Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne lidar

Abstract

City plans symbolizing cosmologies have long been recognized as a defining element of Mesoamerican civilizations. The origins of formal spatial configurations are thus the key to understanding early civilizations in the region. Assessment of this issue, however, has been hindered by the lack of systematic studies of site plans over broad areas. Here, we report the identification of 478 formal rectangular and square complexes, probably dating from 1,050 to 400 bc, through a lidar (laser imaging, detection and ranging) survey across the Olmec region and the western Maya lowlands. Our analysis of lidar data also revealed that the earlier Olmec centre of San Lorenzo had a central rectangular space, which possibly provided the spatial template for later sites. This format was probably formalized and spread after the decline of San Lorenzo through intensive interaction across various regions. These observations highlight the legacy of San Lorenzo and the critical role of inter-regional interaction.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Study area.
Fig. 2: Formative standardized complexes.
Fig. 3: MFG complexes on the same scale.
Fig. 4: Comparison of San Lorenzo and MFUs.
Fig. 5: Four-directional lines at ceremonial complexes.
Fig. 6: Orientations of standardized complexes.
Fig. 7: Sites dating to later periods.
Fig. 8: Fortified sites in the Maya area.

Data availability

The database of archaeological sites identified in this study is available at the University of Arizona Campus Repository (https://repository.arizona.edu/handle/10150/659895)123.

Code availability

The Oxcal code used for Bayesian analysis is provided in Supplementary Information.

References

  1. Fash, W. L. & López Luján, L. Art of Urbanism: How Mesoamerican Kingdoms Represented Themselves in Architecture and Imagery (Dumbarton Oaks Research Library and Collection, 2009).

  2. Freidel, D. A., Chase, A. F., Dowd, A. S. & Murdock, J. Maya E Groups: Calendars, Astronomy, and Urbanism in the Early Lowlands (Univ. Press of Florida, 2017).

  3. Clark, J. E. & Hansen, R. D. in Royal Courts of the Ancient Maya Vol. 2 (eds Inomata, T. & Houston, S. D.) 1–45 (Westview, 2001).

  4. Lowe, G. W. in The Origins of Maya Civilization (ed. Adams, R. E. W.) 197–248 (Univ. of New Mexico Press, 1977).

  5. McDonald, A. J. Tzutzuculi: A Middle-Preclassic Site on the Pacific Coast of Chiapas, Mexico (New World Archaeological Foundation, Brigham Young Univ., 1983).

  6. Lee, T. A. & Clark, J. E. Chiapa de Corzo, Mound 17: Comparative Analysis of a Salvage Excavation (Brigham Young Univ., 2016).

  7. Bachand, B. R. & Lowe, L. S. in Arqueología Reciente de Chiapas: Contribuciones del Encuentro Celebrado en el 60° Aniversario de la Fundación Arqueológica Nuevo Mundo Papers of the New World Archaeological Foundation No. 72 (eds Lowe, L. S. & Pye, M. E.) 45–68 (Brigham Young Univ., 2012).

  8. Drucker, P., Heizer, R. F. & Squier, R. H. Excavations at La Venta, Tabasco, 1955 (Smithsonian Institution, 1959).

  9. Lowe, G. W. in The Olmec and Their Neighbors (eds Coe, M. D. & Grove, D.) 231–256 (Dumbarton Oaks Research Library and Collection, 1981).

  10. Estrada-Belli, F. The First Maya Civilization: Ritual and Power Before the Classic Period (Routledge, 2011).

  11. Clark, J. E. in The Origins of Maya States (eds Traxler, L. P. & Sharer, R. J.) 123–224 (Univ. of Pennsylvania Museum of Archaeology and Anthropology, 2016).

  12. Inomata, T., Triadan, D., Aoyama, K., Castillo, V. & Yonenobu, H. Early ceremonial constructions at Ceibal, Guatemala, and the origins of lowland Maya civilization. Science 340, 467–471 (2013).

    CAS  PubMed  Google Scholar 

  13. Inomata, T. & Triadan, D. Middle Preclassic Caches from Ceibal, Guatemala. Maya Archaeol. 3, 56–91 (2016).

    Google Scholar 

  14. Blomster, J. P., Neff, H. & Glascock, M. D. Olmec pottery production and export in ancient Mexico determined through elemental analysis. Science 307, 1068–1072 (2005).

    CAS  PubMed  Google Scholar 

  15. Cyphers, A. & Di Castro, A. in Art of Urbanism: How Mesoamerican Kingdoms Represented Themselves in Architecture and Imagery (eds Fash, W. L. & López Luján, L.) 21–52 (Dumbarton Oaks Research Library and Collection, 2009).

  16. Coe, M. D. & Diehl, R. A. In the Land of the Olmec (Univ. of Texas Press, 1980).

  17. Cyphers, A. Población, Subsistencia y Medio Ambiente en San Lorenzo Tenochtitlan (Universidad Nacional Autónoma de México, 1997).

  18. Cyphers, A. & Murtha, T. in Mesoamerican Plazas: Arenas of Community and Power (eds Tsukamoto, K. & Inomata, T.) 71–89 (Univ. of Arizona Press, 2014).

  19. Inomata, T. et al. Monumental architecture at Aguada Fénix and the rise of Maya civilization. Nature 582, 530–533 (2020).

    CAS  PubMed  Google Scholar 

  20. Rosenswig, R. M. & López-Torrijos, R. Lidar reveals the entire kingdom of Izapa during the first millennium BC. Antiquity 92, 1292–1309 (2018).

    Google Scholar 

  21. Canuto, M. A. et al. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 361, eaau0137 (2018).

    PubMed  Google Scholar 

  22. Chase, A. F. et al. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. J. Archaeol. Sci. 38, 387–398 (2011).

    Google Scholar 

  23. Chase, A. F. et al. Ancient Maya regional settlement and inter-site analysis: the 2013 west-central Belize LiDAR Survey. Remote Sens. 6, 8671–8695 (2014).

    Google Scholar 

  24. Inomata, T. et al. Archaeological application of airborne LiDAR to examine social changes in the Ceibal region of the Maya lowlands. PLoS ONE 13, e0191619 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Crutchley, S. in Laser Scanning for the Environmental Sciences (eds Heritage, G. L. & Large, A. R. G.) 180–200 (Blackwell Publishing, 2009).

  26. Howey, M. C. L., Sullivan, F. B., Burg, M. B. & Palace, M. W. Remotely sensed big data and iterative approaches to cultural feature detection and past landscape process analysis. J. Field Archaeol. 45, S27–S38 (2020).

    Google Scholar 

  27. Stoner, W. D. Risk, agricultural intensification, political administration, and collapse in the classic period gulf lowlands: a view from above. J. Archaeol. Sci. 80, 83–95 (2017).

    Google Scholar 

  28. Stoner, W. D., Stark, B. L., VanDerwarker, A. & Urquhart, K. R. Between land and water: hydraulic engineering in the Tlalixcoyan basin, Veracruz, Mexico. J. Anthropol. Archaeol. 61, 101264 (2021).

    Google Scholar 

  29. Casana, J. Global-scale archaeological prospection using CORONA satellite imagery: automated, crowd-sourced, and expert-led approaches. J. Field Archaeol. 45, S89–S100 (2020).

    Google Scholar 

  30. Wernke, S., VanValkenburgh, P. & Saito, A. Interregional archaeology in the age of big data: building online collaborative platforms for virtual survey in the Andes. J. Field Archaeol. 45, S61–S74 (2020).

    Google Scholar 

  31. Inomata, T., Triadan, D., Pinzón, F. & Aoyama, K. Large plateau construction during the Preclassic period at the Maya site of Ceibal, Guatemala. PLoS ONE 14, e0221943 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Willey, G. R., Smith, A. L., Tourtellot III, G. & Graham, I. Excavations at Seibal, Department of Peten, Guatemala: Introduction: The Site and its Setting (Harvard Univ., 1975).

  33. Lowe, G. W., Lee, T. A. & Martínez E., E. Izapa: An Introduction to the Ruins and Monuments (Brigham Young Univ., 1982).

  34. Rosenswig, R. M., López-Torrijos, R., Antonelli, C. E. & Mendelsohn, R. R. Lidar mapping and surface survey of the Izapa state on the tropical piedmont of Chiapas, Mexico. J. Archaeol. Sci. 40, 1493–1507 (2013).

    Google Scholar 

  35. Anaya Hernández, A. The Pomoná Kingdom and its Hinterland (FAMSI, 2002).

  36. Doering, T. F. An Unexplored Realm in the Heartland of the Southern Gulf Olmec: Investigations at El Marquesillo, Veracruz, Mexico (Univ. of South Florida, 2007).

  37. Vargas Pacheco, E. Itzamkanac, El Tigre, Campeche: Exploración, Consolidación y Análisis de los Materiales de la Estructura 1 (Universidad Nacional Autónoma de México, 2013).

  38. Miller, D. E. Excavations at La Libertad, a Middle Formative Ceremonial Center in Chiapas, Mexico (Brigham Young Univ., 2014).

  39. Aimers, J. J. & Rice, P. M. Astronomy, ritual, and the interpretation of Maya “E-group” architectural assemblages. Anc. Mesoam. 17, 79–96 (2006).

    Google Scholar 

  40. Cyphers, A. & Murtha, T. Mayas y olmecas: nuevas perspectivas. Arqueología Mexicana 28, 78–81 (2020).

    Google Scholar 

  41. Cyphers, A., Murtha, T. & Zurita, J. Atlas Digital de la Zona Arqueológica de San Lorenzo, Veracruz (Instituto de Investigaciones Antropológicas, 2014).

  42. Cyphers, A. in The Origins of Maya States (eds Traxler, L. P. & Sharer, R. J.) 83–122 (Univ. of Pennsylvania Museum of Archaeology and Anthropology, 2016).

  43. Arieta Baizabal, V. & Cyphers, A. Densidad poblacional en la capital olmeca de San Lorenzo, Veracruz. Anc. Mesoam. 28, 61–73 (2017).

    Google Scholar 

  44. Diehl, R. A. The Olmecs: America’s First Civilization (Thames & Hudson, 2004).

  45. Tsukamoto, K. & Inomata, T. Mesoamerican Plazas: Practices, Meanings, and Memories (Univ. of Arizona Press, 2014).

  46. Grove, D. C. in Social Patterns in Pre-Classic Mesoamerica (eds Grove, D. C. & Joyce, R. A.) 255–300 (Dumbarton Oaks Research Library and Collection, 1999).

  47. Blake, M. in Early Mesoamerican Social Transformations: Archaic and Formative Lifeways in the Soconusco Region (ed. Lesure, R. G.) 97–118 (Univ. of California Press, 2011).

  48. Hodgson, J. G., Clark, J. G. & Gallaga Murrieta, E. Ojo de Agua Monument 3: a new Olmec-style sculpture from Ojo de Agua, Chiapas, Mexico. Mexicon 32, 139–144 (2010).

    Google Scholar 

  49. Inomata, T. in Early Maya E Groups, Solar Calendars, and the Role of Astronomy in the Rise of Lowland Urbanism (eds Freidel, D. A. et al.) 89–107 (Univ. Press of Florida, 2017).

  50. Milbrath, S. Star Gods of the Maya: Astronomy in Art, Folklore, and Calendars (Univ. of Texas Press, 1999).

  51. Stuart, D. The Order of Days: the Maya World and the Truth about 2012 (Harmony Books, 2011).

  52. Tedlock, B. Time and the Highland Maya (Univ. of New Mexico Press, 1992).

  53. Aveni, A. F. Skywatchers (Univ. of Texas Press, 2001).

  54. Aveni, A. & Hartung, H. in World Archaeoastronomy (ed. Aveni, A.) 441–461 (Cambridge Univ. Press, 1989).

  55. Sánchez Nava, P. F. & Šprajc, I. Orientaciones Astronómicas en la Arquitectura Maya de las Tierras Bajas (Instituto Nacional de Antropología e Historia, 2015).

  56. Aveni, A. F., Dowd, A. S. & Vining, B. Maya calendar reform? Evidence from orientations of specialized architectural assemblages. Lat. Am. Antiquity 14, 159–178 (2003).

    Google Scholar 

  57. Milbrath, S. The role of solar observations in developing the Preclassic Maya calendar. Lat. Am. Antiquity 28, 88–104 (2017).

    Google Scholar 

  58. Love, M. & Guernsey, J. in Early Mesoamerican Social Transformations: Archaic and Formative Lifeways in the Soconusco Region (ed. Lesure, R. G.) 170–188 (Univ. of California Press, 2011).

  59. Rosenswig, R. M., López-Torrijos, R. & Antonelli, C. E. Lidar data and the Izapa polity: new results and methodological issues from tropical Mesoamerica. Archaeol. Anthropol. Sci. 7, 487–504 (2015).

    Google Scholar 

  60. Sisson, E. B. Archaeological Survey of the Chontalpa Region, Tabasco, Mexico (Harvard Univ., 1976).

  61. Borstein, J. A. Tripping over Colossal Heads: Settlement Patterns and Population Development in the Upland Olmec Heartland. PhD thesis, Pennsylvania State Univ. (2001).

  62. Symonds, S., Cyphers, A. & Lunagómez, R. Asentamiento Prehispánico en San Lorenzo Tenochtitlán 1st edn, Vol. 2 (Universidad Nacional Autónoma de México, 2002).

  63. von Nagy, C. L. Of Meandering Rivers and Shifting Towns: Landscape Evolution and Community within the Grijalva Delta (Tulane Univ., 2003).

  64. Liendo Stuardo, R. B’aakal: Arqueología de la Región de Palenque, Chiapas, México: Temporadas 1996–2006 (Archaeopress, 2011).

  65. Marken, D. B. Palenque: Recent Investigations at the Classic Maya Center (AltaMira Press, 2007).

  66. Eaton, J. D. & Ball, J. W. Studies in the Archaeology of Coastal Yucatan and Campeche, Mexico (Tulane Univ., 1978).

  67. Scholes, F. V. & Roys, R. L. The Maya-Chontal Indians of Acalán-Tixchel: A Contribution to the History and Ethnography of the Yucatan Peninsula 2nd edn (Univ. of Oklahoma Press, 1968).

  68. Killion, T. W. & Urcid, J. The Olmec legacy: cultural continuity and change in Mexico’s southern gulf coast lowlands. J. Field Archaeol. 28, 3–25 (2001).

    Google Scholar 

  69. Pool, C. A. et al. in Arqueología de la Costa del Golfo: Dinámicas de la Interacción Política, Económica e Ideológica (eds Budar, L. et al.) 269–290 (Universidad Veracruzana and Administración Portuaria Integral de Veracruz, 2017).

  70. Urcid, J. & Killion, T. W. in Classic Period Cultural Currents in Southern and Central Veracruz (eds Arnold, P. J. III & Pool, C. A.) 259–292 (Dumbarton Oaks Research Library and Collection, 2008).

  71. Stark, B. L. Formal architectural complexes in south-central Veracruz, Mexico: a capital zone? J. Field Archaeol. 26, 197–225 (1999).

    Google Scholar 

  72. Stark, B. L. in Alternative Pathways to Complexity: A Collection of Essays on Architecture, Economics, Power, and Cross-Cultural Analysis (eds Fargher, L. F. & Heredia Espinoza, V. Y.) 105–130 (Univ. Press of Florida, 2016).

  73. Daneels, A. in Olmec to Aztec: Settlement Patterns in the Ancient Gulf Lowlands (eds Stark, B. L. & Arnold, P. J. III) 206–252 (Univ. of Arizona Press, 1997).

  74. Daneels, A. El Patrón de Asentamiento del Periodo Clásico en la Cuenca Baja del Río Cotaxtla, Centro de Veracruz (Universidad Nacional Autónoma de México, 2002).

  75. Daneels, A. in Classic Period Cultural Currents in Southern and Central Veracruz (eds Arnold, P. J. III & Pool, C. A.) 197–224 (Dumbarton Oaks Research Library and Collections, 2008).

  76. Stark, B. L. & Eschbach, K. L. Collapse and diverse responses in the Gulf lowlands, Mexico. J. Anthropol. Archaeol. 50, 98–112 (2018).

    Google Scholar 

  77. Siemens, A. H. & Paleston, D. E. Ridged fields and associated features in southern Campeche: new perspectives on the lowland Maya. Am. Antiquity 37, 228–239 (1972).

    Google Scholar 

  78. Dunning, N. P. et al. The ancient Maya wetland fields of Acalán. Mexicon 42, 91–105 (2020).

    Google Scholar 

  79. Beach, T. et al. Ancient Maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. Proc. Natl Acad. Sci. USA 116, 21469–21477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Matheny, R. T. The Ceramics of Aguacatal, Campeche, Mexico (Brigham Young Univ., 1970).

  81. Perales Vela, R. & Mugarte, J. in Seis Ensayos Sobre Antiguos Patrones de Asentamiento en el Area Maya (ed. Vargas Pacheco, E.) 27–52 (Universidad Nacional Autónoma de México, 1995).

  82. Suárez, V. & Rocha, F. in Los Investigadores de la Cultura Maya No. 9, Vol. 1 (eds Benavides Castillo, A. & Matheny, R. T.) 66–79 (Universidad Autónoma de Campeche, 2001).

  83. Aoyama, K. Classic Maya warfare and weapons: spear, dart, and arrow points of Aguateca and Copan. Anc. Mesoam. 16, 291–304 (2005).

    Google Scholar 

  84. Brown, M. K. & Stanton, T. W. Ancient Mesoamerican Warfare (AltaMira, 2003).

  85. Demarest, A. A., Quintanilla, C. & Suasnavar, J. S. in Ritual, Violence, and the Fall of the Classic Maya Kings (eds Iannone, G. et al.) 159–186 (Univ. Press of Florida, 2016).

  86. Demarest, A. A. The Vanderbilt Petexbatun Regional Archaeological Project 1989–1994: overview, history, and major results of a multidisciplinary study of the Classic Maya collapse. Anc. Mesoam. 8, 209–228 (1997).

    Google Scholar 

  87. Inomata, T. in Embattled Bodies, Embattled Places: War in Pre-Columbian America (eds Scherer, A. K. & Verano, J.) 25–56 (Dumbarton Oaks Research Library and Collection, 2014).

  88. Inomata, T. Warfare and the Fall of a Fortified Center: Archaeological Investigations at Aguateca (Vanderbilt Univ. Press, 2007).

  89. Inomata, T. in The Archaeology of Settlement Abandonment in Middle America (eds Inomata, T. & Webb, R. W.) 43–60 (Univ. of Utah Press, 2003).

  90. Scherer, A. K. & Golden, C. in Embattled Bodies, Embattled Places: War in Pre-Columbian America (eds Scherer, A. K. & Veran, J.) 57–92 (Dumbarton Oaks Research Library and Collection, 2014).

  91. Webster, D. The Fall of the Ancient Maya (Thames and Hudson, 2002).

  92. Webster, D. L. in Lowland Maya Civilization in the Eighth Century AD (eds Sabloff, J. A. & Henderson, J. S.) 415–444 (Dumbarton Oaks Research Library and Collection, 1993).

  93. Wahl, D., Anderson, L., Estrada-Belli, F. & Tokovinine, A. Palaeoenvironmental, epigraphic and archaeological evidence of total warfare among the Classic Maya. Nat. Hum. Behav. 3, 1049–1054 (2019).

    PubMed  Google Scholar 

  94. Pugh, T. W. From the streets: public and private space in an early Maya city. J. Archaeol. Method Theory 26, 967–997 (2019).

    Google Scholar 

  95. Fernandez-Diaz, J. C., Carter, W. E., Shrestha, R. L. & Glennie, C. L. Now you see it … now you don’t: understanding airborne mapping LiDAR collection and data product generation for archaeological research in Mesoamerica. Remote Sens. 6, 9951–10001 (2014).

    Google Scholar 

  96. Fernandez-Diaz, J. C. et al. Capability assessment and performance metrics for the Titan multispectral mapping lidar. Remote Sens. 8, 936 (2016).

    Google Scholar 

  97. Fisher, C. T. et al. Identifying ancient settlement patterns through LiDAR in the Mosquitia region of Honduras. PLoS ONE 11, e0159890 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Fisher, C. T., Cohen, A. S., Fernández-Diaz, J. C. & Leisz, S. J. The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. Quat. Int. 448, 129–138 (2017).

    Google Scholar 

  99. Stanton, T. W. et al. ‘Structure’ density, area, and volume as complementary tools to understand Maya Settlement: an analysis of lidar data along the great road between Coba and Yaxuna. J. Archaeol. Sci. Rep. 29, 102178 (2020).

    Google Scholar 

  100. Brewer, J. L. et al. Employing airborne lidar and archaeological testing to determine the role of small depressions in water management at the ancient Maya site of Yaxnohcah, Campeche, Mexico. J. Archaeol. Sci. Rep. 13, 291–302 (2017).

    Google Scholar 

  101. Chase, A. F. et al. The use of LiDAR in understanding the ancient Maya landscape. Adv. Archaeol. Pract. 2, 208–221 (2014).

    Google Scholar 

  102. Hare, T., Masson, M. & Russell, B. High-density LiDAR mapping of the ancient city of Mayapán. Remote Sens. 6, 9064–9085 (2014).

    Google Scholar 

  103. Inomata, T. et al. Archaeological application of airborne LiDAR with object-based vegetation classification and visualization techniques at the lowland Maya site of Ceibal, Guatemala. Remote Sens. 9, 563 (2017).

    Google Scholar 

  104. Murtha, T., Golden, C., Cyphers, A., Klippel, A. & Flohr, T. Beyond inventory and mapping: LIDAR, landscape and digital landscape architecture. J. Digit. Landsc. Archit. 3, 249-259 (2018).

  105. Cook, B. D. et al. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 5, 4045–4066 (2013).

    Google Scholar 

  106. Golden, C. et al. Reanalyzing environmental lidar data for archaeology: Mesoamerican applications and implications. J. Archaeol. Sci. Rep. 9, 293–308 (2016).

    Google Scholar 

  107. Chiba, T., Kaneta, S.-i & Suzuki, Y. Red relief image map: new visualization method for three dimensional data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 37, 1071–1076 (2008).

    Google Scholar 

  108. Chiba, T. & Suzuki, Y. Visualization of airborne laser mapping data: production and development of red relief image map (in Japanese). Adv. Surv. Technol. 96, 32–42 (2008).

    Google Scholar 

  109. Casana, J. Regional-scale archaeological remote sensing in the age of big data: automated site discovery vs. brute force methods. Adv. Archaeol. Pract. 2, 222–233 (2014).

    Google Scholar 

  110. Berlin, H. in Current Report Vol. 7 (ed Pollock, H. E. D.) 101–130 (Carnegie Institution, 1953).

  111. Blom, F. F. & La Farge, O. Tribes and Temples; A Record of the Expedition to Middle America (The Tulane Univ. of Louisiana, 1926).

  112. Ochoa, L. & Hernández, M. I. Los olmecas y el valle del Usumacinta. An. de. Antropol.ía 14, 75–90 (1977).

    Google Scholar 

  113. Ochoa, L. in Antropología e Historia de los Mixe-Zoques y Mayas: Homenaje a Frans Blom (eds Ochoa, L. & Lee, T. A.) 147–174 (UNAM, 1983).

  114. Tejedo, F., Gaxiola, I. M., Camacho, J. L. & Ramírez C, E. Zonas Arqueológicas, Tabasco (Instituto Nacional de Antropología e Historia, 1988).

  115. West, R. C., Psuty, N. P. & Thom, B. G. The Tabasco Lowlands of Southeastern Mexico (LSU Press, 1969).

  116. Witschey, W. R. T. & Brown, C. T. in The Ancient Maya of Mexico: Reinterpreting the Past of the Northern Maya (ed Braswell, G. E.) 184–202 (Equinox Publishing, 2014).

  117. Stoner, W. D. Modeling and testing polity boundaries in the Classic Tuxtla mountains, southern Veracruz, Mexico. J. Anthropol. Archaeol. 31, 381–402 (2012).

    Google Scholar 

  118. Santley, R. S. The Prehistory of the Tuxtlas (Univ. of New Mexico Press, 2007).

  119. Ensor, B. E. & Ayora, G. T. The site of El Bellote, Tabasco, Mexico and preliminary observations on Late Classic period Chontal regional integration. Mexicon 33, 116–126 (2011).

  120. Ensor, B. E. Oysters in the Land of Cacao: Archaeology, Material Culture, and Societies at Islas de Los Cerros and the Western Chontalpa, Tabasco, Mexico (Univ. of Arizona Press, 2020).

  121. Kruger, R. P. An Archaeological Survey in the Region of the Olmec, Veracruz, Mexico. PhD thesis, Univ. of Pittsburgh (1996).

  122. Rust, W. F. A Settlement Survey of La Venta, Tabasco, Mexico. PhD thesis, Univ. of Pennsylvania (2008).

  123. Inomata, T. Middle Usumacinta Archaeological Project Tabasco Veracruz Site Database, https://repository.arizona.edu/handle/10150/659895 (Univ. of Arizona Campus Repository, 2021).

  124. Hernández Jiménez, M. D. L. Supervisión Arqueológica Almagres 2D Informe Técnico Final (Centro INAH Veracruz, 2007).

  125. Hernández Jiménez, M. D. L. Supervisión Arqueológica Almagres 2D, Ampliación Bloque Chalca Informe Técnico Final (Centro INAH Veracruz, 2008).

  126. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Programa Emergente de Inspección Aqueológica en el Estudio Sísmico Tepetate NW-El Plan-Los Soldados 3D Informe Técnico Parcial (Centro INAH Veracruz, 2010).

  127. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Supervisión Arqueológica Tepetate-El Plan-Los Soldados 3D Informe Técnico Parcial (Centro INAH Veracruz, 2011).

  128. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Supervisión Arqueológica Chalchijapa-Sauzal 2D Informe Técnico Final (Centro INAH Veracruz, 2011).

  129. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Supervisión Arqueológica Tepetate NW-El Plan-Los Soldados 3D Informe Técnico Final (Centro INAH Veracruz, 2012).

  130. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Informe Técnico Salsomera 2D (Centro INAH Veracruz, 2014).

  131. Hernández Jiménez, M. D. L. & Moreno Díaz, M. Supervisión Arqueológica Tepetate NW-El Plan-Los Soldados, Ampliación Cerro Nanchital 3D Informe Técnico Final (Centro INAH Veracruz, 2014).

  132. Hernández Jiménez, M. D. L. Asentamientos arqueológicos del municipio de las Choapas, Veracruz. LiminaR 10, 122–137 (2012).

    Google Scholar 

  133. Hernández Jiménez, L. Reconocimiento extensivo en la región sur de Veracruz. Ollin 10, 23–30 (2012).

    Google Scholar 

  134. Stark, B. L. Classic Period Mixtequilla, Veracruz, Mexico: Diachronic Inferences from Residential Investigations (Institute for Mesoamerican Studies University at Albany; distributed by Univ. of Texas Press, 2001).

  135. Stark, B. L. The Archaeology of Political Organization: Urbanism in Classic Period Veracruz, Mexico (Cotsen Institute Press, 2020).

  136. Loughlin, M. L. El Mesón Regional Survey: Settlement Patterns and Political Economy in the Eastern Papaloapan Basin, Veracruz, Mexico. PhD thesis, Univ of Kentucky (2012).

  137. Kruszczynski, M. A. R. Prehistoric Basalt Exploitation and Core-Periphery Relations Observed from the Cerro El Vigía Hinterland of Tres Zapotes, Veracruz, Mexico. PhD thesis, Univ. of Pittsburgh (2001).

  138. Santley, R. S. The economy of ancient Matacapan. Anc. Mesoam. 5, 243–266 (1994).

  139. Wendt, C. J., Bernard, H. N. & Delsescaux, J. A Middle Formative artifact excavated at Arroyo Pesquero, Veracruz. Anc. Mesoam. 25, 309–316 (2014).

    Google Scholar 

  140. Romero Rivera, J. L. in Seis Ensayos Sobre Antiguos Patrones de Asentamiento en el Area Maya (ed. Vargas Pacheco, E.) 15–27 (UNAM, 1995).

  141. Teranishi Castillo, K. in XXIII Simposio de Investigaciones Arqueológicas en Guatemala, 2009 (eds Arroyo, B. et al.) 210–223 (Museo Nacional de Arqueología y Etnología, 2010).

  142. Ek, J. D. Resilience in the Midst of Collapse: A Regional Case Study of Socio-Ecological Dynamics in the Río Champotón Drainage, Campeche, Mexico. PhD thesis, State Univ. of New York at Albany (2015).

  143. González Lauck, R. B. in The Place of Stone Monuments: Context, Use, and Meaning in Mesoamerica’s Preclassic Tradition (eds Guernsey, J. et al.) 177–205 (Dumbarton Oaks Research Library and Collection, 2010).

Download references

Acknowledgements

The permit for our research was granted by the Instituto Nacional de Antropología e Historia (INAH). We thank the personnel of the Centro INAH Tabasco, especially its director C. Giordano, J. L. Romero and J. Lagunes for their help and information on Pajonal and Kilómetro 15. Funding was provided by the Alphawood Foundation and the National Science Foundation (BCS-1826909) to T.I. and D.T. Thoughtful comments on earlier drafts were provided by B. Stark, D. Stuart, A. Cyphers, J. Clark, R. Rosenswig and A. Aveni. We also thank W. Stoner and T. Pugh for discussions on southern Veracruz and Nixtun-Ch’ich’. We are grateful to E. Martínez and S. Fallas of the CCGS for sharing their lidar data. W. Witschey and C. Brown kindly shared their Electronic Atlas of Ancient Maya Sites data. R. González kindly allowed us to redraw the map of La Venta. J. MacLellan and M. Burham compiled the INEGI lidar data, and L. Auld-Thomas provided instructions for the production of RRIM. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.I. conceptualized the research. J.F.-D. coordinated the NCALM lidar data acquisition and processing, and reprocessed the INEGI and G-LiHT lidar. T.I., M.G.M, F.P. and M.G.H. analysed lidar data for the identification of archaeological features. T.I. and T.B. identified wetland fields in lidar data. J.D.D., A.G.L. and L.G.C. provided information on the INEGI lidar. T.I., D.T., M.G.M, F.P., M.G.H. and A.F. conducted field investigations in the Middle Usumacinta region and M.L.H.J. and M.M.D. carried out surveys in southern Veracruz. A.S. analysed faunal remains. G.H. conducted radiocarbon analysis and T.I. and G.H. evaluated radiocarbon dates. T.I. conducted the Bayesian analysis of radiocarbon dates. T.I. wrote the manuscript with input from others.

Corresponding author

Correspondence to Takeshi Inomata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Fiona Petchey, Robert Rosenswig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 E Groups.

a, Types of E Groups. b, Locations of E Groups by type. Only complexes identified in the INEGI lidar are plotted.

Extended Data Fig. 2 MFCs and MFGs.

a, Locations of MFCs and MFGs. b, MFCs and an MFG (Peñites) shown in RRIM (DEM). All images are on the same scale.

Extended Data Fig. 3 Locations of MFUs and VCs.

The numbers indicate the locations of the sites shown in Extended Data Figs. 4 and 5.

Extended Data Fig. 4 Examples of MFUs.

See Extended Data Fig. 3 for their locations. The images are shown in RRIM (DEM) and hillshade (DSM). All images are on the same scale.

Extended Data Fig. 5 Oxcal output of the manual rejection model for the 2020 samples.

Outliers are excluded from the output. The grey areas indicate the probability distributions of unmodelled dates, whereas the black areas show the probability distributions of modelled dates. The bars under the probability distributions indicate the 95.4 % ranges.

Extended Data Fig. 6 Examples of VCs.

See Extended Data Fig. 3 for their locations. The images are shown in RRIM (DEM) and hillshade (DSM). All images are on the same scale.

Extended Data Fig. 7 El Marquesillo possibly exhibiting the VC pattern.

It is shown in the RRIM of the INEGI DEM.

Extended Data Fig. 8 San Lorenzo and La Duda.

The images are on the same scale, but the image of La Duda is rotated. See Extended Data Fig. 3 for their locations. a, Edge platforms and the central rectangular space of San Lorenzo. b, San Lorenzo. The 2 m-resolution DEM reprocessed from the INEGI lidar data is shown as a hillshade image. The areas of dense vegetation, which laser pulses did not penetrate well, are indicated in half-transparent green. Other areas have pastures or sparse vegetation. In clear areas, details of the surface topography are visible. To produce this DEM, we manually cleaned some vegetation returns only in the areas covered by dense vegetation. The DEM shows the rectangular shapes of edge platforms, which define the straight edges of the possible rectangular plaza in the middle. The buildings in the centre of the probable plaza represent a Classic Veracruz complex added during the Villa Alta phase. c, The MFU complex of La Duda. The 5 m-resolution INEGI DSM is shown as a hillshade image. Its northeastern part is damaged by modern road construction, and its eastern end is covered by dense vegetation. Its edge platforms (possibly 20 of them) separated by narrow alleys and the rectangular plaza with a wing on the viewer’s right are visible. Its configuration is similar to that of San Lorenzo. The main difference is the presence of an E Group.

Supplementary information

Supplementary Information

Supplementary Discussions 1–3, Figs. 1–9, Tables 1–7, Methods and Refs. 1–55.

Reporting Summary

Peer Review File

Supplementary Table 8

List of radiocarbon dates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Inomata, T., Fernandez-Diaz, J.C., Triadan, D. et al. Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne lidar. Nat Hum Behav 5, 1487–1501 (2021). https://doi.org/10.1038/s41562-021-01218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01218-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing