Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sense of agency for intracortical brain–machine interfaces

Abstract

Intracortical brain–machine interfaces decode motor commands from neural signals and translate them into actions, enabling movement for paralysed individuals. The subjective sense of agency associated with actions generated via intracortical brain–machine interfaces, the neural mechanisms involved and its clinical relevance are currently unknown. By experimentally manipulating the coherence between decoded motor commands and sensory feedback in a tetraplegic individual using a brain–machine interface, we provide evidence that primary motor cortex processes sensory feedback, sensorimotor conflicts and subjective states of actions generated via the brain–machine interface. Neural signals processing the sense of agency affected the proficiency of the brain–machine interface, underlining the clinical potential of the present approach. These findings show that primary motor cortex encodes information related to action and sensing, but also sensorimotor and subjective agency signals, which in turn are relevant for clinical applications of brain–machine interfaces.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Agency judgements and confidence depends on sensory feedback.
Fig. 3: M1 activity depends on sensory feedback.
Fig. 4: Sense of agency in M1.
Fig. 5: Performance of BMI classifier as a function of sensory feedback and sense of agency.
Fig. 6: Somatosensory feedback changes firing rates of M1 neurons.

Data availability

Behavioural data and processed data necessary to reproduce the figures in the main text can be found in the OSF repository accessible at: https://osf.io/7rma5/?view_only=9928bd8e32a748828f7ecfdbeb1f8baa.

Neural data and code for BMI control can be made available to qualified individuals for collaboration via a written agreement between Battelle Memorial Institute and the requester’s affiliated institution. Such enquiries or requests should be directed to: ganzer@battelle.org.

Code availability

Custom code for neural data analysis and BMI control can be obtained following a written agreement between Battelle Memorial Institute and the requester’s affiliated institution. Such inquiries or requests should be directed to: ganzer@battelle.org. Inquiries or requests concerning custom analysis code used for this study should be directed to A.S.

References

  1. Blakemore, S. J., Wolpert, D. M. & Frith, C. D. Abnormalities in the awareness of action. Trends Cogn. Sci. 6, 237–242 (2002).

    Article  PubMed  Google Scholar 

  2. Jeannerod, M. Motor Cognition: What Actions Tell the Self (Oxford Univ. Press, 2006).

  3. Haggard, P. Sense of agency in the human brain. Nat. Rev. Neurosci. 18, 196–207 (2017).

    CAS  Article  PubMed  Google Scholar 

  4. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS  Article  PubMed  Google Scholar 

  7. Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).

    Article  PubMed  Google Scholar 

  9. Donoghue, J. P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5, 1085–1088 (2002).

    CAS  Article  PubMed  Google Scholar 

  10. Nierula, B. et al. Agency and responsibility over virtual movements controlled through different paradigms of brain−computer interface. J. Physiol. 0, 1–16 (2019).

    Google Scholar 

  11. Nierula, B. & Sanchez-Vives, M. V. in Brain-Computer Interface Research (eds Guger, C., Mrachacz-Kersting, N. & Allison, B.) (Springer, 2019).

  12. Sato, A. & Yasuda, A. Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition 94, 241–255 (2005).

    Article  PubMed  Google Scholar 

  13. Marchesotti, S. et al. Cortical and subcortical mechanisms of brain-machine interfaces. Hum. Brain Mapp. 38, 2971–2989 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Evans, N., Gale, S., Schurger, A. & Blanke, O. Visual feedback dominates the sense of agency for brain–machine actions. PLoS ONE 10, e0130019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knoblich, G. & Sebanz, N. Agency in the face of error. Trends Cogn. Sci. 9, 259–261 (2005).

    Article  PubMed  Google Scholar 

  16. Tsakiris, M., Prabhu, G. & Haggard, P. Having a body versus moving your body: how agency structures body-ownership. Conscious. Cogn. 15, 423–432 (2006).

    Article  PubMed  Google Scholar 

  17. Scott, S. H., Cluff, T., Lowrey, C. R. & Takei, T. Feedback control during voluntary motor actions. Curr. Opin. Neurobiol. 33, 85–94 (2015).

    CAS  Article  PubMed  Google Scholar 

  18. Shokur, S. et al. Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar. Proc. Natl Acad. Sci. USA 110, 15121–15126 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Hatsopoulos, N. G., Xu, Q. & Amit, Y. Encoding of movement fragments in the motor cortex. J. Neurosci. 27, 5105–5114 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Suminski, A. J., Tkach, D. C., Fagg, A. H. & Hatsopoulos, N. G. Incorporating feedback from multiple sensory modalities enhances brain–machine interface control. J. Neurosci. 30, 16777–16787 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Churchland, M. M. & Shenoy, K. V. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. J. Neurophysiol. 97, 4235–4257 (2007).

    Article  PubMed  Google Scholar 

  24. Schwartz, A. B. Movement: how the brain communicates with the world. Cell 164, 1122–1135 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. O’Doherty, J. E. et al. Active tactile exploration using a brain–machine–brain interface. Nature 479, 228–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stepniewska, I., Preuss, T. M. & Kaas, J. H. Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. J. Comp. Neurol. 330, 238–271 (1993).

    CAS  Article  PubMed  Google Scholar 

  27. Eickhoff, S. B. et al. Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 30, 6409–6421 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Fetz, E. E., Finocchio, D. V., Baker, M. A. & Soso, M. J. Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. J. Neurophysiol. 43, 1070–1089 (1980).

    CAS  Article  PubMed  Google Scholar 

  29. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    CAS  Article  PubMed  Google Scholar 

  30. Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl Acad. Sci. USA 110, 18279–18284 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Flesher, S. N. et al. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8, 361ra141 (2016).

    Article  PubMed  Google Scholar 

  32. Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15, 313–325 (2014).

    CAS  Article  PubMed  Google Scholar 

  33. Desmurget, M. et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).

    CAS  Article  PubMed  Google Scholar 

  34. Farrer, C. & Frith, C. D. Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15, 596–603 (2002).

    CAS  Article  PubMed  Google Scholar 

  35. Chambon, V., Wenke, D., Fleming, S. M., Prinz, W. & Haggard, P. An online neural substrate for sense of agency. Cereb. Cortex 23, 1031–1037 (2013).

    Article  PubMed  Google Scholar 

  36. Fried, I., Mukamel, R. & Kreiman, G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69, 548–562 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Fornia, L. et al. Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions. Nat. Commun. 11, 1–11 (2020).

    Article  CAS  Google Scholar 

  38. Sperduti, M., Delaveau, P., Fossati, P. & Nadel, J. Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct. Funct. 216, 151–157 (2011).

    Article  PubMed  Google Scholar 

  39. Blanke, O., Slater, M. & Serino, A. Behavioral, neural, and computational principles of bodily self-consciousness. Neuron 88, 145–166 (2015).

    CAS  Article  PubMed  Google Scholar 

  40. Makin, T. R., Holmes, N. P. & Ehrsson, H. H. On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191, 1–10 (2008).

    Article  PubMed  Google Scholar 

  41. Rognini, G. et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry 90, 833–836 (2019).

    Article  PubMed  Google Scholar 

  42. Sanchez-Vives, M. V., Spanlang, B., Frisoli, A., Bergamasco, M. & Slater, M. Virtual hand illusion induced by visuomotor correlations. PLoS ONE 5, e10381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuste, R. et al. Four ethical priorities for neurotechnologies and AI. Nature 551, 159–163 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Fried, I., Haggard, P., He, B. J. & Schurger, A. Volition and action in the human brain: processes, pathologies, and reasons. J. Neurosci. 37, 10842–10847 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Goering, S. et al. Recommendations for responsible development and application of neurotechnologies. Neuroethics 29, 1–22 (2021).

    Google Scholar 

  46. Blanke, O. & Aspell, J. E. Brain technologies raise unprecedented ethical challenges. Nature 458, 703 (2009).

    CAS  Article  PubMed  Google Scholar 

  47. Wang, W. et al. Specific brain morphometric changes in spinal cord injury: a voxel-based meta-analysis of white and gray matter volume. J. Neurotrauma 36, 2348–2357 (2019).

    Article  PubMed  Google Scholar 

  48. Melo, M. C., Macedo, D. R. & Soares, A. B. Divergent findings in brain reorganization after spinal cord injury: a review. J. Neuroimag. 30, 410–427 (2020).

    Article  Google Scholar 

  49. Freund, P. et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Henderson, L. A., Gustin, S. M., Macey, P. M., Wrigley, P. J. & Siddall, P. J. Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J. Neurosci. 31, 2630–2637 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Mallat, S. A Wavelet Tour of Signal Processing: The Sparce Way 3rd edn (Elsevier, 2009).

  52. Humber, C., Ito, K. & Bouton, C. Nonsmooth formulation of the support vector machine for a neural decoding problem. Preprint at https://arxiv.org/abs/1012.0958 (2010).

  53. Colachis IV, S. C. et al. Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia. Front. Neurosci. 12, 1–14 (2018).

    Article  Google Scholar 

  54. Colachis IV, S. C. Optimizing the Brain-Computer Interface for Spinal Cord Injury Rehabilitation. MSc thesis, Ohio State Univ. (2018).

  55. Zhang, M. et al. Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications. Bioelectron. Med. 4, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004).

    Article  PubMed  Google Scholar 

  57. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).

    Article  Google Scholar 

  58. Kuhn, M. caret: Classification and regression training. R package version 6.0-80 https://cran.r-project.org/web/packages/caret (2018).

  59. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Burkhart for his dedication to the study and insightful conversations. A.S. is supported by the Swiss National Science Foundation (grant no. PP00P3_163951/1). M.B. is supported by the Craig H. Neilsen Foundation (grant no. 651289) and State of Ohio Research Incentive Third Frontier Fund. N.F. received funding from the European Research Council under the European Union Horizon 2020 research and innovation programme (grant no. 803122). O.B. is supported by two donors advised by CARIGEST SA (Fondazione Teofilo Rossi di Montelera e di Premuda and a second one wishing to remain anonymous), by the National Center of Competence in Research ‘Synapsy—The Synaptic Bases of Mental Diseases’ (grant no. 51NF40-185897), by the Swiss National Science Foundation (grant no. 320030-188798), by Parkinson Suisse and by the Empiris Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.S.: conceptualization, formal analysis, methodology, writing; M.B.: methodology, investigation, project administration, review and editing; T.B.: data curation, formal analysis, software, visualization, review and editing; S.C.: methodology, data curation, formal analysis, investigation, software; M.S.: formal analysis, investigation, visualization, review and editing; C.D. and K.E.: investigation, data collection; P.G.: methodology, review and editing; G.S.: methodology, software and hardware development; N.A.: methodology, review and editing; P.O.: investigation, software and hardware development; D.F.: investigation, software and hardware development; P.S.: methodology, review and editing; N.F.: formal analysis, methodology, visualization, review and editing; A.R.: funding acquisition, resources, supervision, review and editing; O.B.: conceptualization, funding acquisition, methodology, supervision and writing.

Corresponding authors

Correspondence to Andrea Serino or Olaf Blanke.

Ethics declarations

Competing interests

A.S. is head of Neuroscience at MindMaze SA. O.B. is cofounder and shareholder of Metaphysiks Engineering SA, as well as member of the board and shareholder of MindMaze SA. P.G., G.S., N.A. and D.F. hold patents for the BMI system. M.B, C.D., K.E., M.S., T.B., N.F., P.S. and A.R. declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Peer reviewer reports are available.

Supplementary information

Supplementary information

Supplementary text, Figs. 1–6 and Table 1.

Reporting summary.

Peer review information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serino, A., Bockbrader, M., Bertoni, T. et al. Sense of agency for intracortical brain–machine interfaces. Nat Hum Behav 6, 565–578 (2022). https://doi.org/10.1038/s41562-021-01233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01233-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing