.
Author information
Authors and Affiliations
Contributions
M.v.K. conceived the research idea and studied the literature. S.T.R. conceived the simulation-based inference method. M.v.K. and S.T.R. wrote the code and scripts for all methodological steps, performed the analyses, and visualized the results. M.v.K and S.T.R. wrote and prepared the original draft. M.v.K., S.T.R. and A.V. wrote, reviewed and edited the final manuscript. All authors have read and agreed to the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Laura Germine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–20, Text and Tables 1–3.
Rights and permissions
About this article
Cite this article
von Krause, M., Radev, S.T. & Voss, A. Mental speed is high until age 60 as revealed by analysis of over a million participants. Nat Hum Behav 6, 700–708 (2022). https://doi.org/10.1038/s41562-021-01282-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-021-01282-7