Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Equity, technological innovation and sustainable behaviour in a low-carbon future

Abstract

The world must ambitiously curtail greenhouse gas emissions to achieve climate stability. The literature often supposes that a low-carbon future will depend on a mix of technological innovation—improving the performance of new technologies and systems—as well as more sustainable behaviours such as travelling less or reducing waste. To what extent are low-carbon technologies, and their associated behaviours, currently equitable, and what are potential policy and research implications moving forward? In this Review, we examine how four innovations in technology and behaviour—improved cookstoves and heating, battery electric vehicles, household solar panels and food-sharing—create complications and force trade-offs on different equity dimensions. We draw from these cases to discuss a typology of inequity cutting across demographic (for example, gender, race and class), spatial (for example, urban and rural divides), interspecies (for example, human and non-human) and temporal (for example, future generations) vulnerabilities. Ultimately, the risk of inequity abounds in decarbonization pathways. Moreover, low-carbon innovations are not automatically just, equitable or even green. We show how such technologies and behaviours can both introduce new inequalities and reaffirm existing ones. We then discuss potential policy insights and leverage points to make future interventions more equitable and propose an integrated research agenda to supplement these policy efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A technological and behavioural typology of sustainable behaviours and technologies.
Fig. 2: Demographic disparities by race and income in the adoption of solar energy in the USA.
Fig. 3: Differentiating current from future equity challenges over sustainable technology and behaviour.
Fig. 4: Visualizing the relationship between resilience and vulnerability.

Similar content being viewed by others

References

  1. Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A Systemic Approach to the Energy Transition in Europe (SAPEA, 2021); https://www.sapea.info/topics/energy-transition/

  4. Global Energy Sector CO2 Emissions Reductions by Current Technology Maturity Category in the Sustainable Development Scenrio relative to the Stated Policies Scenario, 2019–2070, https://www.iea.org/data-and-statistics/charts/global-energy-sector-co2-emissions-reductions-by-current-technology-maturity-category-in-the-sustainable-development-scenario-relative-to-the-stated-policies-scenario-2019-2070 (International Energy Agency, 2020).

  5. Sachs, J. D., Schmidt-Traub, G. & Williams, J. Pathways to zero emissions. Nat. Geosci. 9, 799–801 (2016).

    Article  CAS  Google Scholar 

  6. Nelson, S. & Allwood, J. M. Technology or behaviour? Balanced disruption in the race to net zero emissions. Energy Res. Soc. Sci. 78, 102124 (2021).

    Article  Google Scholar 

  7. Stephenson, J. et al. Energy cultures and national decarbonisation pathways. Renew. Sustain. Energy Rev. 137 137, 110592 (2021).

    Article  Google Scholar 

  8. IPCC. Special Report on Global Warming of 1.5°C. (eds Masson-Delmotteeds, V. et al.) (WMO, 2018).

  9. Newell, P. et al. Cambridge sustainability commission report on scaling behaviour change. Rapid Transition Alliance (13 April 2021).

  10. Moberg, K. R. et al. Barriers, emotions and motivational levers for lifestyle transformation in Norwegian household decarbonization pathways. Clim. Change 165, 3 (2021).

    Article  CAS  Google Scholar 

  11. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  CAS  Google Scholar 

  12. Whitmarsh, L., Capstick, S., Moore, I., Kohler, J. & Le Quere, C. Use of aviation by climate change researchers: structural influences, personal attitudes, and information provision. Glob. Environ. Change 65, 102184 (2020).

    Article  Google Scholar 

  13. Dubois, G. et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 52, 144–158 (2019).

    Article  Google Scholar 

  14. Lute, M. L., Attari, S. Z. & Sherman, S. J. Don’t rush to flush. J. Environ. Psychol. 43, 105–111 (2015).

    Article  Google Scholar 

  15. Prior, R. An Ohio city has voted to grant Lake Erie the same rights as a person. CNN News, https://edition.cnn.com/2019/02/21/us/ohio-city-lake-erie-rights-trnd/index.html (27 February 2019).

  16. Lewis A. et al. 1.5-Degree Lifestyles: Towards A Fair Consumption Space for All (Hot or Cool Institute, 2021).

  17. Klinsky, S. & Winkler, H. Building equity in: strategies for integrating equity into modelling for a 1.5 °C world. Philos. Trans. A Math Phys. Eng. Sci. 376, 20160461 (2018).

    PubMed  Google Scholar 

  18. Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Lamb, W. F. et al. What are the social outcomes of climate policies? A systematic map and review of the ex-post literature. Environ. Res. Lett. 15, 113006 (2020).

    Article  Google Scholar 

  20. Kartha, S., Caney, S., Dubash, N. K. & Muttitt, G. Whose carbon is burnable? Equity considerations in the allocation of a ‘right to extract. Clim. Change 150, 117–129 (2018b).

    Article  CAS  Google Scholar 

  21. Rendall, M. Discounting, climate change, and the ecological fallacy. Ethics 129, 441–463 (2019).

    Article  Google Scholar 

  22. IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  23. Creutzig, F. et al. Reviewing the scope and thematic focus of 100,000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation. Environ. Res. Lett. 16, 033001 (2021).

    Article  Google Scholar 

  24. Carley, S., Evans, T. P. & Konisky, D. M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 37, 133–139 (2018).

    Article  Google Scholar 

  25. Asmal, K. Introduction: World Commission on dams report, dams and development. Am. Univ. Int. Law Rev. 16, 1411–1433 (2001).

    Google Scholar 

  26. Kawaguchi, D. & Yukutake, N. Estimating the residential land damage of the Fukushima nuclear accident. J. Urban Econ. 99, 148–160 (2017).

    Article  Google Scholar 

  27. Sovacool, B. K., Perea, M. A. M., Matamoros, A. V. & Enevoldsen, P. Valuing the externalities of wind energy: assessing the environmental profit and loss of wind turbines in Northern Europe. Wind Energy 19, 1623–1647 (2016).

    Article  Google Scholar 

  28. Fairhead, J., Leach, M. & Scoones, I. Green grabbing: a new appropriation of nature? J. Peasant Stud. 39, 237–261 (2012).

    Article  Google Scholar 

  29. Druckman, A., Chitnis, M., Sorrell, S. & Jackson, T. Missing carbon reductions? Exploring rebound and backfire effects in UK households. Energy Policy 39, 3572–3581 (2011).

    Article  Google Scholar 

  30. Sovacool, B. K. & Griffiths, S. Culture and low-carbon energy transitions. Nat. Sustain. 3, 685–693 (2020).

    Article  Google Scholar 

  31. Frankowska, A., Jeswani, H. K. & Azapagic, A. Environmental impacts of vegetables consumption in the UK. Sci. Total Environ. 682, 80–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Herforth, A. et al. Cost and Affordability of Healthy Diets across and within Countries: Background Paper for The State of Food Security and Nutrition in the World 2020. FAO Agricultural Development Economics Technical Study No. 9) (FAO, 2020).

  33. Axsen, J. & Sovacool, B. K. The roles of users in electric, shared, and automated mobility transitions. Transp. Res. Part D Trans. Environ. 71, 1–21 (2019).

    Article  Google Scholar 

  34. Access to Clean Cooking https://www.iea.org/reports/sdg7-data-and-projections/access-to-clean-cooking (International Energy Agency, accessed 2 August 2 2021).

  35. Brown, M. A. & B. K. Sovacool. Climate Change and Global Energy Security: Technology and Policy Options (MIT Press, 2011)

  36. Bailis, R. et al. Arresting the killer in the kitchen: the promises and pitfalls of commercializing improved cookstoves. World Develop. 37, 1694–1705 (2009).

    Article  Google Scholar 

  37. Bailis, R., Drigo, R., Ghilardi, A. & Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Change 5, 266–272 (2015).

    Article  CAS  Google Scholar 

  38. Smith, K. R. et al. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 35, 185–206 (2014).

    Article  PubMed  Google Scholar 

  39. Das, K., Pradhan, G. & Nonhebel, S. Human energy and time spent by women using cooking energy systems: a case study of Nepal. Energy 182, 493–501 (2019).

    Article  Google Scholar 

  40. Sovacool, B. K. et al. The energy–enterprise–gender nexus: lessons from the Multifunctional Platform (MFP) in Mali. Renew. Energy 50, 115–125 (2013).

    Article  Google Scholar 

  41. Osunmuyiwa, O. & Ahlborg, H. Inclusiveness by design? Reviewing sustainable electricity access and entrepreneurship from a gender perspective. Energy Res. Soc. Sci. 53, 145–158 (2019).

    Article  Google Scholar 

  42. Johnson, O. W., Gerber, V. & Muhoza, C. Gender, culture and energy transitions in rural Africa. Energy Res. Soc. Sci. 49, 169–179 (2019).

    Article  Google Scholar 

  43. Bhattarai, D., Somanathan, E. & Nepal, M. Are renewable energy subsidies in Nepal reaching the poor? Energy Sustain. Develop. 43, 114–122 (2018).

    Article  Google Scholar 

  44. Jan, I. & Das Lohano, H. Uptake of energy efficient cookstoves in Pakistan. Renew. Sustain. Energy Rev. 137, 110466 (2021).

    Article  Google Scholar 

  45. Khanwilkar, S., Gould, C. F., DeFries, R., Habib, B. & Urpelainen, J. Firewood, forests, and fringe populations: exploring the inequitable socioeconomic dimensions of liquified petroleum gas (LPG) adoption in India. Energy Res. Soc. Sci. 75, 102012 (2021).

    Article  PubMed  Google Scholar 

  46. Patnaik, S. & Jha, S. Caste, class and gender in determining access to energy: a critical review of LPG adoption in India. Energy Res. Soc. Sci. 67, 101530 (2020).

    Article  Google Scholar 

  47. Khandelwal, M. et al. Why have improved cook-stove initiatives in India failed? World Dev. 92, 13–27 (2017).

    Article  Google Scholar 

  48. Otte, P. P. A (new) cultural turn toward solar cooking—evidence from six case studies across India and Burkina Faso. Energy Res. Soc. Sci. 2, 49–58 (2014).

    Article  Google Scholar 

  49. Oluwakemi, A., Jewitt, S. & Clifford, M. Culture, tradition, and taboo: understanding the social shaping of fuel choices and cooking practices in Nigeria. Energy Res. Soc. Sci. 40, 14–22 (2018).

    Article  Google Scholar 

  50. Coyfe, R. Solar cooker dissemination and cultural variables. Solar Cookers International Network http://solarcooking.org/advocacy/ dissemination_and_culture.htm (2006).

  51. Smith, K. R., Gu, S., Kun, H. & Daxiong, Q. One hundred million improved cookstoves in China: how was it done? World Dev. 21, 941–961 (1993).

    Article  Google Scholar 

  52. Kishore, V. V. N. & Ramana, P. V. Improved cookstoves in rural India: how improved are they? A critique of the perceived benefits from the National Programme on Improved Chulhas (NPIC). Energy 27, 47–63 (2002).

    Article  Google Scholar 

  53. Adler, M. W., Peer, S. & Sinozic, T. Autonomous, connected, electric shared vehicles (ACES) and public finance: an explorative analysis. Transp. Res. Interdiscip. Perspect. 2, 100038 (2019).

    Google Scholar 

  54. Graham-Rowe, E. et al. Mainstream consumers driving plug-in battery-electric and plug-in hybrid electric cars: a qualitative analysis of responses and evaluations. Transp. Res. Part A Policy Pract. 46, 140–153 (2012).

  55. Seebauer, S. The psychology of rebound effects: explaining energy efficiency rebound behaviours with electric vehicles and building insulation in Austria. Energy Res. Soc. Sci. 46, 311–320 (2018).

    Article  Google Scholar 

  56. Sovacool, B. K., Hook, A., Martiskainen, M. & Baker, L. The whole systems energy injustice of four European low-carbon transitions. Glob. Environ. Change 58, 101958 (2019).

    Article  Google Scholar 

  57. Langbroek, J. H. M., Franklin, J. P. & Susilo, Y. O. How would you change your travel patterns if you used an electric vehicle? A stated adaptation approach. Travel Behav. Soc. 13, 144–154 (2018).

    Article  Google Scholar 

  58. Hamamoto, M. An empirical study on the behavior of hybrid-electric vehicle purchasers. Energy Policy 125, 286–292 (2019).

    Article  Google Scholar 

  59. Kester, J. et al. Novel or normal? Electric vehicles and the dialectic transition of Nordic automobility. Energy Res. Soc. Sci. 69, 101642 (2020).

  60. Sovacool, B. K. et al. Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Clim. Change 155, 581–619 (2019).

    Article  Google Scholar 

  61. Henderson, J. M. EVs are not the answer: a mobility justice critique of electric vehicle transitions. Ann. Am. Assoc. Geogr. 110, 1993–2010 (2020).

    Google Scholar 

  62. Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. Energy injustice and Nordic electric mobility: inequality, elitism, and externalities in the electrification of vehicle-to-grid (V2G) transport. Ecol. Econ. 157, 205–217 (2019).

    Article  Google Scholar 

  63. Borenstein, S. & Davis, L. W. The distributional effects of U. S. clean energy tax credits. Tax. Policy Econ. 30, 191–234 (2016).

    Article  Google Scholar 

  64. Sovacool, B. K., Kester, J., Noel, L. & de Rubens, G. Z. The demographics of decarbonizing transport: the influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Change 52, 86–100 (2018).

    Article  Google Scholar 

  65. Sovacool, B. K. The precarious political economy of cobalt: balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. Extr. Ind. Soc. 6, 915–939 (2019).

    Google Scholar 

  66. Hornborg, A. & Martinez-Alier, J. Ecologically unequal exchange and ecological debt. J. Polit. Ecol. 23, 328–333 (2016).

    Google Scholar 

  67. Skeete, J.-P., Wells, P., Dong, X., Heidrich, O. & Harper, G. Beyond the EVent horizon: battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res. Soc. Sci. 69, 101581 (2020).

    Article  Google Scholar 

  68. Morse, I. A dead battery dilemma. Science 372, 780–783 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Sovacool, B. K., Hook, A., Martiskainen, M., Brock, A. & Turnheim, B. The decarbonisation divide: contextualizing landscapes of low-carbon exploitation and toxicity in Africa. Glob. Environ. Change 60, 102028 (2020).

    Article  Google Scholar 

  70. Dharshing, S. Household dynamics of technology adoption: a spatial econometric analysis of residential solar photovoltaic (PV) systems in Germany. Energy Res. Soc. Sci. 23, 113–124 (2017).

    Article  Google Scholar 

  71. Sovacool, B. K., Lipson, M. & Chard, R. Temporality, vulnerability, and energy justice in household low carbon innovations. Energy Policy 128, 495–504 (2019).

    Article  Google Scholar 

  72. Walker, G. Decentralised systems and fuel poverty: are there any links or risks? Energy Policy 36, 4514–4517 (2008).

    Article  Google Scholar 

  73. Barbose, G. L., Forrester, S. O’Shaughnessy, E. & Darghouth, N. R. Residential Solar-Adopter Income and Demographic Trends: 2021 Update (Lawrence Berkeley National Laboratory, 2021).

  74. Wadim, S., Štreimikienė, D. & Bilan, Y. Network charging and residential tariffs: a case of household photovoltaics in the United Kingdom. Renew. Sustain. Energy Rev. 77, 461–473 (2017).

    Article  Google Scholar 

  75. Weber, G. & Cabras, I. The transition of Germany’s energy production, green economy, low-carbon economy, socio-environmental conflicts, and equitable society. J. Clean. Prod. 167, 1222–1231 (2017).

    Article  Google Scholar 

  76. Burger, J. & Gochfeld, M. A conceptual framework evaluating ecological footprints and monitoring renewable energy: wind, solar, hydro, and geothermal. Energy Power Eng. 4, 303–314 (2012).

    Article  Google Scholar 

  77. Sundqvist, T. What causes the disparity of electricity externality estimates? Energy Policy 32, 1753–1766 (2004).

    Article  Google Scholar 

  78. Nugent, D. & Sovacool, B. K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: a critical meta-survey. Energy Policy 64, 229–244 (2014).

    Article  Google Scholar 

  79. Mulvaney, D. Opening the black box of solar energy technologies: exploring tensions between innovation and environmental justice. Sci. Cult. 22, 230–237 (2013).

    Article  Google Scholar 

  80. Brock, A., Sovacool, B. K. & Hook, A. Volatile photovoltaics: green industrialization, sacrifice zones, and the political ecology of solar energy in Germany. Ann. Am. Assoc. Geogr. 111, 1756–1778 (2021).

    Google Scholar 

  81. Sovacool, B. K. Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Res. Soc. Sci. 73, 101916 (2021).

    Article  Google Scholar 

  82. Mulvaney, D. Are green jobs just jobs? Cadmium narratives in the life cycle of photovoltaics. Geoforum 54, 178–186 (2014).

    Article  Google Scholar 

  83. Cross, J. & Murray, D. The afterlives of solar power: waste and repair off the grid in Kenya. Energy Res. Soc. Sci. 44, 100–109 (2018).

    Article  Google Scholar 

  84. Salim, H. K., Stewart, R. A., Sahin, O. & Dudley, M. Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: a systematic literature review. J. Clean. Prod. 20, 537–554 (2019).

    Article  Google Scholar 

  85. National Academies of Sciences Engineering, and Medicine. Reducing Impacts of Food Loss and Waste: Proceedings of a Workshop (The National Academies Press, 2019).

  86. Ciaghi, A. & Villafiorita, A. Beyond food sharing: supporting food waste reduction with ICTs. In Proc. 2016 IEEE International Smart Cities Conference (ISC2) 1–6 (IEEE, 2016).

  87. Glynn, I. The food-sharing behavior of protohuman hominids. Sci. Am. 238, 90–109 (1978).

    Article  Google Scholar 

  88. Kafafi, Z. A. Sharing food eating from one plate: an ethno-archaeological study. Adumatu July, 7–18 (2014).

    Google Scholar 

  89. Gvion, L. Cuisines of poverty as means of empowerment: Arab food in Israel. Agric. Hum. Values 23, 299–312 (2006).

    Article  Google Scholar 

  90. Davies, A. R. & Legg, R. Fare sharing: interrogating the nexus of ICT, urban food sharing, and sustainability. Food Cult. Soc. 21, 233–254 (2018).

    Article  Google Scholar 

  91. Jehlička, P., Daněk, P. & Vávra, J. Rethinking resilience: home gardening, food sharing and everyday resistance. Can. J. Develop. Stud. 40, 511–527 (2019).

    Article  Google Scholar 

  92. Davies, A. R. et al. Making visible: interrogating the performance of food sharing across 100 urban areas. Geoforum 86, 136–149 (2017).

    Article  Google Scholar 

  93. Mattar, L. et al. Attitudes and behaviors shaping household food waste generation: lessons from Lebanon. J. Clean. Prod. 198, 1219–1223 (2018).

    Article  Google Scholar 

  94. Visschers, V. H. M., Wickli, N. & Siegrist, M. Sorting out food waste behaviour: a survey on the motivators and barriers of self-reported amounts of food waste in households. J. Environ. Psychol. 45, 66–78 (2016).

    Article  Google Scholar 

  95. Ready, E. & Power, E. A. Why wage earners hunt: food sharing, social structure, and influence in an Arctic mixed economy. Curr. Anthropol. 59, 74–97 (2018).

    Article  Google Scholar 

  96. Zurek, K. Food sharing in Europe: between regulating risks and the risks of regulating. Eur. J. Risk Regul. 7, 675–687 (2016).

    Article  Google Scholar 

  97. Morone, P. et al. Does food sharing lead to food waste reduction? An experimental analysis to assess challenges and opportunities of a new consumption model. J. Clean. Prod. 185, 749–760 (2018).

    Article  Google Scholar 

  98. Michelini, L., Principato, L. & Iasevoli, G. Understanding food sharing models to tackle sustainability challenges. Ecol. Econ. 145, 205–217 (2018).

    Article  Google Scholar 

  99. Schanes, K. & Stagl, S. Food waste fighters: what motivates people to engage in food sharing? J. Clean. Prod. 211, 1491–1501 (2019).

    Article  Google Scholar 

  100. Sunter, D. A., Castellanos, S. & Kammen, D. M. Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity. Nat. Sustain. 2, 71–76 (2019).

    Article  Google Scholar 

  101. Nussbaum, M. C. Frontiers of Justice: Disability, Nationality, Species Membership (Harvard Univ. Press, 2007).

  102. Nash, R. The Rights of Nature: A History of Environmental Ethics (Univ. of Wisconsin Press, 1990).

  103. Merskin, D. in Communicating Responsible Diversity, Equality, and Inclusion. Public Relations for Social Responsibility: Affirming DEI Commitment with Action (ed. Pompper, D.) 103–119 (Emerald Publishing, 2021).

  104. Mackenbach, J. P. Inter-species health equity. Eur. J. Public Health 31, 241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Blount-Hill, K.-L. Proposing a social identity theory of interspecies dominance. Biol. Conserv. 254, 108969 (2021).

    Article  Google Scholar 

  106. Thiery, W. et al. Intergenerational inequities in exposure to climate extremes. Science 374, 158–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. The Path to Net Zero: Climate Assembly UK Full Report https://www.climateassembly.uk/report/ (Citizen Assembly UK, 2020).

  108. Boyd, E. et al. Anticipatory governance for social-ecological resilience. AMBIO 44, 149–161 (2015).

    Article  PubMed Central  Google Scholar 

  109. Folke, C., Hahn, T., Olsson, P. & Norberg, J. Adaptive governance of social ecological systems. Annu. Rev. Environ. Resour. 30, 441–473 (2005).

    Article  Google Scholar 

  110. Deason, J., Leventis, G. &. Murphy, S. Performance of Solar Leasing for Low- and Middle-income Customers in Connecticut (Lawrence Berkeley National Laboratory, 2021).

  111. Ellegård, A., Arvidson, A., Nordström, M., Kalumiana, O. S. & Mwanza, C. Rural people pay for solar: experiences from the Zambia PV-ESCO project. Renew. Energy 29, 1251–1263 (2004).

    Article  Google Scholar 

  112. Chan, G., Evans, I., Grimley, M., Ihde, B. & Mazumder, P. Design choices and equity implications of community shared solar. Electr. J. 30, 37–41 (2017).

    Article  Google Scholar 

  113. Weber, G., Cabras, I., Calaf-Forn, M., Puig-Ventosa, I. & D’Alisa, G. Promoting waste degrowth and environmental justice at a local level: the case of unit-pricing schemes in Spain. Ecol. Econ. 156, 306–317 (2019).

    Article  Google Scholar 

  114. Green, F. & Gambhir, A. Transitional assistance policies for just, equitable and smooth low-carbon transitions: who, what and how? Clim. Policy 20, 902–921 (2020).

    Article  Google Scholar 

  115. Newell, P. Managing multinationals: the Governance of investment for the environment. J. Int. Dev. 13, 907–919 (2001).

    Article  Google Scholar 

  116. Zeng, X., Mathews, J. A. & Li, J. Urban mining of e-waste is becoming more cost-effective than virgin mining. Environ. Sci. Technol. 52, 4835–4841 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Lapko, Y., Trianni, A., Nuur, C. & Masi, D. In pursuit of closed loop supply chains for critical materials: an exploratory study in the green energy sector. J. Ind. Ecol. https://doi.org/10.1111/jiec.12741 (2018).

  118. Recycling Workshop Highlights. NAATBatt International https://naatbatt.org/recycling-workshop-highlights-the-importance-of-recycling-ev-batteries/ (9–10 July 2019).

  119. Chilvers, J. et al. A systemic approach to mapping participation with low-carbon energy transitions. Nat. Energy 6, 250–259 (2021).

    Article  Google Scholar 

  120. Sovacool, B. K & Dworkin, M. H. Global Energy Justice. Problems, Principles, and Practices (Cambridge Univ. Press, 2014).

  121. Proposal for a High Commissioner/Ombudsperson for Future Generations: Reflections on the Negotiation Process. World Future Council http://sdg.iisd.org/commentary/guest-articles/proposal-for-a-high-commissionerombudsperson-for-futuregenerationsreflections-on-the-negotiation-process/ (23 April 2012).

  122. Bouzarovski, S. & Simcock, N. Spatializing energy justice. Energy Policy 107, 640–648 (2017).

    Article  Google Scholar 

  123. Bell, S. et al. Sociality and electricity in the United Kingdom: the influence of household dynamics on everyday consumption. Energy Res. Soc. Sci. 9, 98–106 (2015).

    Article  Google Scholar 

  124. Carley, S., Engle, C. & Konisky, D. M. An analysis of energy justice programs across the United States. Energy Policy 152, 112219 (2021).

    Article  Google Scholar 

  125. Gender Tool Kit: Energy: Going Beyond the Meter (Asian Development Bank, 2012).

  126. Lennon, M. Decolonizing energy: Black Lives Matter and technoscientific expertise amid solar transitions. Energy Res. Soc. Sci. 30, 18–27 (2017).

    Article  Google Scholar 

  127. Ryder, S. S. Developing an intersectionally-informed, multi-sited, critical policy ethnography to examine power and procedural justice in multiscalar energy and climate change decisionmaking processes. Energy Res. Soc. Sci. 45, 266–275 (2018).

    Article  Google Scholar 

  128. Lieu, J., Sorman, A. H., Johnson, O. W., Virla, L. D. & Resurrección, B. P. Three sides to every story: gender perspectives in energy transition pathways in Canada, Kenya and Spain. Energy Res. Soc. Sci. 68, 101550 (2020).

    Article  Google Scholar 

  129. Burningham, K. & Venn, S. Are lifecourse transitions opportunities for moving to more sustainable consumption? J. Consum. Cult. 20, 102–121 (2020).

    Article  Google Scholar 

  130. Snell, C., Bevan, M & Thomson, H. Justice, fuel poverty and disabled people in England. Energy Res. Soc. Sci. 10, 123–132 (2015).

    Article  Google Scholar 

  131. Mould, R. & Baker, K. J. Documenting fuel poverty from the householders’ perspective. Energy Res. Soc. Sci. 31, 21–31 (2017).

    Article  Google Scholar 

  132. Hernández, D. Understanding ‘energy insecurity’ and why it matters to health. Soc. Sci. Med. 167, 1–10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Carley, S., Evans, T. P., Graff, M. & Konisky, D. M. A framework for evaluating geographic disparities in energy transition vulnerability. Nat. Energy 3, 621–627 (2018).

    Article  Google Scholar 

  134. Newell, P., Daley, F. & Twena, M. Changing Our Ways? Behaviour Change and the Climate Crisis. Report of the Cambridge Sustainability Commission on Scaling Behaviour Change (Cambridge Sustainability Commission, 2021).

  135. Emissions Gap Report 2020 (UNEP, 2020).

  136. Kasser, T. The High Price of Materialism (MIT Press, 2002).

  137. Wilkinson, R. G. & Pickett, K. The Spirit Level: Why Equality Is Better for Everyone (Allen Lane, 2009).

  138. Adams, C., Taylor, P. & Bell, S. Equity dimensions of micro-generation: a whole systems approach. J. Renew. Sustain. Energy https://doi.org/10.1063/1.4759454 (2012).

  139. Healy, N., Stephens, J. C. & Malin, S. A. Embodied energy injustices: unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains. Energy Res. Soc. Sci. 48, 219–234 (2019).

    Article  Google Scholar 

  140. Capstick, S., Lorenzoni, I., Corner, A. & Whitmarsh, L. Prospects for radical emissions reduction through behavior and lifestyle change. Carbon Manag. 5, 429–445 (2015).

    Article  Google Scholar 

  141. Carley, S. Normative dimensions of sustainable energy policy. Ethics Policy Environ. 14, 211–229 (2011).

    Article  Google Scholar 

  142. Kenner, D. Carbon Inequality: The Role of the Richest in Climate Change (Routledge, 2019).

  143. Newell, P., Twena, M. & Daley F. Scaling behaviour change for a 1.5 degree world: challenges and opportunities. Global Sustainability https://doi.org/10.1017/sus.2021.23 (2021).

  144. Hsu, A. et al. Beyond states: harnessing sub-national actors for the deep decarbonisation of cities, regions, and businesses. Energy Res. Soc. Sci. 70, 101738 (2020).

    Article  Google Scholar 

  145. Stirling, A. Analysis, participation and power: justification and closure in participatory multi-criteria analysis. Land Use Policy 1, 95–107 (2006).

    Article  Google Scholar 

  146. Gilio-Whitaker, D. As Long as Grass Grows: The Indigenous Fight for Environmental Justice, from Colonization to Standing Rock (Beacon Press, 2019).

  147. Roy, E. A. New Zealand river granted same legal rights as human being. Guardian, https://www.theguardian.com/world/2017/mar/16/new-zealand-river-granted-same-legal-rights-as-human-being (16 March 2017).

  148. Sovacool, B. K., Turnheim, B., Hook, A., Brock, A. & Martiskainen, M. Dispossessed by decarbonisation: reducing vulnerability, injustice, and inequality in the lived experience of low-carbon pathways. World Dev. 137, 105116 (2021).

    Article  Google Scholar 

  149. Schwartz Cowan, R. More Work for Mother: The Ironies of Household Technology from the Open Hearth to the Microwave (Basic Books, 1983).

  150. Geels, F. W. et al. Reducing energy demand through low carbon innovation: a sociotechnical transitions perspective and thirteen research debates. Energy Res. Soc. Sci. 40, 23–35 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Sovacool.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Fergus Green, Claire Hoolohan and Gabriel Weber for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information including Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sovacool, B.K., Newell, P., Carley, S. et al. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat Hum Behav 6, 326–337 (2022). https://doi.org/10.1038/s41562-021-01257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01257-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing