Abstract
Human visual perception carves a scene at its physical joints, decomposing the world into objects, which are selectively attended, tracked and predicted as we engage our surroundings. Object representations emancipate perception from the sensory input, enabling us to keep in mind that which is out of sight and to use perceptual content as a basis for action and symbolic cognition. Human behavioural studies have documented how object representations emerge through grouping, amodal completion, proto-objects and object files. By contrast, deep neural network models of visual object recognition remain largely tethered to sensory input, despite achieving human-level performance at labelling objects. Here, we review related work in both fields and examine how these fields can help each other. The cognitive literature provides a starting point for the development of new experimental tasks that reveal mechanisms of human object perception and serve as benchmarks driving the development of deep neural network models that will put the object into object recognition.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Von Helmholtz, H. Handbuch der Physiologischen Optik (Voss, 1867).
Yuille, A. & Kersten, D. Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10, 301–308 (2006).
Pearl, J. Causality (Cambridge Univ. Press, 2009).
Piaget, J. The Construction of Reality in the Child (Basic Books, 1954).
Adelson, E. H. On seeing stuff: the perception of materials by humans and machines. In Human Vision and Electronic Imaging VI (eds. Rogowitz, B. E. & Pappas, T. N.) vol. 4299 1–12 (SPIE, 2001).
Clowes, M. B. On seeing things. Artif. Int. 2, 79–116 (1971).
Julesz, B. Experiments in the visual perception of texture. Sci. Am. 232, 34–43 (1975).
Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Ann. Rev. Neurosci. 24, 1193–1216 (2001).
Rosenholtz, R., Li, Y. & Nakano, L. Measuring visual clutter. J. Vis. 7, 17–17 (2007).
Hoffman, D. D. & Richards, W. A. Parts of recognition. Cognition 18, 65–96 (1984).
Michotte, A. et al. Les Complements Amodaux des Structures Perceptives (Institut de psychologie de l’Université de Louvain, 1964).
Rensink, R. A. The dynamic representation of scenes. Visual Cogn. 7, 17–42 (2000).
Gregory, R. L. Perceptions as hypotheses. Phil. Trans. R. Soc. Lond. B Biol. Sci. 290, 181–197 (1980).
Rock, I. Indirect Perception (The MIT Press, 1997).
Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).
Friston, K. J. A theory of cortical responses. Phil. Trans. R. Soc. B Biol. Sci. 360, 815–836 (2005).
van Steenkiste, S., Greff, K. & Schmidhuber, J. A perspective on objects and systematic generalization in model-based RL. Preprint at http://arxiv.org/abs/1906.01035 (2019).
Greff, K., van Steenkiste, S. & Schmidhuber, J. On the binding problem in artificial neural networks. Preprint at http://arxiv.org/abs/2012.05208 (2020).
Spelke, E. S. Principles of object perception. Cogn. Sci. 14, 29–56 (1990).
Scholl, B. J. Object persistence in philosophy and psychology. Mind Lang. 22, 563–591 (2007).
Sarkka, S. Bayesian Filtering and Smoothing (Cambridge Univ. Press, 2013).
Deneve, S., Duhamel, J.-R. & Pouget, A. Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters. J. Neurosci. 27, 5744–5756 (2007).
LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).
Fukushima, K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980).
Geirhos, R. et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In Proc. 7th International Conference on Learning Representations (OpenReview.net, 2019).
Kansky, K. et al. Schema networks: zero-shot transfer with a generative causal model of intuitive physics. In Proc. 34th International Conference on Machine Learning (eds. Precup, D. & Teh, Y. W.) vol. 70 1809–1818 (PMLR, 2017).
Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).
Yildirim, I., Wu, J., Kanwisher, N. & Tenenbaum, J. An integrative computational architecture for object-driven cortex. Curr. Opin. Neurobiol. 55, 73–81 (2019).
Golan, T., Raju, P. C. & Kriegeskorte, N. Controversial stimuli: pitting neural networks against each other as models of human cognition. Proc. Natl Acad. Sci. 117, 29330–29337 (2020).
Gibson, J. J. The Ecological Approach to Visual Perception: Classic Edition (Houghton Mifflin, 1979).
Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).
Treisman, A. The binding problem. Curr. Opin. Neurobiol. 6, 171–178 (1996).
von der Malsburg, C. The Correlation Theory of Brain Function. in Models of Neural Networks: Temporal Aspects of Coding and Information Processing in Biological Systems (eds. Domany, E., van Hemmen, J. L. & Schulten, K.) 95–119 (Springer, 1981).
Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).
Neisser, U. Cognitive Psychology (Appleton-Century-Crofts, 1967).
Treisman, A. Features and objects in visual processing. Sci. Am. 255, 114–125 (1986).
Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, 1993).
Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).
Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).
Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).
Roelfsema, P. R. Cortical algorithms for perceptual grouping. Ann. Rev. Neurosci. 29, 203–227 (2006).
Field, D. J., Hayes, A. & Hess, R. F. Contour integration by the human visual system: evidence for a local ‘association field’. Vis. Res. 33, 173–193 (1993).
Geisler, W. S. Visual perception and the statistical properties of natural scenes. Ann. Rev. Psychol. 59, 167–192 (2008).
Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997).
Koffka, K. Principles of Gestalt Psychology (Harcourt, Brace, 1935).
Rock, I. & Palmer, S. The legacy of gestalt psychology. Sci. Am. 263, 84–91 (1990).
Wertheimer, M. Untersuchungen zur lehre von der gestalt. Psychol. Forsch. 4, 301–350 (1923).
Nakayama, K. & Shimojo, S. Experiencing and perceiving visual surfaces. Science 257, 1357–1363 (1992).
Rosenholtz, R., Twarog, N. R., Schinkel-Bielefeld, N. & Wattenberg, M. An intuitive model of perceptual grouping for HCI design. In Proc. SIGCHI Conference on Human Factors in Computing Systems 1331–1340 (ACM, 2009).
Li, Z. A neural model of contour integration in the primary visual cortex. Neural Comput. 10, 903–940 (1998).
Yen, S.-C. & Finkel, L. H. Extraction of perceptually salient contours by striate cortical networks. Vis. Res. 38, 719–741 (1998).
Roelfsema, P. R., Lamme, V. A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).
Nakayama, K. & Silverman, G. H. Serial and parallel processing of visual feature conjunctions. Nature 320, 264–265 (1986).
Alais, D., Blake, R. & Lee, S.-H. Visual features that vary together over time group together over space. Nat. Neurosci. 1, 160–164 (1998).
Vecera, S. P. & Farah, M. J. Is visual image segmentation a bottom-up or an interactive process? Percept. Psychophys. 59, 1280–1296 (1997).
Sekuler, A. & Palmer, S. Perception of partly occluded objects: a microgenetic analysis. J. Exp. Psychol. Gen. 121, 95–111 (1992).
Marr, D., Ullman, S. & Poggio, T. Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information (W. H. Freeman, 1982) .
Michotte, A. & Burke, L. Une nouvelle enigme dans la psychologie de la perception: le’donne amodal’dans l’experience sensorielle. In Proc. XIII Congrés Internationale de Psychologie 179–180 (1951).
Komatsu, H. The neural mechanisms of perceptual filling-in. Nat. Rev. Neurosci. 7, 220–231 (2006).
Shore, D. I. & Enns, J. T. Shape completion time depends on the size of the occluded region. J. Exp. Psychol. Hum. Percept. Perform. 23, 980–998 (1997).
He, Z. J. & Nakayama, K. Surfaces versus features in visual search. Nature 359, 231–233 (1992).
Rensink, R. A. & Enns, J. T. Early completion of occluded objects. Vis. Res. 38, 2489–2505 (1998).
Kellman, P. J. & Shipley, T. F. A theory of visual interpolation in object perception. Cogn. Psychol. 23, 141–221 (1991).
Tse, P. U. Volume completion. Cogn. Psychol. 39, 37–68 (1999).
Buffart, H., Leeuwenberg, E. & Restle, F. Coding theory of visual pattern completion. J. Exp. Psychol. Hum. Percept. Perform. 7, 241–274 (1981).
Weigelt, S., Singer, W. & Muckli, L. Separate cortical stages in amodal completion revealed by functional magnetic resonance adaptation. BMC Neurosci. 8, 70 (2007).
Thielen, J., Bosch, S. E., van Leeuwen, T. M., van Gerven, M. A. J. & van Lier, R. Neuroimaging findings on amodal completion: a review. i-Perception 10, 2041669519840047 (2019).
Mooney, C. M. Age in the development of closure ability in children. Can. J. Psychol. 11, 219–226 (1957).
Snodgrass, J. G. & Feenan, K. Priming effects in picture fragment completion: support for the perceptual closure hypothesis. J. Exp. Psychol. Gen. 119, 276–296 (1990).
Treisman, A. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).
Pylyshyn, Z. W. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Brain Sci. 22, 341–365 (1999).
Wolfe, J. M. & Cave, K. R. The psychophysical evidence for a binding problem in human vision. Neuron 24, 11–17 (1999).
Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lon. B Biol. Sci. 203, 405–426 (1979).
Flombaum, J. I., Scholl, B. J. & Santos, L. R. Spatiotemporal priority as a fundamental principle of object persistence. In The Origins of Object Knowledge (eds. Hood, B. M. & Santos, L. R.) 135–164 (Oxford University Press, 2009).
Mitroff, S. R. & Alvarez, G. A. Space and time, not surface features, guide object persistence. Psychon. Bull. Rev. 14, 1199–1204 (2007).
Burke, L. On the tunnel effect. Quart. J. Exp. Psychol. 4, 121–138 (1952).
Flombaum, J. I. & Scholl, B. J. A temporal same-object advantage in the tunnel effect: facilitated change detection for persisting objects. J. Exp. Psychol. Hum. Percept. Perform. 32, 840–853 (2006).
Hollingworth, A. & Franconeri, S. L. Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition 113, 150–166 (2009).
Moore, C. M., Stephens, T. & Hein, E. Features, as well as space and time, guide object persistence. Psychon. Bull. Rev. 17, 731–736 (2010).
Papenmeier, F., Meyerhoff, H. S., Jahn, G. & Huff, M. Tracking by location and features: object correspondence across spatiotemporal discontinuities during multiple object tracking. J. Exp. Psychol. Hum. Percept. Perform. 40, 159–171 (2014).
Liberman, A., Zhang, K. & Whitney, D. Serial dependence promotes object stability during occlusion. J. Vis. 16, 16 (2016).
Fischer, C. et al. Context information supports serial dependence of multiple visual objects across memory episodes. Nat. Commun. 11, 1932 (2020).
Irwin, D. E. Memory for position and identity across eye movements. J. Exp. Psychol. Learn. Mem. Cogn. 18, 307–317 (1992).
Richard, A. M., Luck, S. J. & Hollingworth, A. Establishing object correspondence across eye movements: flexible use of spatiotemporal and surface feature information. Cognition 109, 66–88 (2008).
Kahneman, D., Treisman, A. & Gibbs, B. J. The reviewing of object-files: object specific integration of information. Cogn. Psychol. 24, 174–219 (1992).
Pylyshyn, Z. W. The role of location indexes in spatial perception: a sketch of the FINST spatial-index model. Cognition 32, 65–97 (1989).
Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).
Cavanagh, P. & Alvarez, G. A. Tracking multiple targets with multifocal attention. Trends Cogn. Sci. 9, 349–354 (2005).
Bahcall, D. O. & Kowler, E. Attentional interference at small spatial separations. Vis. Res. 39, 71–86 (1999).
Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).
Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vis. 3, 179–197 (1988).
Intriligator, J. & Cavanagh, P. The spatial resolution of visual attention. Cognit. Psychol. 43, 171–216 (2001).
Scholl, B. J. & Pylyshyn, Z. W. Tracking multiple items through occlusion: clues to visual objecthood. Cognit. Psychol. 38, 259–290 (1999).
Yantis, S. Multielement visual tracking: attention and perceptual organization. Cognit. Psychol. 24, 295–340 (1992).
Vul, E., Alvarez, G., Tenenbaum, J. B. & Black, M. J. Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model. In Proc. Advances in Neural Information Processing Systems 22 (eds Bengio, Y. et al.) 1955–1963 (Curran Associates, 2009).
Alvarez, G. A. & Franconeri, S. L. How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. J. Vis. 7, 14 (2007).
Flombaum, J. I., Scholl, B. J. & Pylyshyn, Z. W. Attentional resources in visual tracking through occlusion: the high-beams effect. Cognition 107, 904–931 (2008).
Vecera, S. P. & Farah, M. J. Does visual attention select objects or locations? J. Exp. Psychol. Gen. 123, 146–160 (1994).
Chen, Z. Object-based attention: a tutorial review. Atten. Percept. Psychophys. 74, 784–802 (2012).
Egly, R., Driver, J. & Rafal, R. D. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123, 161–177 (1994).
Houtkamp, R., Spekreijse, H. & Roelfsema, P. R. A gradual spread of attention. Percept. Psychophys. 65, 1136–1144 (2003).
Jeurissen, D., Self, M. W. & Roelfsema, P. R. Serial grouping of 2D-image regions with object-based attention in humans. eLife 5, e14320 (2016).
Moore, C. M., Yantis, S. & Vaughan, B. Object-based visual selection: evidence from perceptual completion. Psychol. Sci. 9, 104–110 (1998).
Peters, B., Kaiser, J., Rahm, B. & Bledowski, C. Activity in human visual and parietal cortex reveals object-based attention in working memory. J. Neurosci. 35, 3360–3369 (2015).
Peters, B., Kaiser, J., Rahm, B. & Bledowski, C. Object-based attention prioritizes working memory contents at a theta rhythm. J. Exp. Psychol. Gen. (2020).
Baillargeon, R. Object permanence in 3 1/2- and 4 1/2-month-old infants. Dev. Psychol. 23, 655–664 (1987).
Baillargeon, R., Spelke, E. S. & Wasserman, S. Object permanence in five-month-old infants. Cognition 20, 191–208 (1985).
Spelke, E. S., Breinlinger, K., Macomber, J. & Jacobson, K. Origins of knowledge. Psychol. Rev. 99, 605–632 (1992).
Wilcox, T. Object individuation: infants’ use of shape, size, pattern, and color. Cognition 72, 125–166 (1999).
Rosander, K. & von Hofsten, C. Infants’ emerging ability to represent occluded object motion. Cognition 91, 1–22 (2004).
Moore, M. K., Borton, R. & Darby, B. L. Visual tracking in young infants: evidence for object identity or object permanence? J. Exp. Child Psychol. 25, 183–198 (1978).
Freyd, J. J. & Finke, R. A. Representational momentum. J. Exp. Psychol. Learn. Mem. Cognit. 10, 126–132 (1984).
Benguigui, N., Ripoll, H. & Broderick, M. P. Time-to-contact estimation of accelerated stimuli is based on first-order information. J. Exp. Psychol. Hum. Percept. Perform. 29, 1083–1101 (2003).
Rosenbaum, D. A. Perception and extrapolation of velocity and acceleration. J. Exp. Psychol. Hum. Percept. Perform. 1, 395–403 (1975).
Franconeri, S. L., Pylyshyn, Z. W. & Scholl, B. J. A simple proximity heuristic allows tracking of multiple objects through occlusion. Atten. Percept. Psychophys. 74, 691–702 (2012).
Matin, E. Saccadic suppression: a review and an analysis. Psychol. Bull. 81, 899–917 (1974).
Henderson, J. M. Two representational systems in dynamic visual identification. J. Exp. Psychol. Gen. 123, 410–426 (1994).
Bahrami, B. Object property encoding and change blindness in multiple object tracking. Visual Cogn. 10, 949–963 (2003).
Pylyshyn, Z. Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual Cogn. 11, 801–822 (2004).
Horowitz, T. S. et al. Tracking unique objects. Percept. Psychophys. 69, 172–184 (2007).
Fougnie, D. & Marois, R. Distinct capacity limits for attention and working memory: evidence from attentive tracking and visual working memory paradigms. Psychol. Sci. 17, 526–534 (2006).
Hollingworth, A. & Rasmussen, I. P. Binding objects to locations: the relationship between object files and visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 36, 543–564 (2010).
Awh, E., Barton, B. & Vogel, E. K. Visual working memory represents a fixed number of items regardless of complexity. Psychol. Sci. 18, 622–628 (2007).
Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001).
Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–284 (1997).
Miller, G. A. The magical number seven. Psychol. Rev. 63, 81–97 (1956).
Bays, P. M., Wu, E. Y. & Husain, M. Storage and binding of object features in visual working memory. Neuropsychologia 49, 1622–1631 (2011).
Fougnie, D. & Alvarez, G. A. Object features fail independently in visual working memory: evidence for a probabilistic feature-store model. J. Vis. 11, 3 (2011).
Brady, T. F., Konkle, T. & Alvarez, G. A. A review of visual memory capacity: beyond individual items and toward structured representations. J. Vis. 11, 4 (2011).
Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).
Bays, P. M. & Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854 (2008).
Wilken, P. & Ma, W. J. A detection theory account of change detection. J. Vis. 4, 1120–1135 (2004).
Oberauer, K. & Lin, H.-Y. An interference model of visual working memory. Psychol. Rev. 124, 21–59 (2017).
Bouchacourt, F. & Buschman, T. J. A flexible model of working memory. Neuron 103, 147–160 (2019).
Baddeley, A. D. & Hitch, G. Working Memory. In Psychology of Learning and Motivation (ed. Bower, G. H.) vol. 8 47–89 (Academic, 1974).
Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 104, 163–191 (1988).
Miyake, A. & Shah, P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (Cambridge Univ. Press, 1999).
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5, 115–133 (1943).
O’Reilly, R. C. & Munakata, Y. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain (MIT Press, 2000).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems 25 (eds. Pereira, F. et al.) (Curran Associates, 2012).
Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms Technical Report (Cornell Aeronautical Lab, 1961).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Ivakhnenko, A. G. Polynomial theory of complex systems. In Proc. IEEE transactions on Systems, Man, and Cybernetics 364–378 (IEEE, 1971).
Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (J. Wiley, Chapman & Hall, 1949).
Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).
Zemel, R. S. & Mozer, M. C. Localist attractor networks. Neural Comput. 13, 1045–1064 (2001).
Schmidhuber, J. Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4, 131–139 (1992).
Olshausen, B. A., Anderson, C. H. & Essen, D. V. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 4700–4719 (1993).
Anderson, C. H. & Van Essen, D. C. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proc. Natl Acad. Sci. USA 84, 6297–6301 (1987).
Burak, Y., Rokni, U., Meister, M. & Sompolinsky, H. Bayesian model of dynamic image stabilization in the visual system. Proc. Natl Acad. Sci. USA 107, 19525–19530 (2010).
Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput 9, 1735–1780 (1997).
Reichert, D. P. & Serre, T. Neuronal synchrony in complex-valued deep networks. In Proc. 2nd International Conference on Learning Representations (2014).
Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989).
Hummel, J. E. & Biederman, I. Dynamic binding in a neural network for shape recognition. Psychol. Rev. 99, 480–517 (1992).
Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
Higgins, I. et al. Towards a definition of disentangled representations. Preprint at http://arxiv.org/abs/1812.02230 (2018).
Feldman, J. What is a visual object? Trends Cogn. Sci. 7, 252–256 (2003).
Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).
Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. JOSA A 20, 1434–1448 (2003).
Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz machine. Neural Comput. 7, 889–904 (1995).
Stuhlmüller, A., Taylor, J. & Goodman, N. Learning stochastic inverses. In Proc. Advances in Neural Information Processing Systems 26 (eds Burges, C. J. et al.) 3048–3056 (Curran Associates, 2013).
Bergen, R. S. van. & Kriegeskorte, N. Going in circles is the way forward: the role of recurrence in visual inference. Curr. Opinion Neurobiol. 65, 176–193 (2020).
von der Heydt, R., Friedman, H. S. & Zhou, H. Searching for the neural mechanisms of color filling-in. In Filling-in: From perceptual completion to cortical reorganization (eds. Pessoa, L. & De Weerd, P.) 106–127 (Oxford Univ. Press, 2003).
Kogo, N. & Wagemans, J. The ‘side’ matters: how configurality is reflected in completion. Cogn. Neurosci. 4, 31–45 (2013).
Craft, E., Schütze, H., Niebur, E. & von der Heydt, R. A neural model of figure-ground organization. J. Neurophysiol. 97, 4310–4326 (2007).
Grossberg, S. & Mingolla, E. Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92, 173–211 (1985).
Mingolla, E., Ross, W. & Grossberg, S. A neural network for enhancing boundaries and surfaces in synthetic aperture radar images. Neural Netw. 12, 499–511 (1999).
Zhaoping, L. Border ownership from intracortical interactions in visual area V2. Neuron 47, 143–153 (2005).
Fukushima, K. Neural network model for completing occluded contours. Neural Netw. 23, 528–540 (2010).
Tu, Z. & Zhu, S.-C. Image segmentation by data-driven Markov chain Monte Carlo. IEEE Trans. Pattern Anal. 24, 657–673 (2002).
Fukushima, K. Restoring partly occluded patterns: a neural network model. Neural Netw. 18, 33–43 (2005).
Lücke, J., Turner, R., Sahani, M. & Henniges, M. Occlusive components analysis. In Proc. Advances in Neural Information Processing Systems 22 (eds Bengio, Y. et al.) 1069–1077 (Curran Associates, 2009).
Johnson, J. S. & Olshausen, B. A. The recognition of partially visible natural objects in the presence and absence of their occluders. Vis. Res. 45, 3262–3276 (2005).
Koch, C. & Ullman, S. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. In Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience (ed. Vaina, L. M.) 115–141 (Springer, 1987).
Tsotsos, J. K. et al. Modeling visual-attention via selective tuning. Artif. Int. 78, 507–545 (1995).
Walther, D. & Koch, C. Modeling attention to salient proto-objects. Neural Netw. 19, 1395–1407 (2006).
Kazanovich, Y. & Borisyuk, R. An oscillatory neural model of multiple object tracking. Neural Comput. 18, 1413–1440 (2006).
Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00821-9 (2021).
Barak, O. & Tsodyks, M. Working models of working memory. Curr. Opin. Neurobiol. 25, 20–24 (2014).
Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. Neurocomputational models of working memory. Nat. Neurosci. 3, 1184–1191 (2000).
Compte, A. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex 10, 910–923 (2000).
Wang, X.-J. Synaptic reverberations underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).
Wimmer, K., Nykamp, D. Q., Constantinidis, C. & Compte, A. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nature Neurosci. 17, 431–439 (2014).
Zenke, F., Agnes, E. J. & Gerstner, W. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015).
Mareschal, D., Plunkett, K. & Harris, P. A computational and neuropsychological account of object-oriented behaviours in infancy. Developmental Science 2, 306–317 (1999).
Munakata, Y., Mcclelland, J. L., Johnson, M. H. & Siegler, R. S. Rethinking infant knowledge: toward an adaptive process account of successes and failures in object permanence tasks. Psychol. Rev. 104, 686–713 (1997).
Mi, Y., Katkov, M. & Tsodyks, M. Synaptic correlates of working memory capacity. Neuron 93, 323–330 (2017).
Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008).
Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J. & Freedman, D. J. Circuit mechanisms for the maintenance and manipulation of information in working memory. Nat. Neurosci. 22, 1159–1167 (2019).
Chatham, C. H. & Badre, D. Multiple gates on working memory. Curr. Opin. Behav. Sci. 1, 23–31 (2015).
Frank, M. J., Loughry, B. & O’Reilly, R. C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognitive 1, 137–160 (2001).
Gruber, A. J., Dayan, P., Gutkin, B. S. & Solla, S. A. Dopamine modulation in the basal ganglia locks the gate to working memory. J. Comput. Neurosci. 20, 153–166 (2006).
O’Reilly, R. C. Biologically based computational models of high-level cognition. Science 314, 91–94 (2006).
Ciresan, D., Meier, U. & Schmidhuber, J. Multi-column deep neural networks for image classification. In Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 3642–3649 (IEEE, 2012).
Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Zhou, B., Bau, D., Oliva, A. & Torralba, A. Interpreting deep visual representations via network dissection. IEEE Transactions on Pattern Analysis and Machine Intelligence 41, 2131–2145 (2019).
Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).
Körding, K. P. & König, P. Supervised and unsupervised learning with two sites of synaptic integration. J Comput Neurosci 11, 207–215 (2001).
Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with segregated dendrites. eLife 6, e22901 (2017).
Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap between energy-based models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017).
Roelfsema, P. E. & van Ooyen, A. Attention-gated reinforcement learning of internal representations for classification. Neural Comput. 17, 2176–2214 (2005).
Crick, F. The recent excitement about neural networks. Nature 337, 129–132 (1989).
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proc. of the Thirty-First AAAI Conference on Artificial Intelligence 4278–4284 (2017).
Khaligh-Razavi, S. M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).
Güçlü, U. & Gerven, M. A. J. V. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).
Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).
Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Ann. Rev. Vis. Sci. 1, 417–446 (2015).
Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).
Baker, N., Lu, H., Erlikhman, G. & Kellman, P. J. Deep convolutional networks do not classify based on global object shape. PLoS Comput. Biol. 14, e1006613 (2018).
Brendel, W. & Bethge, M. Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. In Proc. 7th International Conference on Learning Representations (OpenReview.net, 2019).
He, K., Gkioxari, G., Dollar, P. & Girshick, R. Mask R-CNN. In Proc. IEEE International Conference on Computer Vision 2017 2980–2988 (IEEE, 2017).
Pinheiro, P. O., Collobert, R. & Dollar, P. Learning to segment object candidates. In Proc. Advances in Neural Information Processing Systems 28 (eds Cortes, C. et al.) 1990–1998 (Curran Associates, 2015).
Luo, W. et al. Multiple object tracking: a literature review. Artificial Intelligence 293, 103448 (2021).
Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 580–587 (IEEE, 2014).
Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Ann. Rev. Neurosci. 33, 1–21 (2010).
Burgess, C. P. et al. MONet: unsupervised scene decomposition and representation. Preprint at http://arxiv.org/abs/1901.11390 (2019).
Locatello, F. et al. Object-centric learning with slot attention. In Proc. Advances in Neural Information Processing Systems 33 (eds. Larochelle, H. et al.) 11525–11538 (Curran Associates, 2020).
Eslami, S. M. A. et al. Attend, infer, repeat: fast scene understanding with generative models. In Proc. Advances in Neural Information Processing Systems 29 (eds. Lee, D. et al.) (Curran Associates, 2016).
Wu, J., Lu, E., Kohli, P., Freeman, B. & Tenenbaum, J. Learning to see physics via visual de-animation. In Proc. Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) (Curran Associates, 2017).
Spoerer, C. J., McClure, P. & Kriegeskorte, N. Recurrent convolutional neural networks: a better model of biological object recognition. Front. Psychology 8, 1551 (2017).
Kubilius, J. et al. Brain-like object recognition with high-performing shallow recurrent ANNs. In Proc. Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) (Curran Associates, 2019).
Kietzmann, T. C. et al. Recurrence is required to capture the representational dynamics of the human visual system. Proc. Natl Acad. Sci. USA 116, 21854–21863 (2019).
Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I. & Kriegeskorte, N. Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PLoS Comput. Biol. 16, e1008215 (2020).
O’Reilly, R. C., Wyatte, D., Herd, S., Mingus, B. & Jilk, D. J. Recurrent processing during object recognition. Front. Psychol. 4, 124 (2013).
Wyatte, D., Jilk, D. J. & O’Reilly, R. C. Early recurrent feedback facilitates visual object recognition under challenging conditions. Front. Psychol. 5, 674 (2014).
Linsley, D., Kim, J. & Serre, T. Sample-efficient image segmentation through recurrence. Preprint at https://arxiv.org/abs/1811.11356v3 (2018).
Engelcke, M., Kosiorek, A. R., Jones, O. P. & Posner, I. GENESIS: generative scene inference and sampling witho object-centric latent representations. In Proc. 8th International Conference on Learning Representations (OpenReview.net, 2020).
Steenkiste, S. van, Chang, M., Greff, K. & Schmidhuber, J. Relational neural expectation maximization: unsupervised discovery of objects and their interactions. In Proc. 6th International Conference on Learning Representations (OpenReview.net, 2018).
Greff, K. et al. Multi-object representation learning with iterative variational inference. In Proc. 36th International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 2424–2433 (PLMR, 2019).
Swan, G. & Wyble, B. The binding pool: a model of shared neural resources for distinct items in visual working memory. Atten. Percept. Psychophys. 76, 2136–2157 (2014).
Schneegans, S. & Bays, P. M. Neural architecture for feature binding in visual working memory. J. Neurosci. 37, 3913–3925 (2017).
Matthey, L., Bays, P. M. & Dayan, P. A probabilistic palimpsest model of visual short-term memory. PLoS Comput. Biol. 11, e1004003 (2015).
Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. In Proc. Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) (Curran Associates, 2017).
Xu, Z. et al. Unsupervised discovery of parts, structure, and dynamics. In Proc. 7th International Conference on Learning Representations (OpenReview.net, 2019).
Kosiorek, A., Sabour, S., Teh, Y. W. & Hinton, G. E. Stacked capsule autoencoders. In Proc. Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) (Curran Associates, 2019).
Pelli, D. G. & Tillman, K. A. The uncrowded window of object recognition. Nat. Neurosci. 11, 1129–1135 (2008).
Sayim, B., Westheimer, G. & Herzog, M. Gestalt factors modulate basic spatial vision. Psychol. Sci. 21, 641–644 (2010).
Doerig, A., Schmittwilken, L., Sayim, B., Manassi, M. & Herzog, M. H. Capsule networks as recurrent models of grouping and segmentation. PLoS Computational Biology 16, 1–19 (2020).
Battaglia, P. W. et al. Relational inductive biases, deep learning, and graph networks. Preprint at http://arxiv.org/abs/1806.01261 (2018).
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2009).
Hsieh, J.-T., Liu, B., Huang, D.-A., Fei-Fei, L. F. & Niebles, J. C. Learning to decompose and disentangle representations for video prediction. In Proc. Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 515–524 (Curran Associates, 2018).
Whittington, J. C. R. et al. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263 (2020).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT press, 2018).
Botvinick, M. et al. Reinforcement learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).
LeCun, Y. The power and limits of deep learning. Res. Technol. Manage. 61, 22–27 (2018).
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In Proc. 2nd International Conference on Learning Representations (eds. Bengio, Y. & LeCun, Y.) (openreview.net, 2014).
Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st International Conference on Machine Learning 32 (eds. Xing, E. P. & Jebara, T.)1278–1286 (PMLR, 2014).
Goodfellow, I. et al. Generative adversarial nets. In Proc. Advances in Neural Information Processing Systems 27 (eds. Ghahramani, Z. et al.) (Curran Associates, 2014).
Weis, M. A. et al. Unmasking the inductive biases of unsupervised object representations for video sequences. Preprint at http://arxiv.org/abs/2006.07034 (2020).
Veerapaneni, R. et al. Entity abstraction in visual model-based reinforcement learning. In Proc. Conference on Robot Learning 100 (eds. Kaelbling, L. P. et al.) 1439–1456 (PMLR, 2020).
Watters, N., Tenenbaum, J. & Jazayeri, M. Modular object-oriented games: a task framework for reinforcement learning, psychology, and neuroscience. Preprint at http://arxiv.org/abs/2102.12616 (2021).
Leibo, J. Z. et al. Psychlab: a psychology laboratory for deep reinforcement learning agents. Preprint at http://arxiv.org/abs/1801.08116 (2018).
Deng, J. et al. Imagenet: a large-scale hierarchical image database. In Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).
Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2012).
Sullivan, J., Mei, M., Perfors, A., Wojcik, E. & Frank, M. C. SAYCam: a large, longitudinal audiovisual dataset recorded from the infant’s perspective. Open Mind 5, 20–29 (2021).
Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).
Green, D. M., & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, 1966).
Rust, N. C. & Movshon, J. A. In praise of artifice. Nat. Neurosci. 8, 1647–1650 (2005).
Wu, M. C.-K., David, S. V. & Gallant, J. L. Complete functional characterization of sensory neurons by system identification. Ann. Rev. Neurosci. 29, 477–505 (2006).
Ullman, S. Visual routines. Cognition 18, 97–159 (1984).
Jolicoeur, P., Ullman, S. & Mackay, M. Curve tracing: a possible basic operation in the perception of spatial relations. Mem. Cogn. 14, 129–140 (1986).
Ballard, D. H., Hayhoe, M. M., Pook, P. K. & Rao, R. P. N. Deictic codes for the embodiment of cognition. Behav. Brain Sci. 20, 723–742 (1997).
Geirhos, R. et al. Generalisation in humans and deep neural networks. In Proc. Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.) (Curran Associates, 2018).
Barbu, A. et al. ObjectNet: a large-scale bias-controlled dataset for pushing the limits of object recognition models. In Proc. Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) (Curran Associates, 2019).
Blaser, E., Pylyshyn, Z. W. & Holcombe, A. O. Tracking an object through feature space. Nature 408, 196–199 (2000).
Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973).
Schrimpf, M. et al. Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron 108, 413–423 (2020).
Judd, T., Durand, F. & Torralba, A. A Benchmark of Computational Models of Saliency to Predict Human Fixations Technical Report (MIT, 2012).
Kümmerer, M., Wallis, T. S. A., Gatys, L. A. & Bethge, M. Understanding low- and high-level contributions to fixation prediction. In Proc. 2017 IEEE International Conference on Computer Vision 4799–4808 (IEEE, 2017).
Ma, W. J. & Peters, B. A neural network walks into a lab: towards using deep nets as models for human behavior. Preprint at http://arxiv.org/abs/2005.02181 (2020).
Peterson, J., Battleday, R., Griffiths, T. & Russakovsky, O. Human uncertainty makes classification more robust. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 9616–9625 (IEEE, 2019).
Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L. & Girshick, R. PHYRE: a new benchmark for physical reasoning. In Proc. Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) (Curran Associates, 2019).
Yi, K. et al. CLEVRER: collision events for video representation and reasoning. In Proc. 8th International Conference on Learning Representations (OpenReview.net, 2020).
Riochet, R. et al. IntPhys: a framework and benchmark for visual intuitive physics reasoning. CoRR, abs/1803.07616 (2018).
Baradel, F., Neverova, N., Mille, J., Mori, G. & Wolf, C. CoPhy: counterfactual learning of physical dynamics. In Proc. 8th International Conference on Learning Representations (OpenReview.net, 2020).
Girdhar, R. & Ramanan, D. CATER: A diagnostic dataset for compositional actions & temporal reasoning. In Proc. 8th International Conference on Learning Representations (OpenReview.net, 2020).
Allen, K. R., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proc. Natl Acad. Sci. USA 117, 29302–29310 (2020).
Beyret, B. et al. The Animal-AI environment: training and testing animal-like artificial cognition. Preprint at http://arxiv.org/abs/1909.07483 (2019).
Kanizsa, G. Margini quasi-percettivi in campi con stimolazione omogenea. Riv. Psicol. 49, 7–30 (1955).
Kanizsa, G. Amodale ergänzung und ‘erwartungsfehler’ des gestaltpsychologen. Psychol. Forsch. 33, 325–344 (1970).
Eslami, S. M. A. et al. Neural scene representation and rendering. Science 360, 1204–1210 (2018).
Beattie, C. et al. {DeepMind} {Lab}. Preprint at http://arxiv.org/abs/1612.03801 (2016).
Kolve, E. et al. AI2-THOR: an interactive 3D environment for visual AI. Preprint at https://arxiv.org/abs/1712.05474 (2017).
Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Computer Vision—ECCV 2014, Lecture Notes in Computer Science (eds Fleet, D. et al.) 740–755 (Springer, 2014).
Milan, A., Leal-Taixe, L., Reid, I., Roth, S. & Schindler, K. MOT16: a benchmark for multi-object tracking. Preprint at http://arxiv.org/abs/1603.00831 (2016).
Mahler, J. et al. Learning ambidextrous robot grasping policies. Sci. Robot. 4, eaau4984 (2019).
Pitkow, X. Exact feature probabilities in images with occlusion. J. Vis. 10, 42 (2010).
O’Reilly, R. C., Busby, R. S. & Soto, R. Three forms of binding and their neural substrates: Alternatives to temporal synchrony. In The unity of consciousness: Binding, integration, and dissociation (ed. Cleeremans, A.) 168–190 (Oxford Univ. Press, 2003).
Hummel, J. E. et al. A solution to the binding problem for compositional connectionism. In AAAI Fall Symposium - Technical Report (eds. Levy, S. D. & Gayler, R.) vol. FS-04-03 31–34 (AAAI Press, 2004).
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. Distributed Representations. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (eds. Rumelhart, D. E. & McClelland, J. L.) 77–109 (MIT Press, 1987).
Treisman, A. Solutions to the binding problem: progress through controversy and convergence. Neuron 24, 105–125 (1999).
Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. Parallel visual computation. Nature 306, 21–26 (1983).
Smolensky, P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Int. 46, 159–216 (1990).
Feldman, J. A. Dynamic connections in neural networks. Biol. Cybernet. 46, 27–39 (1982).
Von Der Malsburg, C. Am I thinking assemblies? Brain Theory 161–176 (1986)
Reynolds, J. H. & Desimone, R. The role of neural mechanisms of attention in solving the binding problem. Neuron 24, 19–29 (1999).
Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999).
Acknowledgements
B.P. has received funding from the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 841578.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Peters, B., Kriegeskorte, N. Capturing the objects of vision with neural networks. Nat Hum Behav 5, 1127–1144 (2021). https://doi.org/10.1038/s41562-021-01194-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-021-01194-6
This article is cited by
-
Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception
Nano-Micro Letters (2024)
-
Deep learning models for perception of brightness related illusions
Applied Intelligence (2024)
-
Dementia in Convolutional Neural Networks: Using Deep Learning Models to Simulate Neurodegeneration of the Visual System
Neuroinformatics (2023)
-
Deep learning reveals what vocal bursts express in different cultures
Nature Human Behaviour (2022)
-
A dolphin-inspired compact sonar for underwater acoustic imaging
Communications Engineering (2022)