Abstract
Human societies include diverse social relationships. Friends, family, business colleagues and online contacts can all contribute to one’s social life. Individuals may behave differently in different domains, but success in one domain may engender success in another. Here, we study this problem using multilayer networks to model multiple domains of social interactions, in which individuals experience different environments and may express different behaviours. We provide a mathematical analysis and find that coupling between layers tends to promote prosocial behaviour. Even if prosociality is disfavoured in each layer alone, multilayer coupling can promote its proliferation in all layers simultaneously. We apply this analysis to six real-world multilayer networks, ranging from the socio-emotional and professional relationships in a Zambian community, to the online and offline relationships within an academic university. We discuss the implications of our results, which suggest that small modifications to interactions in one domain may catalyse prosociality in a different domain.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Evolution of cooperation in multiplex networks through asymmetry between interaction and replacement
Scientific Reports Open Access 17 June 2023
-
Evolution of fairness in the divide-a-lottery game
Scientific Reports Open Access 29 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








Data availability
All the network datasets used in this paper are freely and publicly available at https://manliodedomenico.com/data.php
Code availability
All code has been deposited into the publicly available GitHub repository at https://github.com/qisu1991/MultilayerPopulations
References
Darwin, C. On the Origin of Species, 1859 (John Murray, 2004).
Block, P. et al. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 4, 588–596 (2020).
López, L. & Rodó, X. The end of social confinement and COVID-19 re-emergence risk. Nat. Hum. Behav. 4, 746–755 (2020).
Jacquet, J. et al. Intra- and intergenerational discounting in the climate game. Nat. Clim. Chang. 3, 1025–1028 (2013).
Keohane, R. O. & Victor, D. G. Cooperation and discord in global climate policy. Nat. Clim. Chang. 6, 570–575 (2016).
Hamilton, W. D. The evolution of altruistic behavior. Am. Nat. 97, 354–356 (1963).
Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992).
Lieberman, E., Hauert, C. & Howak, M. A. Evolutionary dynamics on graphs. Nature 433, 312–316 (2005).
Tarnita, C. E., Ohtsuki, H., Antal, T., Fu, F. & Nowak, M. A. Strategy selection in structured populations. J. Theor. Biol. 259, 570–581 (2009).
Tarnita, C. E., Antal, T., Ohtsuki, H. & Nowak, M. A. Evolutionary dynamics in set structured populations. Proc. Natl Acad. Sci. USA 106, 8601–8604 (2009).
Chen, Y. T. Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl. Probab. 23, 637–664 (2013).
Débarre, F., Hauert, C. & Doebeli, M. Social evolution in structured populations. Nat. Commun. 5, 3409 (2014).
Allen, B. & Nowak, M. Games on graphs. EMS Surv. Math. Sci. 1, 113–151 (2014).
Su, Q., Li, A., Wang, L. & Stanley, H. E. Spatial reciprocity in the evolution of cooperation. Proc. R. Soc. B 286, 20190041 (2019).
Li, A. et al. Evolution of cooperation on temporal networks. Nat. Commun. 11, 2259 (2020).
Santos, F. C. & Pacheco, J. M. Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 98104 (2005).
Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).
Hadjichrysanthou, C., Broom, M., & Rychtá, J. Evolutionary games on star graphs under various updating rules. Dyn. Games Appl. 1, 386–407 2011).
Maciejewski, W., Fu, F. & Hauert, C. Evolutionary game dynamics in populations with heterogeneous structures. PLoS Comput. Biol. 10, e1003567 (2014).
Rand, D. G., Nowak, M. A., Fowler, J. H. & Christakis, N. A. Static network structure can stabilize human cooperation. Proc. Natl Acad. Sci. USA 111, 17093–17098 (2014).
Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017).
Allen, B. & McAvoy, A. A mathematical formalism for natural selection with arbitrary spatial and genetic structure. J. Math. Biol. 78, 1147–1210 (2019).
McAvoy, A., Allen, B. & Nowak, M. A. Social goods dilemmas in heterogeneous societies. Nat. Hum. Behav. 4, 819–831 (2020).
McAvoy, A. & Allen, B. Fixation probabilities in evolutionary dynamics under weak selection. J. Math. Biol. 82, 14 (2021).
Fotouhi, B., Momeni, N., Allen, B. & Nowak, M. A. Conjoining uncooperative societies facilitates evolution of cooperation. Nat. Hum. Behav. 2, 492–499 (2018).
Matteo, M., Barbora, M. & Luca, R. Combinatorial analysis of multiple networks. Preprint at https://arxiv.org/abs/1303.4986 (2013).
Heath, A. Strategy and transaction in an African factory. Sociology 8, 179–180 (1974).
Krackhardt, D. Cognitive social structures. Soc. Networks 2, 109–134 (1987).
Emmanuel, L. The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership (Oxford Univ. Press, 2001).
Padgett, J. F. & Ansell, C. K. Robust action and the rise of the Medici, 1400–1434. Am. J. Sociol. 98, 1259–1319 (1993).
Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).
Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).
Wang, Z., Szolnoki, A. & Perc, M. Evolution of public cooperation on interdependent networks: the impact of biased utility functions. Europhys. Lett. 97, 48001 (2012).
Gómez-Gardeñes, J., Reinares, I., Arenas, A. & Floría, L. M. Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012).
Santos, M. D., Dorogovtsev, S. N. & Mendes, J. F. Biased imitation in coupled evolutionary games in interdependent networks. Sci. Rep. 4, 4436 (2014).
Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015).
Kleineberg, K. K. & Helbing, D. Topological enslavement in evolutionary games on correlated multiplex networks. New J. Phys. 20, 053030 (2018).
Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).
Nowak, M. A., Sasaki, A., Taylor, C. & Fudenherg, D. Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646–650 (2004).
Wu, B., Altrock, P. M., Wang, L. & Traulsen, A. Universality of weak selection. Phys. Rev. E 82, 46106 (2010).
Wu, B., García, J., Hauert, C. & Traulsen, A. Extrapolating weak selection in evolutionary games. PLoS Comput. Biol. 9, e1003381 (2013).
Erdős, P & Rényi, A. in The Structure and Dynamics of Networks (ed Newman, M. et al.) 38–82 (Princeton Univ. Press, 2011).
Goh, K. I., Kahng, B. & Kim, D. Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001).
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
Taylor, P. D., Day, T. & Wild, G. Evolution of cooperation in a finite homogeneous graph. Nature 447, 469–472 (2007).
Traulsen, A., Pacheco, J. M. & Nowak, M. A. Pairwise comparison and selection temperature in evolutionary game dynamics. J. Theor. Biol. 246, 522–529 (2007).
Allen, B., Lippner, G. & Nowak, M. A. Evolutionary games on isothermal graphs. Nat. Commun. 10, 5107 (2019).
Su, Q., McAvoy, A., Wang, L. & Nowak, M. A. Evolutionary dynamics with game transitions. Proc. Natl Acad. Sci. USA 116, 25398–25404 (2019).
Ibsen-Jensen, R., Chatterjee, K. & Nowak, M. A. Computational complexity of ecological and evolutionary spatial dynamics. Proc. Natl Acad. Sci. USA 112, 15636–15641 (2015).
Taylor, P. D. Allele-frequency change in a class-structured population. Am. Nat. 135, 95–106 (1990).
Maciejewski, W. Reproductive value in graph-structured populations. J. Theor. Biol. 340, 285–293 (2014).
Chen, Y. T., McAvoy, A. & Nowak, M. A. Fixation probabilities for any configuration of two strategies on regular graphs. Sci. Rep. 6, 39181 (2016).
Acknowledgements
We thank E. Akçay for helpful comments. This work is supported by the Simons Foundation (Math+X Grant to the University of Pennsylvania), the National Science Foundation (grants DMS-1907583, 2042144) and The David & Lucile Packard Foundation (J.B.P.), and the John Templeton Foundation (J.B.P.).
Author information
Authors and Affiliations
Contributions
Q.S. and A.M. conceived the project and derived analytical results. Q.S. performed numerical calculations. Q.S., A.M., Y.M. and J.B.P. analysed the data. Q.S., A.M. and J.B.P. wrote the main text. Q.S. and A.M. wrote the supplementary information.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods, Results, Discussion, Tables 1 and 2, and Figs. 1–17.
Rights and permissions
About this article
Cite this article
Su, Q., McAvoy, A., Mori, Y. et al. Evolution of prosocial behaviours in multilayer populations. Nat Hum Behav 6, 338–348 (2022). https://doi.org/10.1038/s41562-021-01241-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-021-01241-2
This article is cited by
-
Evolution of cooperation in multiplex networks through asymmetry between interaction and replacement
Scientific Reports (2023)
-
Evolution of fairness in the divide-a-lottery game
Scientific Reports (2023)