Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An observational study of Internet behaviours for adolescent females following sexual abuse

Abstract

Child sexual abuse (CSA) is associated with revictimization and sexual risk-taking behaviours. The Internet has increased the opportunities for teens to access sexually explicit imagery and has provided new avenues for victimization and exploitation. Online URL activity and offline psychosocial factors were assessed for 460 females aged 12–16 (CSA = 156; comparisons = 304) with sexual behaviours and Internet-initiated victimization assessed 2 years later. Females who experienced CSA did not use more pornography than comparisons but were at increased odds of being cyberbullied (odds ratio = 2.84, 95% confidence interval = 1.67–4.81). These females were also more likely to be represented in a high-risk latent profile characterized by heightened URL activity coupled with problematic psychosocial factors, which showed increased odds of being cyberbullied, receiving online sexual solicitations and heightened sexual activity. While Internet activity alone may not confer risk, results indicate a subset of teens who have experienced CSA for whom both online and offline factors contribute to problematic outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample and procedures flow.
Fig. 2: Venn diagram of the various online URL activities occurring within authenticated sessions.
Fig. 3: Unadjusted standardized means and bootstrapped s.e. for all variables used in the LPA for the three resultant profiles.
Fig. 4: Forest plots of the results from the logistic and multinomial logistic regression models.

Similar content being viewed by others

Data availability

The data reported in the current article are not publicly available because they contain extremely sensitive information that could compromise research participant privacy and confidentiality. We cannot provide individual-level data from this project due to limits to our confidentiality agreement with participants. Data are available upon request from J.G.N. by qualified scientists. Requests require a concept paper describing the purpose of data access, ethical approval at the applicant’s university in writing and provision for secure data access.

Code availability

The data analysis script is available from A.C.H. upon request.

References

  1. Anderson, M. & Jiang, J. Teens, social media and technology 2018. Pew Research Center https://www.pewinternet.org/2018/05/31/teens-social-media-technology-2018/ (2018).

  2. Robison, K. K. & Crenshaw, E. M. Reevaluating the global digital divide: socio-demographic and conflict barriers to the Internet revolution. Sociol. Inq. 80, 34–62 (2010).

    Article  Google Scholar 

  3. Orben, A. & Przybylski, A. K. Reply to: Underestimating digital media harm. Nat. Hum. Behav. 4, 349–351 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Orben, A. Teenagers, screens and social media: a narrative review of reviews and key studies. Soc. Psychiatry Psychiatr. Epidemiol. 55, 407–414 (2020).

    Article  PubMed  Google Scholar 

  5. Twenge, J. M., Haidt, J., Joiner, T. E. & Campbell, W. K. Underestimating digital media harm. Nat. Hum. Behav. 4, 346–348 (2020).

    Article  PubMed  Google Scholar 

  6. van den Eijnden, R. J. J. M., Meerkerk, G.-J., Vermulst, A. A., Spijkerman, R. & Engels, R. C. M. E. Online communication, compulsive Internet use, and psychosocial well-being among adolescents: a longitudinal study. Dev. Psychol. 44, 655–665 (2008).

    Article  PubMed  Google Scholar 

  7. Hunt, M. G., Marx, R., Lipson, C. & Young, J. No more FOMO: limiting social media decreases loneliness and depression. J. Soc. Clin. Psychol. 37, 751–768 (2018).

    Article  Google Scholar 

  8. Stavropoulos, V., Burleigh, T. L., Beard, C. L., Gomez, R. & Griffiths, M. D. Being there: a preliminary study examining the role of presence in Internet gaming disorder. Int. J. Ment. Health Addict. 17, 880–890 (2019).

    Article  Google Scholar 

  9. Salmela-Aro, K., Upadyaya, K., Hakkarainen, K., Lonka, K. & Alho, K. The dark side of Internet use: two longitudinal studies of excessive Internet use, depressive symptoms, school burnout and engagement among Finnish early and late adolescents. J. Youth Adolesc. 46, 343–357 (2017).

    Article  PubMed  Google Scholar 

  10. Mazzer, K., Bauducco, S., Linton, S. J. & Boersma, K. Longitudinal associations between time spent using technology and sleep duration among adolescents. J. Adolesc. 66, 112–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Borca, G., Bina, M., Keller, P., Gilbert, L. R. & Begotti, T. Internet use and developmental tasks: adolescents’ point of view. Comput. Hum. Behav. 52, 49–58 (2015).

    Article  Google Scholar 

  12. Best, P., Manktelow, R. & Taylor, B. Online communication, social media and adolescent wellbeing: a systematic narrative review. Child. Youth Serv. Rev. 41, 27–36 (2014).

    Article  Google Scholar 

  13. Subrahmanyam, K., Smahel, D. & Greenfield, P. Connecting developmental constructions to the Internet: identity presentation and sexual exploration in online teen chat rooms. Dev. Psychol. 42, 395–406 (2006).

    Article  PubMed  Google Scholar 

  14. Ellison, N. B., Steinfield, C. & Lampe, C. Connection strategies: social capital implications of Facebook-enabled communication practices. New Media Soc. 13, 873–892 (2011).

    Article  Google Scholar 

  15. Thom, R. P., Bickham, D. S. & Rich, M. Internet use, depression, and anxiety in a healthy adolescent population: prospective cohort study. JMIR Mhealth Uhealth 5, e44 (2018).

    PubMed  Google Scholar 

  16. Dolev-Cohen, M. & Barak, A. Adolescents’ use of instant messaging as a means of emotional relief. Comput. Hum. Behav. 29, 58–63 (2013).

    Article  Google Scholar 

  17. Odgers, C. L. & Jensen, M. R. Annual research review: adolescent mental health in the digital age: facts, fears, and future directions. J. Child Psychol. Psychiatry 61, 336–348 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Orben, A. & Przybylski, A. K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 3, 173–182 (2019).

    Article  PubMed  Google Scholar 

  19. Maas, M. K., Bray, B. C. & Noll, J. G. Online sexual experiences predict subsequent sexual health and victimization outcomes among female adolescents: a latent class analysis. J. Youth Adolesc. 48, 837–849 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mitchell, K. J., Finkelhor, D. & Wolak, J. Online requests for sexual pictures from youth: risk factors and incident characteristics. J. Adolesc. Health 41, 196–203 (2007).

    Article  PubMed  Google Scholar 

  21. Negriff, S. & Valente, T. W. Structural characteristics of the online social networks of maltreated youth and offline sexual risk behavior. Child Abuse Negl. 85, 209–219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Noll, J. G., Shenk, C. E., Barnes, J. E. & Haralson, K. J. Association of maltreatment with high-risk Internet behaviors and offline encounters. Pediatrics 131, e510–e517 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Helweg‐Larsen, K., Schütt, N. & Larsen, H. B. Predictors and protective factors for adolescent Internet victimization: results from a 2008 nationwide Danish youth survey. Acta Paediatr. 101, 533–539 (2012).

    Article  PubMed  Google Scholar 

  24. Mitchell, K. J., Finkelhor, D. & Wolak, J. Youth Internet users at risk for the most serious online sexual solicitations. Am. J. Prev. Med. 32, 532–537 (2007).

    Article  PubMed  Google Scholar 

  25. Noll, J. G. et al. Childhood sexual abuse and early timing of puberty. J. Adolesc. Health 60, 65–71 (2017).

    Article  PubMed  Google Scholar 

  26. Noll, J. G. et al. Receptive language and educational attainment for sexually abused females. Pediatrics 126, e615–e622 (2010).

    Article  PubMed  Google Scholar 

  27. Trickett, P. K., Noll, J. G. & Putnam, F. W. The impact of sexual abuse on female development: lessons from a multigenerational, longitudinal research study. Dev. Psychopathol. 23, 453–476 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Noll, J. G. et al. Is sexual abuse a unique predictor of sexual risk behaviors, pregnancy, and motherhood in adolescence? J. Res. Adolesc. 29, 967–983 (2019).

    Article  PubMed  Google Scholar 

  29. Browne, A. & Finkelhor, D. Impact of child sexual abuse: a review of the research. Psychol. Bull. 99, 66–77 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Negriff, S., Schneiderman, J. U. & Trickett, P. K. Child maltreatment and sexual risk behavior: maltreatment types and gender differences. J. Dev. Behav. Pediatr. 36, 708–716 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noll, J. G., Shenk, C. E. & Putnam, K. T. Childhood sexual abuse and adolescent pregnancy: a meta-analytic update. J. Pediatr. Psychol. 34, 366–378 (2009).

    Article  PubMed  Google Scholar 

  32. Widom, C. S. & Kuhns, J. B. Childhood victimization and subsequent risk for promiscuity, prostitution, and teenage pregnancy: a prospective study. Am. J. Public Health 86, 1607–1612 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, H. W. & Widom, C. S. Sexually transmitted diseases among adults who had been abused and neglected as children: a 30-year prospective study. Am. J. Public Health 99, S197–S203 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noll, J. G., Trickett, P. K. & Putnam, F. W. A prospective investigation of the impact of childhood sexual abuse on the development of sexuality. J. Consult. Clin. Psychol. 71, 575–586 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burton, D. L., Leibowitz, G. S. & Howard, A. Comparison by crime type of juvenile delinquents on pornography exposure: the absence of relationships between exposure to pornography and sexual offense characteristics. J. Forensic Nurs. 6, 121–129 (2010).

    Article  PubMed  Google Scholar 

  36. Collins, R. L. et al. Sexual media and childhood well-being and health. Pediatrics 140, S162–S166 (2017).

    Article  PubMed  Google Scholar 

  37. Doornwaard, S. M. et al. Sex-related online behaviors and adolescents’ body and sexual self-perceptions. Pediatrics 134, 1103–1110 (2014).

    Article  PubMed  Google Scholar 

  38. Kohut, T. & Štulhofer, A. Is pornography use a risk for adolescent well-being? An examination of temporal relationships in two independent panel samples. PLoS ONE 13, e0202048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Owens, E. W., Behun, R. J., Manning, J. C. & Reid, R. C. The impact of Internet pornography on adolescents: a review of the research. Sex. Addict. Compulsivity 19, 99–122 (2012).

    Article  Google Scholar 

  40. Cheng, S., Ma, J. & Missari, S. The effects of Internet use on adolescents’ first romantic and sexual relationships in Taiwan. Int. Sociol. 29, 324–347 (2014).

    Article  Google Scholar 

  41. Madigan, S., Ly, A., Rash, C. L., Ouytsel, J. V. & Temple, J. R. Prevalence of multiple forms of sexting behavior among youth: a systematic review and meta-analysis. JAMA Pediatr. 172, 327–335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peter, J. & Valkenburg, P. M. Adolescents and pornography: a review of 20 years of research. J. Sex Res. 53, 509–531 (2016).

    Article  PubMed  Google Scholar 

  43. Doornwaard, S. M., van den Eijnden, R. J. J. M., Baams, L., Vanwesenbeeck, I. & ter Bogt, T. F. M. Lower psychological well-being and excessive sexual interest predict symptoms of compulsive use of sexually explicit Internet material among adolescent boys. J. Youth Adolesc. 45, 73–84 (2016).

    Article  PubMed  Google Scholar 

  44. van Oosten, J. M. F. Sexually explicit Internet material and adolescents’ sexual uncertainty: the role of disposition-content congruency. Arch. Sex. Behav. 45, 1011–1022 (2016).

    Article  PubMed  Google Scholar 

  45. Brown, J. D. & L’Engle, K. L. X-rated: sexual attitudes and behaviors associated with U.S. early adolescents’ exposure to sexually explicit media. Commun. Res. 36, 129–151 (2009).

    Article  Google Scholar 

  46. Messman-Moore, T. L. & Long, P. J. The role of childhood sexual abuse sequelae in the sexual revictimization of women: an empirical review and theoretical reformulation. Clin. Psychol. Rev. 23, 537–571 (2003).

    Article  PubMed  Google Scholar 

  47. Shields, A. & Cicchetti, D. Parental maltreatment and emotion dysregulation as risk factors for bullying and victimization in middle childhood. J. Clin. Child Psychol. 30, 349–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Barnes, J. E., Noll, J. G., Putnam, F. W. & Trickett, P. K. Sexual and physical revictimization among victims of severe childhood sexual abuse. Child Abuse Negl. 33, 412–420 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Modecki, K. L., Minchin, J., Harbaugh, A. G., Guerra, N. G. & Runions, K. C. Bullying prevalence across contexts: a meta-analysis measuring cyber and traditional bullying. J. Adolesc. Health 55, 602–611 (2014).

    Article  PubMed  Google Scholar 

  50. Cosma, A. et al. Bullying victimization: time trends and the overlap between traditional and cyberbullying across countries in Europe and North America. Int. J. Public Health 65, 75–85 (2020).

    Article  PubMed  Google Scholar 

  51. Hébert, M., Cénat, J. M., Blais, M., Lavoie, F. & Guerrier, M. Child sexual abuse, bullying, cyberbullying, and mental health problems among high school students: a moderated mediated model. Depress Anxiety 33, 623–629 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Viner, R. M. et al. Roles of cyberbullying, sleep, and physical activity in mediating the effects of social media use on mental health and wellbeing among young people in England: a secondary analysis of longitudinal data. Lancet Child Adolesc. Health 3, 685–696 (2019).

    Article  PubMed  Google Scholar 

  53. Roodman, A. A. & Clum, G. A. Revictimization rates and method variance: a meta-analysis. Clin. Psychol. Rev. 21, 183–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lederer, L. J. & Wetzel, C. A. The health consequences of sex trafficking and their implications for identifying victims in healthcare facilities. Ann. Health Law 23, 61–91 (2014).

    Google Scholar 

  55. boyd, D. & Hargittai, E. Connected and concerned: variation in parents’ online safety concerns. Policy Internet 5, 245–269 (2013).

    Article  Google Scholar 

  56. Cole, D. A. et al. Longitudinal and incremental relation of cybervictimization to negative self-cognitions and depressive symptoms in young adolescents. J. Abnorm. Child Psychol. 44, 1321–1332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garett, R., Lord, L. R. & Young, S. D. Associations between social media and cyberbullying: a review of the literature. Mhealth 2, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hamm, M. P. et al. Prevalence and effect of cyberbullying on children and young people: a scoping review of social media studies. JAMA Pediatr. 169, 770–777 (2015).

    Article  PubMed  Google Scholar 

  59. Dowdell, E. B., Burgess, A. W. & Flores, J. R. Online social networking patterns among adolescents, young adults, and sexual offenders. Am. J. Nurs. 111, 28–36 (2011).

    Article  PubMed  Google Scholar 

  60. Malesky, L. A. Jr. Predatory online behavior: modus operandi of convicted sex offenders in identifying potential victims and contacting minors over the Internet. J. Child Sex. Abus. 16, 23–32 (2007).

    Article  PubMed  Google Scholar 

  61. Black, P., Wollis, M., Woodworth, M. & Hancock, J. T. A linguistic analysis of grooming strategies of online child sex offenders: implications for our understanding of predatory sexual behavior in an increasingly computer-mediated world. Child Abuse Negl. 44, 140–149 (2015).

    Article  PubMed  Google Scholar 

  62. Whittle, H., Hamilton-Giachritsis, C., Beech, A. & Collings, G. A review of online grooming: characteristics and concerns. Aggress. Violent Behav. 18, 62–70 (2013).

    Article  Google Scholar 

  63. Wolak, J., Finkelhor, D., Mitchell, K. J. & Ybarra, M. L. Online ‘predators’ and their victims: myths, realities, and implications for prevention and treatment. Am. Psychol. 63, 111–128 (2008).

    Article  PubMed  Google Scholar 

  64. Lorenzo-Dus, N., Izura, C. & Pérez-Tattam, R. Understanding grooming discourse in computer-mediated environments. Discourse Context Media 12, 40–50 (2016).

    Article  Google Scholar 

  65. Marcum, C. D. Interpreting the intentions of Internet predators: an examination of online predatory behavior. J. Child Sex. Abus. 16, 99–114 (2007).

    Article  PubMed  Google Scholar 

  66. Livingstone, S. & Helsper, E. J. Children, internet and risk in comparative perspective. J. Child. Media 7, 1–8 (2013).

    Article  Google Scholar 

  67. Noll, J. G. Child sexual abuse as a unique risk factor for the development of psychopathology: the compounded convergence of mechanisms. Annu. Rev. Clin. Psychol. 17, 439–464 (2021).

    Article  PubMed  Google Scholar 

  68. Nooner, K. B. et al. Factors related to posttraumatic stress disorder in adolescence. Trauma Violence Abuse 13, 153–166 (2012).

    Article  PubMed  Google Scholar 

  69. Lauterbach, D. & Armour, C. Symptom trajectories among child survivors of maltreatment: findings from the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN). J. Abnorm. Child Psychol. 44, 369–379 (2016).

    Article  PubMed  Google Scholar 

  70. Collishaw, S. et al. Resilience to adult psychopathology following childhood maltreatment: evidence from a community sample. Child Abuse Negl. 31, 211–229 (2007).

    Article  PubMed  Google Scholar 

  71. Mitchell, K. J., Wolak, J. & Finkelhor, D. Trends in youth reports of sexual solicitations, harassment and unwanted exposure to pornography on the Internet. J. Adolesc. Health 40, 116–126 (2007).

    Article  PubMed  Google Scholar 

  72. Livingstone, S. & Helsper, E. Balancing opportunities and risks in teenagers’ use of the internet: the role of online skills and internet self-efficacy. New Media Soc. 12, 309–329 (2009).

    Article  Google Scholar 

  73. George, M. J. et al. Young adolescents’ digital technology use, perceived impairments, and well-being in a representative sample. J. Pediatr. 219, 180–187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mitchell, K. J., Ybarra, M. & Finkelhor, D. The relative importance of online victimization in understanding depression, delinquency, and substance use. Child Maltreat. 12, 314–324 (2007).

    Article  PubMed  Google Scholar 

  75. Díaz, K. I. & Fite, P. J. Cyber victimization and its association with substance use, anxiety, and depression symptoms among middle school youth. Child Youth Care Forum 48, 529–544 (2019).

    Article  Google Scholar 

  76. Hemphill, S. A., Tollit, M., Kotevski, A. & Heerde, J. A. Predictors of traditional and cyber-bullying victimization: a longitudinal study of Australian secondary school students. J. Interpers. Violence 30, 2567–2590 (2015).

    Article  PubMed  Google Scholar 

  77. Zych, I., Farrington, D. P. & Ttofi, M. M. Protective factors against bullying and cyberbullying: a systematic review of meta-analyses. Aggress. Violent Behav. 45, 4–19 (2019).

    Article  Google Scholar 

  78. de Santisteban, P. & Gámez-Guadix, M. Prevalence and risk factors among minors for online sexual solicitations and interactions with adults. J. Sex Res. 55, 939–950 (2018).

    Article  PubMed  Google Scholar 

  79. Ferrari, M. & Schick, A. Teenagers, screens and social media: a commentary on Orben’s narrative review. Soc. Psychiatry Psychiatr. Epidemiol. 55, 973–975 (2020).

    Article  PubMed  Google Scholar 

  80. Hillis, S., Mercy, J., Amobi, A. & Kress, H. Global prevalence of past-year violence against children: a systematic review and minimum estimates. Pediatrics 137, e20154079 (2016).

    Article  PubMed  Google Scholar 

  81. Appleyard, K., Egeland, B., van Dulmen, M. H. & Sroufe, L. A. When more is not better: the role of cumulative risk in child behavior outcomes. J. Child Psychol. Psychiatry 46, 235–245 (2005).

    Article  PubMed  Google Scholar 

  82. Deater-Deckard, K., Dodge, K. A., Bates, J. E. & Pettit, G. S. Multiple risk factors in the development of externalizing behavior problems: group and individual differences. Dev. Psychopathol. 10, 469–493 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lanza, S. T., Rhoades, B. L., Greenberg, M. T. & Cox, M. Modeling multiple risks during infancy to predict quality of the caregiving environment: contributions of a person-centered approach. Infant Behav. Dev. 34, 390–406 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Görzig, A. Adolescents’ viewing of suicide-related Web content and psychological problems: differentiating the roles of cyberbullying involvement. Cyberpsychol. Behav. Soc. Netw. 19, 502–509 (2016).

    Article  PubMed  Google Scholar 

  85. Williams, K. R. & Guerra, N. G. Prevalence and predictors of Internet bullying. J. Adolesc. Health 41, S14–S21 (2007).

    Article  PubMed  Google Scholar 

  86. Kardefelt-Winther, D. & Maternowska, C. Addressing violence against children online and offline. Nat. Hum. Behav. 4, 227–230 (2020).

    Article  PubMed  Google Scholar 

  87. Finkelhor, D., Walsh, K., Jones, L., Mitchell, K. & Collier, A. Youth Internet safety education: aligning programs with the evidence base. Trauma Violence Abuse, https://doi.org/10.1177/1524838020916257 (2020).

  88. Prinstein, M. J., Nesi, J. & Telzer, E. H. Commentary: an updated agenda for the study of digital media use and adolescent development—future directions following Odgers & Jensen (2020). J. Child Psychol. Psychiatry 61, 349–352 (2020).

    Article  PubMed  Google Scholar 

  89. Boase, J. & Ling, R. Measuring mobile phone use: self-report versus log data. J. Comput. Mediat. Commun. 18, 508–519 (2013).

    Article  Google Scholar 

  90. Gold, J. E., Rauscher, K. J. & Zhu, M. A validity study of self-reported daily texting frequency, cell phone characteristics, and texting styles among young adults. BMC Res. Notes 8, 120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mireku, M. et al. Total recall in the SCAMP cohort: validation of self-reported mobile phone use in the smartphone era. Environ. Res. 161, 1–8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scharkow, M. The accuracy of self-reported Internet use—a validation study using client log data. Commun. Methods Meas. 10, 13–27 (2016).

    Article  Google Scholar 

  93. Finkelhor, D., Shattuck, A., Turner, H. A. & Hamby, S. L. The lifetime prevalence of child sexual abuse and sexual assault assessed in late adolescence. J. Adolesc. Health 55, 329–333 (2014).

    Article  PubMed  Google Scholar 

  94. Twenge, J. M. More time on technology, less happiness? Associations between digital-media use and psychological well-being. Curr. Dir. Psychol. Sci. 28, 372–379 (2019).

    Article  Google Scholar 

  95. Tener, D., Wolak, J. & Finkelhor, D. A typology of offenders who use online communications to commit sex crimes against minors. J. Aggress. Maltreat. Trauma 24, 319–337 (2015).

    Article  Google Scholar 

  96. Deshpande, N. A. & Nour, N. M. Sex trafficking of women and girls. Rev. Obstet. Gynecol. 6, e22–e27 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Rubin, D. B. Matching to remove bias in observational studies. Biometrics 29, 159–183 (1973).

    Article  Google Scholar 

  98. Petersen, A. C., Feit, M. N. & Joseph, J. New Directions in Child Abuse and Neglect Research (The National Academies Press, 2014).

  99. Rosenbaum, P. R. Discussing hidden bias in observational studies. Ann. Intern. Med. 115, 901–905 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Rosenbaum, P. R. Impact of multiple matched controls on design sensitivity in observational studies. Biometrics 69, 118–127 (2013).

    Article  PubMed  Google Scholar 

  101. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R. J. 8, 289–317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dodge, K. A. Annual research review: universal and targeted strategies for assigning interventions to achieve population impact. J. Child Psychol. Psychiatry 61, 255–267 (2020).

    Article  PubMed  Google Scholar 

  103. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).

    Google Scholar 

  104. Twenge, J. M. & Farley, E. Not all screen time is created equal: associations with mental health vary by activity and gender. Soc. Psychiatry Psychiatr. Epidemiol. 56, 207–217 (2021).

    Article  PubMed  Google Scholar 

  105. Lenhart, A. Teens, social media & technology overview 2015. Pew Research Center https://www.pewresearch.org/internet/2015/04/09/teens-social-media-technology-2015/ (2015).

  106. Galatzer-Levy, I. R., Huang, S. H. & Bonanno, G. A. Trajectories of resilience and dysfunction following potential trauma: a review and statistical evaluation. Clin. Psychol. Rev. 63, 41–55 (2018).

    Article  PubMed  Google Scholar 

  107. Cohen, J. A. & Mannarino, A. P. Trauma-focused cognitive behavior therapy for traumatized children and families. Child Adolesc. Psychiatr. Clin. N. Am. 24, 557–570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mathews, B. New International Frontiers in Child Sexual Abuse: Theory, Problems and Progress (Springer International Publishing, 2019).

  109. Barth, J., Bermetz, L., Heim, E., Trelle, S. & Tonia, T. The current prevalence of child sexual abuse worldwide: a systematic review and meta-analysis. Int. J. Public Health 58, 469–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. U.S. Department of Health and Human Services, Children’s Bureau. Child Maltreatment 2018 (U.S. Government Printing Office, 2020).

  111. Finkelhor, D., Saito, K. & Jones, L. Updated Trends in Child Maltreatment, 2018. (Crimes Against Children Research Center, 2020); http://unh.edu/ccrc/pdf/CV203%20-%20Updated%20trends%202018_ks_df.pdf

  112. Hosseinzadeh, D., Krishnan, S. & Khademi, A. Keystroke identification based on Gaussian mixture models. In Proc. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing III.1144–III.1147 (2006).

  113. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2021).

  114. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  115. Dong, Y. & Peng, C. J. Principled missing data methods for researchers. Springerplus 2, 222 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gibson, W. A. Three multivariate models: factor analysis, latent structure analysis and latent profile analysis. Psychometrika 24, 229–252 (1959).

    Article  Google Scholar 

  117. Lanza, S. T. Latent class analysis for developmental research. Child Dev. Perspect. 10, 59–64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nylund, K. L., Asparouhov, T. & Muthén, B. O. Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct. Equ. Modeling 14, 535–569 (2007).

    Article  Google Scholar 

  119. Bertoletti, M., Friel, N. & Rastelli, R. Choosing the number of clusters in a finite mixture model using an exact integrated completed likelihood criterion. Metron 73, 177–199 (2015).

    Article  Google Scholar 

  120. Clark, S. & Muthén, B. Relating Latent Class Analysis Results to Variables Not Included in the Analysis (2009); http://www.statmodel.com/download/relatinglca.pdf

  121. Friedman, J., Hastie, T. & Tibshirani, R. Regularizing paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.G.N., M.Kouril and C.E.S. acknowledge support from a grant from the National Institutes of Health (NIH) (grant no. R01HD052533). J.G.N. and C.E.S. acknowledge support from a grant from the NIH (grant no. P50HD089922). The research was also supported by the National Center for Advancing Translational Sciences (grant no. UL1TR001425). M.M. acknowledges support from the National Center for Advancing Translational Sciences, NIH (grant no. 2KL2TR001446-06A1) and the American Foundation for Suicide Prevention (grant no. PRG-0-104-19). We thank J. D. Long, S. Lanza and J. Buchheim for their statistical advice.

Author information

Authors and Affiliations

Authors

Contributions

J.G.N. was the principal investigator of the study, was involved in conceiving and designing the study, participated in data acquisition, directed the analysis and interpretation of the findings, produced the manuscript drafts and revisions and provided final approval of the manuscript. A.C.H. was involved in conceiving the manuscript, directed and performed the analysis and interpretation of the findings, produced the manuscript drafts and revisions and provided final approval of the manuscript. C.E.S. was a coinvestigator, was involved in conceiving and designing the study, participated in data acquisition, aided in the interpretation of the findings and contributed to the manuscript drafts and revisions. M.F.W. aided in the analysis and interpretation of the findings and contributed to the manuscript revisions. J.E.B. was involved in conceiving and designing the study, participated in data acquisition and aided in the interpretation of the findings. M.Kohram was involved in conceiving and designing the study, participated in data acquisition, aided in the interpretation of the findings and contributed to the manuscript drafts. M.M. aided in the analysis and interpretation of the findings and contributed to the manuscript revisions. D.J.F. aided in the interpretation of the findings and contributed to the manuscript revisions. M.Kouril was a coinvestigator, was involved in conceiving and designing the study, participated in data acquisition, aided in the interpretation of the findings and contributed to the manuscript drafts and revisions. G.A.B. was involved in conceiving the study, aided in the interpretation of the findings and contributed to the manuscript drafts and revisions. All authors approved the submitted version.

Corresponding authors

Correspondence to Jennie G. Noll or Ann-Christin Haag.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Amy Orben and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Histogram of the number of “authenticated” sessions for all participants by study subgroup.

Sessions were authenticated via keystroke verification at login or every two hours of consecutive use. Only session with “active” URL activity are shown (N = 23,839). Active activity was defined as consistent or intermittent interaction with a webpage in terms of page transitions, clicks, refreshes, or data inputs. One participant did not engage in any active sessions and was deleted from analyses. CSA = Child Sexual Abuse. DMC = Demographically-Matched Comparisons. CMC = Census-Matched Comparisons.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–10 and References.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noll, J.G., Haag, AC., Shenk, C.E. et al. An observational study of Internet behaviours for adolescent females following sexual abuse. Nat Hum Behav 6, 74–87 (2022). https://doi.org/10.1038/s41562-021-01187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01187-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing