Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aesthetic preference for art can be predicted from a mixture of low- and high-level visual features


It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Here, we developed and tested a computational framework to investigate how aesthetic values are formed. We show that it is possible to explain human preferences for a visual art piece based on a mixture of low- and high-level features of the image. Subjective value ratings could be predicted not only within but also across individuals, using a regression model with a common set of interpretable features. We also show that the features predicting aesthetic preference can emerge hierarchically within a deep convolutional neural network trained only for object recognition. Our findings suggest that human preferences for art can be explained at least in part as a systematic integration over the underlying visual features of an image.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Testing the LFS model that constructs aesthetic value of visual stimuli.
Fig. 2: The LFS model successfully predicts the subjective value of paintings.
Fig. 3: Cluster analysis in feature space suggests distinct groups of individuals who vary in their preference computations across our online sample.
Fig. 4: The LFS model also predicts subjective liking ratings for various kinds of photographs.
Fig. 5: A DCNN can predict subjective values (that is, liking ratings) of art stimuli, and the features that we introduced to our LFS model spontaneously emerge in the hidden layers of the network.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kant, I Critique of Judgment (Hackett, 1987).

    Google Scholar 

  2. 2.

    Fechner, G. T Vorschule der aesthetik, Vol. 1 (Breitkopf & Härtel, 1876).

  3. 3.

    Ramachandran, V. S. & Hirstein, W. The science of art: a neurological theory of aesthetic experience. J. Conscious. Stud. 6, 15–51 (1999).

    Google Scholar 

  4. 4.

    Zeki, S Inner Vision: An Exploration of Art and the Brain (Oxford Univ. Press, 2002).

    Google Scholar 

  5. 5.

    Leder, H., Belke, B., Oeberst, A. & Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 95, 489–508 (2004).

    PubMed  Google Scholar 

  6. 6.

    Biederman, I. & Vessel, E. A. Perceptual pleasure and the brain: a novel theory explains why the brain craves information and seeks it through the senses. Am. Sci. 94, 247–253 (2006).

    Google Scholar 

  7. 7.

    Chatterjee, A. Neuroaesthetics: a coming of age story. J. Cogn. Neurosci. 23, 53–62 (2011).

    PubMed  Google Scholar 

  8. 8.

    Shimamura, A. P. & Palmer, S. E. Aesthetic Science: Connecting Minds, Brains, and Experience (Oxford Univ. Press USA, 2012).

  9. 9.

    Palmer, S. E., Schloss, K. B. & Sammartino, J. Visual aesthetics and human preference. Annu. Rev. Psychol. 64, 77–107 (2013).

    PubMed  Google Scholar 

  10. 10.

    Leder, H. & Nadal, M. Ten years of a model of aesthetic appreciation and aesthetic judgments: the aesthetic episode–developments and challenges in empirical aesthetics. Br. J. Psychol. 105, 443–464 (2014).

    PubMed  Google Scholar 

  11. 11.

    Chatterjee, A. Prospects for a cognitive neuroscience of visual aesthetics. Bull. Psychol. Art. 4 (2003).

  12. 12.

    Bar, M. & Neta, M. Humans prefer curved visual objects. Psychol. Sci. 17, 645–648 (2006).

    PubMed  Google Scholar 

  13. 13.

    Van Paasschen, J., Zamboni, E., Bacci, F. & Melcher, D. Consistent emotions elicited by low-level visual features in abstract art. Art. Percept. 2, 99–118 (2014).

    Google Scholar 

  14. 14.

    Cela-Conde, C. J. et al. Activation of the prefrontal cortex in the human visual aesthetic perception. Proc. Natl Acad. Sci. USA 101, 6321–6325 (2004).

    CAS  PubMed  Google Scholar 

  15. 15.

    Kawabata, H. & Zeki, S. Neural correlates of beauty. J. Neurophysiol. 91, 1699–1705 (2004).

    PubMed  Google Scholar 

  16. 16.

    Weber, E. U. & Johnson, E. J. in The Construction of Preference (eds Lichtenstein, S. & Slovic, P.) 397–410 (Cambridge Univ. Press, 2006).

  17. 17.

    Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

    CAS  PubMed  Google Scholar 

  18. 18.

    Barron, H. C., Dolan, R. J. & Behrens, T. E. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16, 1492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

  20. 20.

    Kahnt, T., Heinzle, J., Park, S. Q. & Haynes, J.-D. Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. Neuroimage 56, 709–715 (2011).

    PubMed  Google Scholar 

  21. 21.

    Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pelletier, G. & Fellows, L. K. A critical role for human ventromedial frontal lobe in value comparison of complex objects based on attribute configuration. J. Neurosci. 39, 4124–4132 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Howard, J. D. & Gottfried, J. A. Configural and elemental coding of natural odor mixture components in the human brain. Neuron 84, 857–869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Suzuki, S., Cross, L. & O’Doherty, J. P. Elucidating the underlying components of food valuation in the human orbitofrontal cortex. Nat. Neurosci. 20, 1780 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lim, S.-L., O’Doherty, J. P. & Rangel, A. Stimulus value signals in ventromedial PFC reflect the integration of attribute value signals computed in fusiform gyrus and posterior superior temporal gyrus. J. Neurosci. 33, 8729–8741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li, C. & Chen, T. Aesthetic visual quality assessment of paintings. IEEE J. Sel. Top. Signal Process. 3, 236–252 (2009).

    Google Scholar 

  28. 28.

    Chatterjee, A., Widick, P., Sternschein, R., Smith, W. B. & Bromberger, B. The assessment of art attributes. Empir. Stud. Arts 28, 207–222 (2010).

    Google Scholar 

  29. 29.

    Vaidya, A. R., Sefranek, M. & Fellows, L. K. Ventromedial frontal lobe damage alters how specific attributes are weighed in subjective valuation. Cereb. Cortex 28, 3857–3867 (2017).

    PubMed Central  Google Scholar 

  30. 30.

    Rother, C., Kolmogorov, V. & Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23, 309–314 (2004).

  31. 31.

    Walther, D. & Koch, C. Modeling attention to salient proto-objects. Neural Netw. 19, 1395–1407 (2006).

    PubMed  Google Scholar 

  32. 32.

    Murray, N., Marchesotti, L. & Perronnin, F. in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2408–2415 (IEEE, 2012).

  33. 33.

    Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. Preprint at arXiv (2014).

  34. 34.

    Deng, J. et al. in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, 2009).

  35. 35.

    Hong, H., Yamins, D. L., Majaj, N. J. & DiCarlo, J. J. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19, 613 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Mallon, B., Redies, C. & Hayn-Leichsenring, G. U. Beauty in abstract paintings: perceptual contrast and statistical properties. Front. Hum. Neurosci. 8, 161 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Graham, D. & Field, D. Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities. Spat. Vis. 21, 149–164 (2008).

    Google Scholar 

  38. 38.

    Vessel, E. A., Maurer, N., Denker, A. H. & Starr, G. G. Stronger shared taste for natural aesthetic domains than for artifacts of human culture. Cognition 179, 121–131 (2018).

    PubMed  Google Scholar 

  39. 39.

    Vessel, E. A. & Rubin, N. Beauty and the beholder: highly individual taste for abstract, but not real-world images. J. Vis. 10, 18–18 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bengio, Y. Deep learning of representations for unsupervised and transfer learning. Proc. Mach. Learn. Res. 27, 17–36 (2012).

    Google Scholar 

  41. 41.

    Leshno, M., Lin, V. Y., Pinkus, A. & Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6, 861–867 (1993).

    Google Scholar 

  42. 42.

    Hofmann, T., Schölkopf, B. & Smola, A. J. Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2008).

    Google Scholar 

  43. 43.

    Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Brieber, D., Nadal, M. & Leder, H. In the white cube: museum context enhances the valuation and memory of art. Acta Psychol. 154, 36–42 (2015).

    Google Scholar 

  47. 47.

    Ke, Y., Tang, X. & Jing, F. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, 419–426 (IEEE, 2006).

  48. 48.

    Salah, M. B., Mitiche, A. & Ayed, I. B. Multiregion image segmentation by parametric kernel graph cuts. IEEE Trans. Image Process. 20, 545–557 (2010).

    PubMed  Google Scholar 

  49. 49.

    Nock, R. & Nielsen, F. Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1452–1458 (2004).

    PubMed  Google Scholar 

  50. 50.

    Zhu, Q., Yeh, M.-C., Cheng, K.-T. & Avidan, S. in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 1491–1498 (IEEE, 2006).

  51. 51.

    We thank A. Vaidya and L. Fellows for this suggestion.

  52. 52.

    Hein, M. & Bühler, T. An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Adv. Neural Inform. Process. Syst. 23, 847–855 (2010).

    Google Scholar 

  53. 53.

    Murray, N. & Gordo, A. A deep architecture for unified aesthetic prediction. Preprint at arXiv (2017).

  54. 54.

    Huber, P. J. Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964).

    Google Scholar 

  55. 55.

    Iigaya, K., Yi, S., Wahle, I. A., Tanwisuth, K. & O’Doherty, J. P. Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain. Preprint at bioRxiv (2020).

  56. 56.

    Gatys, L. A., Ecker, A. S. & Bethge, M. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2414–2423 (2016).

Download references


The authors thank P. Dayan, S. Shimojo, O. Perona, L. Fellows, A. Vaidya, J. Cockburn and L. Cross for discussions and suggestions. The authors also thank S. Iigaya and E. Iigaya for drawing colour field paintings presented in this manuscript. This work was supported by NIDA grant R01DA040011 and the Caltech Conte Center for Social Decision Making (P50MH094258) to J.P.O., the Japan Society for Promotion of Science, the Swartz Foundation and the Suntory Foundation to K.I., and the William H. and Helen Lang SURF Fellowship to I.A.W.. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




K.I. and J.P.O. conceived and designed the project. K.I., S.Y., I.A.W. and K.T. performed experiments, and K.I., S.Y., I.A.W., K.T. and J.P.O. analysed and discussed the results. K.I., S.Y., I.A.W. and J.P.O. wrote the manuscript.

Corresponding author

Correspondence to Kiyohito Iigaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Human Behaviour thanks Gabriel Kreiman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iigaya, K., Yi, S., Wahle, I.A. et al. Aesthetic preference for art can be predicted from a mixture of low- and high-level visual features. Nat Hum Behav 5, 743–755 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing