Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Healthful choices depend on the latency and rate of information accumulation

Abstract

The drift diffusion model provides a parsimonious explanation of decisions across neurobiological, psychological and behavioural levels of analysis. Although most drift diffusion model implementations assume that only a single value guides decisions, choices often involve multiple attributes that could make separable contributions to choice. Here we fit incentive-compatible dietary choices to a multi-attribute, time-dependent drift diffusion model, in which taste and health could differentially influence the evidence accumulation process. We find that these attributes shaped both the relative value signal and the latency of evidence accumulation in a manner consistent with participants’ idiosyncratic preferences. Moreover, by using a dietary prime, we showed how a healthy choice intervention alters multi-attribute, time-dependent drift diffusion model parameters that in turn predict prime-dependent choices. Our results reveal that different decision attributes make separable contributions to the strength and timing of evidence accumulation, providing new insights into the construction of interventions to alter the processes of choice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of the decision process modelling within the mtDDM.
Fig. 2: Predicted results of the mtDDM.
Fig. 3: Behavioural results.
Fig. 4: Attribute drift latency parameters related to choice.

Data availability

Data generated during this study are posted at the Open Science Framework at https://osf.io/trak4/.

Code availability

Custom codes used for stimulus presentation, analysis and modelling are posted at the Open Science Framework at https://osf.io/d45un/

References

  1. 1.

    Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    CAS  PubMed  Google Scholar 

  3. 3.

    Rangel, A. & Clithero, J. in Neuroeconomics: Decision Making and the Brain (eds P.W. Glimcher & E. Fehr) 125–148 (Academic, 2013).

  4. 4.

    Bogacz, R. Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn. Sci. 11, 118–125 (2007).

    PubMed  Google Scholar 

  5. 5.

    Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    CAS  PubMed  Google Scholar 

  6. 6.

    Cavanagh, J. F., Wiecki, T. V., Kochar, A. & Frank, M. J. Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143, 1476–1488 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Eldar, E., Bae, G. J., Kurth-Nelson, Z., Dayan, P. & Dolan, R. J. Magnetoencephalography decoding reveals structural differences within integrative decision processes. Nat. Hum. Behav. 2, 670–681 (2018).

    PubMed  Google Scholar 

  8. 8.

    Turner, B. M., van Maanen, L. & Forstmann, B. U. Informing cognitive abstractions through neuroimaging: the neural drift diffusion model. Psychol. Rev. 122, 312–336 (2015).

    PubMed  Google Scholar 

  9. 9.

    Ratcliff, R., Philiastides, M. G. & Sajda, P. Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proc. Natl Acad. Sci. USA 106, 6539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427 (1996).

    CAS  PubMed  Google Scholar 

  11. 11.

    Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    PubMed  Google Scholar 

  12. 12.

    Sullivan, N., Hutcherson, C., Harris, A. & Rangel, A. Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol. Sci. 26, 122–134 (2015).

    PubMed  Google Scholar 

  13. 13.

    Lim, S. L., Penrod, M. T., Ha, O.-R., Bruce, J. M. & Bruce, A. S. Calorie labeling promotes dietary self-control by shifting the temporal dynamics of health- and taste-attribute integration in overweight individuals. Psychol. Sci. 29, 447–462 (2018).

    PubMed  Google Scholar 

  14. 14.

    Hutcherson, C. A., Bushong, B. & Rangel, A. A neurocomputational model of altruistic choice and its implications. Neuron 87, 451–462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Trueblood, J. S., Brown, S. D. & Heathcote, A. The multiattribute linear ballistic accumulator model of context effects in multialternative choice. Psychol. Rev. 121, 179–205 (2014).

    PubMed  Google Scholar 

  16. 16.

    Ulrich, R., Schroter, H., Leuthold, H. & Birngruber, T. Automatic and controlled stimulus processing in conflict tasks: superimposed diffusion processes and delta functions. Cogn. Psychol. 78, 148–174 (2015).

    PubMed  Google Scholar 

  17. 17.

    Schwarz, W. On the relationship between the redundant signals effect and temporal order judgments: parametric data and a new model. J. Exp. Psychol. Hum. Percept. Perform. 32, 558–573 (2006).

    PubMed  Google Scholar 

  18. 18.

    Rouder, J. N. Premature sampling in random walks. J. Math. Psychol. 40, 287–296 (1996).

    Google Scholar 

  19. 19.

    Dambacher, M. & Hübner, R. Time pressure affects the efficiency of perceptual processing in decisions under conflict. Psychol. Res. 79, 83–94 (2015).

    PubMed  Google Scholar 

  20. 20.

    Pratte, M. S., Rouder, J. N., Morey, R. D. & Feng, C. Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Atten. Percept. Psychophys. 72, 2013–2025 (2010).

    PubMed  Google Scholar 

  21. 21.

    Hübner, R., Steinhauser, M. & Lehle, C. A dual-stage two-phase model of selective attention. Psychol. Rev. 117, 759–784 (2010).

    PubMed  Google Scholar 

  22. 22.

    Bompas, A. & Sumner, P. Saccadic inhibition reveals the timing of automatic and voluntary signals in the human brain. J. Neurosci. 31, 12501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Thorpe, S., Fize, D. & Marlot, C. Speed of processing in the human visual system. Nature 381, 520–522 (1996).

    CAS  PubMed  Google Scholar 

  24. 24.

    Liberman, N. & Trope, Y. The psychology of transcending the here and now. Science 322, 1201–1205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Schmiedek, F., Oberauer, K., Wilhelm, O., Suss, H. M. & Wittmann, W. W. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J. Exp. Psychol. Gen. 136, 414–429 (2007).

    PubMed  Google Scholar 

  26. 26.

    Webb, T. L. & Sheeran, P. Does changing behavioral intentions engender behavior change? A meta-analysis of the experimental evidence. Psychol. Bull. 132, 249–268 (2006).

    PubMed  Google Scholar 

  27. 27.

    Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).

    CAS  PubMed  Google Scholar 

  28. 28.

    Johnson, E. J. et al. Beyond nudges: tools of a choice architecture. Mark. Lett. 23, 487–504 (2012).

    Google Scholar 

  29. 29.

    Cummins, S., Flint, E. & Matthews, S. A. New neighborhood grocery store increased awareness of food access but did not alter dietary habits or obesity. Health Aff. 33, 283–291 (2014).

    Google Scholar 

  30. 30.

    Appelhans, B. M. et al. Delay discounting and intake of ready-to-eat and away-from-home foods in overweight and obese women. Appetite 59, 576–584 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Marteau, T. M., Ogilvie, D., Roland, M., Suhrcke, M. & Kelly, M. P. Judging nudging: can nudging improve population health? BMJ 342, d228 (2011).

    PubMed  Google Scholar 

  32. 32.

    Forstmeier, S., Drobetz, R. & Maercker, A. The delay of gratification test for adults: validating a behavioral measure of self-motivation in a sample of older people. Motiv. Emot. 35, 118–134 (2011).

    Google Scholar 

  33. 33.

    Ratcliff, R., Thapar, A. & McKoon, G. Application of the diffusion model to two-choice tasks for adults 75−90 years old. Psychol. Aging 22, 56–66 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ratcliff, R., Thapar, A. & McKoon, G. Aging and individual differences in rapid two-choice decisions. Psychon. Bull. Rev. 13, 626–635 (2006).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    van Maanen, L. et al. Neural correlates of trial-to-trial fluctuations in response caution. J. Neurosci. 31, 17488 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A. & Forstmann, B. U. Adjustments of response threshold during task switching: a model-based functional magnetic resonance imaging study. J. Neurosci. 31, 14688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rae, B., Heathcote, A., Donkin, C., Averell, L. & Brown, S. The hare and the tortoise: emphasizing speed can change the evidence used to make decisions. J. Exp. Psychol. Learn Mem. Cogn. 40, 1226–1243 (2014).

    PubMed  Google Scholar 

  38. 38.

    Lerche, V. & Voss, A. Model complexity in diffusion modeling: benefits of making the model more parsimonious. Front. Psychol. https://doi.org/10.3389/fpsyg.2016.01324 (2016).

  39. 39.

    Lerche, V. & Voss, A. Retest reliability of the parameters of the Ratcliff diffusion model. Psychol. Res. 81, 629–652 (2017).

    PubMed  Google Scholar 

  40. 40.

    van Ravenzwaaij, D. & Oberauer, K. How to use the diffusion model: parameter recovery of three methods: EZ, fast-dm, and DMAT. J. Math. Psychol. 53, 463–473 (2009).

    Google Scholar 

  41. 41.

    Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 36, 717–731 (2004).

    PubMed  Google Scholar 

  42. 42.

    Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Google Scholar 

  43. 43.

    Hare, T., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    CAS  PubMed  Google Scholar 

  44. 44.

    Shiv, B. & Fedorikhin, A. Heart and mind in conflict: the interplay of affect and cognition in consumer decision making. J. Consum. Res. 26, 278–292 (1999).

    Google Scholar 

  45. 45.

    Sokol-Hessner, P., Hutcherson, C., Hare, T. & Rangel, A. Decision value computation in DLPFC and VMPFC adjusts to the available decision time. Eur. J. Neurosci. 35, 1065–1074 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Milosavljevic, M., Malmaud, J., Huth, A., Koch, C. & Rangel, A. The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgm. Decis. Mak. 5, 437–449 (2010).

    Google Scholar 

  47. 47.

    Loewenstein, G. & Prelec, D. Anomalies in intertemporal choice: evidence and an Interpretation. Q. J. Econ. 107, 573–597 (1992).

    Google Scholar 

  48. 48.

    Chabris, C. F., Laibson, D., Morris, C. L., Schuldt, J. P. & Taubinsky, D. Individual laboratory-measured discount rates predict field behavior. Working Paper Series No. 14270. National Bureau of Economic Research https://doi.org/10.3386/w14270 (2008).

  49. 49.

    Berns, G. S., Laibson, D. & Loewenstein, G. Intertemporal choice – toward an integrative framework. Trends Cogn. Sci. 11, 482–488 (2007).

    PubMed  Google Scholar 

  50. 50.

    Ratcliff, R. A note on modeling accumulation of information when the rate of accumulation changes over time. J. Math. Psychol. 21, 178–184, https://doi.org/10.1016/0022-2496(80)90006-1 (1980).

    Article  Google Scholar 

  51. 51.

    Samuelson, P. A note on measurement of utility. Rev. Econ. Stud. 4, 155–161 (1937).

    Google Scholar 

  52. 52.

    Mazur, J. E. in Quantitative Analysis of Behavior Vol. 5. The Effect of Delay and Intervening Events on Reinforcement Value (eds J.E. Mazur, J.A. Nevin, & H. Rachlin) 55–73 (Erlbaum, 1987).

  53. 53.

    Laibson, D. Golden eggs and hyperbolic discounting. Q. J. Econ. 112, 443–478 (1997).

    Google Scholar 

  54. 54.

    Gluth, S. & Rieskamp, J. Variability in behavior that cognitive models do not explain can be linked to neuroimaging data. J. Math. Psychol. 76, 104–116, https://doi.org/10.1016/j.jmp.2016.04.012 (2017).

    Article  Google Scholar 

  55. 55.

    Hunt, L. T., Dolan, R. J. & Behrens, T. E. J. Hierarchical competitions subserving multi-attribute choice. Nat. Neurosci. 17, 1613, https://doi.org/10.1038/nn.3836; https://www.nature.com/articles/nn.3836 (2014).

  56. 56.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  PubMed  Google Scholar 

  57. 57.

    Sullivan, N. J., Fitzsimons, G. J., Platt, M. L. & Huettel, S. A. Indulgent foods can paradoxically promote disciplined dietary choices. Psychol. Sci. 30, 273–287 (2019).

    PubMed  Google Scholar 

  58. 58.

    Sullivan, N. J. The Neurocomputational Basis of Self-Control Success and Failure. PhD thesis, California Institute of Technology (2015).

Download references

Acknowledgements

This work was conducted using institutional funding provided by Duke University. The authors thank I. Krajbich for suggesting the use of the term ‘latency’ to describe attribute-wise non-decision times.

Author information

Affiliations

Authors

Contributions

N.J.S. and S.A.H. designed the study and wrote the paper. N.J.S. developed the models, collected data and analysed data.

Corresponding author

Correspondence to Nicolette J. Sullivan.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Nature Research, or other interests that might be perceived to influence the interpretation of the article.

Additional information

Peer review information Nature Human Behaviour thanks Eran Eldar, Sanjay Manohar and Uku Vainik for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Flow of a choice trial.

Participants made 300 binary choices with free response time. Foods were displayed on the left and right sides of the screen. After keyboard response, the chosen food was highlighted in green for 200 ms to reflect participant response. Between trials, a fixation cross was displayed in the center of the screen for between 200 and 500 ms (mean 350 ms; i.i.d. distributed). Although icons are displayed here, stimuli used were high-resolution real common snack foods photographed on a black background. Icons made by Nikita Golubev & Vectors Market from Flaticon.com.

Extended Data Fig. 2 Difference between recovered and true simulated parameters.

a, Each ‘true’ mtDDM parameter is plotted against its recovered estimate. The distribution of differences between true and recovered parameters are shown below each scatterplot. b, The difference in Drift Slopes and Latencies for Taste and Health are plotted, with the true parameters of the simulations plotted against their recovered parameters. The distribution of differences in true and recovered parameter differences (Taste-Health) are shown below each scatterplot. In each scatter plot, the black line represents a perfect correlation line. In each histogram, the black line represents the mean difference between true and recovered parameter.

Extended Data Fig. 3 Model comparisons.

Please add a caption for Extended Data Fig. 3 here.

Extended Data Fig. 4 Association between health’s drift latency, response times, and healthy choices.

Models 3 and 4 use latency fit to one half of trials to predict healthy choice on the other half of trials.

Extended Data Fig. 5 Influence of prime on mtDDM parameters.

a, Drift slopes for food tastiness and healthfulness by prime condition. b, Difference in taste and health drift slopes by prime condition. For both plots, the center line is the median and box edges represent the 25th and 75th percentiles. The error bars represent the extent of the data MATLAB’s boxplot considered to be not outliers, and black crosses represent outliers. Outliers are determined using MATLAB’s default algorithm, in which outliers are data points larger (smaller) than the 75th (25th) percentile plus (minus) 1.5 times the difference between the 75th and 25th percentiles.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Results, Supplementary Figs. 1–6 and Supplementary Table 1.

Reporting summary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sullivan, N.J., Huettel, S.A. Healthful choices depend on the latency and rate of information accumulation. Nat Hum Behav (2021). https://doi.org/10.1038/s41562-021-01154-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing