Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Latent motives guide structure learning during adaptive social choice

Abstract

Predicting the behaviour of others is an essential part of social cognition. Despite its ubiquity, social prediction poses a poorly understood generalization problem: we cannot assume that others will repeat past behaviour in new settings or that their future actions are entirely unrelated to the past. We demonstrate that humans solve this challenge using a structure learning mechanism that uncovers other people’s latent, unobservable motives, such as greed and risk aversion. In four studies, participants (N = 501) predicted other players’ decisions across four economic games, each with different social tensions (for example, Prisoner’s Dilemma and Stag Hunt). Participants achieved accurate social prediction by learning the stable motivational structure underlying a player’s changing actions across games. This motive-based abstraction enabled participants to attend to information diagnostic of the player’s next move and disregard irrelevant contextual cues. Participants who successfully learned another’s motives were more strategic in a subsequent competitive interaction with that player in entirely new contexts, reflecting that social structure learning supports adaptive social behaviour.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The Social Prediction Game.
Fig. 2: Behavioural results.
Fig. 3: Computational models.
Fig. 4: Eye-tracking results from study 2.
Fig. 5: Task and results of Study 4.

Data availability

The behavioural data analysed in this paper are available at https://github.com/jeroenvanbaar/NHB_motives_structure.

Code availability

The analysis code for this paper is available at https://github.com/jeroenvanbaar/NHB_motives_structure.

References

  1. Stewart, A. J. et al. Information gerrymandering and undemocratic decisions. Nature 573, 117–121 (2019).

    CAS  PubMed  Google Scholar 

  2. Hauser, O. P., Rand, D. G., Peysakhovich, A. & Nowak, M. A. Cooperating with the future. Nature 511, 220–223 (2014).

    CAS  PubMed  Google Scholar 

  3. Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an infectious disease outbreak controllable. Proc. Natl Acad. Sci. USA 101, 6146–6151 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).

    CAS  PubMed  Google Scholar 

  5. Seuntjens, T. G., Zeelenberg, M., Van De Ven, N. & Breugelmans, S. M. Dispositional greed. J. Pers. Soc. Psychol. 108, 917–933 (2015).

    PubMed  Google Scholar 

  6. Fehr, E. & Schmidt, K. M. A theory of fairness, competition, and cooperation. Q. J. Econ. 114, 817–868 (1999).

    Google Scholar 

  7. Bolton, G. & Ockenfels, A. ERC: a theory of equity, reciprocity, and competition. Am. Econ. Rev. 90, 166–193 (2000).

    Google Scholar 

  8. Weber, E. U., Blais, A.-R. & Betz, N. E. A domain-specific risk-attitude scale: measuring risk perceptions and risk behaviors. J. Behav. Decis. Mak. 15, 263–290 (2002).

    Google Scholar 

  9. Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–292 (1979).

    Google Scholar 

  10. Peysakhovich, A., Nowak, M. A. & Rand, D. G. Humans display a ‘cooperative phenotype’ that is domain general and temporally stable. Nat. Commun. 5, 4939 (2014).

    CAS  PubMed  Google Scholar 

  11. Van Lange, P. A. M. The pursuit of joint outcomes and equality in outcomes: an integrative model of social value orientation. J. Pers. Soc. Psychol. 77, 337–349 (1999).

    Google Scholar 

  12. van Baar, J. M., Chang, L. J. & Sanfey, A. G. The computational and neural substrates of moral strategies in social decision-making. Nat. Commun. 10, 1483 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Poncela-Casasnovas, J. et al. Humans display a reduced set of consistent behavioral phenotypes in dyadic games. Sci. Adv. 2, e1600451 (2016).

    PubMed  PubMed Central  Google Scholar 

  14. van Baar, J. M., Klaassen, F. H., Ricci, F., Chang, L. J. & Sanfey, A. G. Stable distribution of reciprocity motives in a population. Sci. Rep. 10, 18164 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jara-Ettinger, J. Theory of mind as inverse reinforcement learning. Curr. Opin. Behav. Sci. 29, 105–110 (2019).

    Google Scholar 

  16. Bridgers, S., Jara-Ettinger, J. & Gweon, H. Young children consider the expected utility of others’ learning to decide what to teach. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0748-6 (2019).

  17. Liu, S., Ullman, T. D., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old infants infer the value of goals from the costs of actions. Science 358, 1038–1041 (2017).

    CAS  PubMed  Google Scholar 

  18. Baker, C. L., Saxe, R. & Tenenbaum, J. B. Action understanding as inverse planning. Cognition 113, 329–349 (2009).

    PubMed  Google Scholar 

  19. Baker, C. L., Jara-Ettinger, J., Saxe, R. & Tenenbaum, J. B. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1, 0064 (2017).

    Google Scholar 

  20. Nihonsugi, T., Ihara, A. & Haruno, M. Selective increase of intention-based economic decisions by noninvasive brain stimulation to the dorsolateral prefrontal cortex. J. Neurosci. 35, 3412–3419 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wedekind, C. & Milinski, M. Cooperation through image scoring in humans. Science 288, 850–852 (2000).

    CAS  PubMed  Google Scholar 

  22. Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–1625 (2007).

    CAS  PubMed  Google Scholar 

  23. Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J. Neurosci. 35, 8145–8157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Radulescu, A., Niv, Y. & Ballard, I. Holistic reinforcement learning: the role of structure and attention. Trends Cogn. Sci. 23, 278–292 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Leong, Y. C., Radulescu, A., Daniel, R., Dewoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Collins, A. G. E. & Frank, M. J. Neural signature of hierarchically structured expectations predicts clustering and transfer of rule sets in reinforcement learning. Cognition 152, 160–169 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16, 486–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Front. Hum. Neurosci. 5, 189 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Schapiro, A. C., Turk-Browne, N. B., Norman, K. A. & Botvinick, M. M. Statistical learning of temporal community structure in the hippocampus. Hippocampus 26, 3–8 (2016).

    PubMed  Google Scholar 

  30. Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl Acad. Sci. USA 105, 10687–10692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Heckathorn, D. D. The dynamics and dilemmas of collective action. Am. Sociol. Rev. 61, 250–277 (1996).

    Google Scholar 

  33. Axelrod, R. Effective choice in the prisoner’ s dilemma. J. Conflict Resolut. 24, 3–25 (1980).

    Google Scholar 

  34. Fehr, E. & Fischbacher, U. Social norms and human cooperation. Trends Cogn. Sci. 8, 185–190 (2004).

    PubMed  Google Scholar 

  35. Goeree, J. K., Holt, C. A. & Palfrey, T. R. Risk averse behavior in generalized matching pennies games. Games Econ. Behav. 45, 97–113 (2003).

    Google Scholar 

  36. Bernoulli, D. Exposition of a new theory on the measurement of risk. Econometrica 22, 23–36 (1954).

    Google Scholar 

  37. Huygens, C. The Value of All Chances in Games of Fortune (Woodward, 1714).

  38. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Google Scholar 

  39. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. Neural correlates of mentalizing-related computations during strategic interactions in humans. Proc. Natl Acad. Sci. USA 105, 6741–6746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nosenzo, D., Offerman, T., Sefton, M. & Van Der Veen, A. Discretionary sanctions and rewards in the repeated inspection game. Manage. Sci. 62, 502–517 (2016).

    Google Scholar 

  41. FeldmanHall, O. & Shenhav, A. Resolving uncertainty in a social world. Nat. Hum. Behav. 3, 426–435 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Gershman, S. J., Pouncy, H. T. & Gweon, H. Learning the structure of social influence. Cogn. Sci. 41, 545–575 (2017).

    PubMed  Google Scholar 

  43. Shin, Y. S. & Niv, Y. Biased evaluations emerge from inferring hidden causes. Nat. Hum. Behav. 5, 1180–1189 (2021).

    PubMed  PubMed Central  Google Scholar 

  44. Lau, T., Pouncy, H. T., Gershman, S. J. & Cikara, M. Discovering social groups via latent structure learning. J. Exp. Psychol. Gen. 147, 1881–1891 (2018).

    PubMed  Google Scholar 

  45. Jara-Ettinger, J. Theory of mind as inverse reinforcement learning. Curr. Opin. Behav. Sci. 29, 105–110 (2019).

    Google Scholar 

  46. Collette, S., Pauli, W. M., Bossaerts, P. & O’Doherty, J. Neural computations underlying inverse reinforcement learning in the human brain. eLife 6, e29718 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Gobet, F. et al. Chunking mechanisms in human learning. Trends Cogn. Sci. 5, 236–243 (2001).

    CAS  PubMed  Google Scholar 

  48. Thalmann, M., Souza, A. S. & Oberauer, K. How does chunking help working memory? J. Exp. Psychol. Learn. Mem. Cogn. 45, 37–55 (2019).

    PubMed  Google Scholar 

  49. Johnson, E. J., Camerer, C., Sen, S. & Rymon, T. Detecting failures of backward induction: monitoring information search in sequential bargaining. J. Econ. Theory 104, 16–47 (2002).

    Google Scholar 

  50. Nagel, R. Unraveling in guessing games: an experimental study. Am. Econ. Rev. 85, 1313–1326 (1995).

    Google Scholar 

  51. Rapoport, A. Individual strategies in a market entry game. Group Decis. Negot. 4, 117–133 (1995).

    Google Scholar 

  52. Kollock, P. Social dilemmas: the anatomy of cooperation. Annu. Rev. Sociol. 24, 183–214 (1998).

    Google Scholar 

  53. Fischbacher, U., Gächter, S. & Fehr, E. Are people conditionally cooperative? Evidence from a public goods experiment. Econ. Lett. 71, 397–404 (2001).

    Google Scholar 

  54. Kurzban, R. & Houser, D. Experiments investigating cooperative types in humans: a complement to evolutionary theory and simulations. Proc. Natl Acad. Sci. USA 102, 1803–1807 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore, T. & Zirnsak, M. Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 68, 47–72 (2017).

    CAS  PubMed  Google Scholar 

  56. Caprariello, P. A., Cuddy, A. J. C. & Fiske, S. T. Social structure shapes cultural stereotypes and emotions: a causal test of the stereotype content model. Group Process. Intergroup Relat. 12, 147–155 (2009).

    Google Scholar 

  57. McCauley, C., Stitt, C. L. & Segal, M. Stereotyping: from prejudice to prediction. Psychol. Bull. 87, 195–208 (1980).

    Google Scholar 

  58. Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).

    Google Scholar 

  59. Pierson, E. et al. A large-scale analysis of racial disparities in police stops across the United States. Nat. Hum. Behav. https://doi.org/10.1016/j.athoracsur.2014.09.078 (2020).

  60. Gureckis, T. M. et al. psiTurk: an open-source framework for conducting replicable behavioral experiments online. Behav. Res. Methods 48, 829–842 (2016).

    PubMed  Google Scholar 

  61. Licht, A. N. Games commissions play: 2 × 2 games of international securities regulation. Yale J. Int. Law 24, 61–125 (1999).

    Google Scholar 

  62. Bramoullé, Y. Anti-coordination and social interactions. Games Econ. Behav. 58, 30–49 (2007).

    Google Scholar 

  63. Skyrms, B. The Stag Hunt. Proc. Addresses Am. Phil. Assoc. 75, 31–41 (2001).

    Google Scholar 

  64. Von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior (Princeton Univ. Press, 1944).

  65. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conf. (eds van der Walt, S. & Millman, J.) 56–61 (2010).

  67. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Engineer. 9, 90–95 (2007).

    Google Scholar 

  69. Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Google Scholar 

  70. Mueller, A. WordCloud for Python documentation, https://amueller.github.io/word_cloud/ (2020).

  71. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  72. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank A. Sánchez for sharing experimental data from ref. 13. This work was funded by NIH Centers of Biomedical Research Excellence grant no. P20GM103645 (to O.F.H). The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.M.v.B. and O.F.H designed the research. J.M.v.B. and W.D. performed the research. J.M.v.B., M.R.N. and O.F.H analysed the data. J.M.v.B. and O.F.H wrote the paper. J.M.v.B., M.R.N. and O.F.H edited the manuscript.

Corresponding author

Correspondence to Oriel FeldmanHall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Björn Lindström, David Sander and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Results 1–9 (including Figs. 4–9), Text 1 and References.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Baar, J.M., Nassar, M.R., Deng, W. et al. Latent motives guide structure learning during adaptive social choice. Nat Hum Behav 6, 404–414 (2022). https://doi.org/10.1038/s41562-021-01207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01207-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing