Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social connections and the healthfulness of food choices in an employee population


Unhealthy food choice is an important driver of obesity, but research examining the relationship of food choices and social influence has been limited. We sought to assess associations in the healthfulness of workplace food choices among a large population of diverse employees whose food-related social connections were identified using passively collected data in a validated model. Data were drawn from 3 million encounters where pairs of employees made purchases together in 2015–2016. The healthfulness of food items was defined by ‘traffic light’ labels. Cross-sectional simultaneously autoregressive models revealed that proportions of both healthy and unhealthy items purchased were positively associated between connected employees. Longitudinal generalized estimating equation models also found positive associations between an employee’s current food purchase and the most recent previous food purchase a coworker made together with the employee. These data indicate that workplace interventions to promote healthy eating and reduce obesity should test peer-based strategies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Properties of the predictive model for identifying social ties using cafeteria transaction and human resources data.
Fig. 2: Yearly associations between employee and coworker purchases.
Fig. 3: Prospective associations between employee’ current and coworker’s previous purchases.

Data availability

Although the data are deidentified, combined demographic data could potentially identify individuals or small groups. As a result, interested parties may access the data by applying to the corresponding author and entering into an appropriate data use agreement.

Code availability

The R code used to estimate the SAR, GEE and instrumental variables models is illustrated in Supplementary Figs. 1012. Full code is available on request to the corresponding author.


  1. 1.

    Cutler, D. M., Glaeser, E. L. & Shapiro, J. M. Why have Americans become more obese? J. Econ. Perspect. 17, 93–118 (2003).

    Google Scholar 

  2. 2.

    Gortmaker, S. L. et al. Changing the future of obesity: science, policy, and action. Lancet 378, 838–847 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    PubMed  Google Scholar 

  4. 4.

    Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Mokdad, A. H. et al. The State of US Health, 1990-2016 burden of diseases, injuries, and risk factors among US States. J. Am. Med. Assoc. 319, 1444–1472 (2018).

    Google Scholar 

  6. 6.

    Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L. & Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825 (2011).

    PubMed  Google Scholar 

  7. 7.

    Preston, S. H., Vierboom, Y. C. & Stokes, A. The role of obesity in exceptionally slow US mortality improvement. Proc. Natl Acad. Sci. USA 115, 957–961 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ball, K., Jeffery, R. W., Abbott, G., McNaughton, S. A. & Crawford, D. Is healthy behavior contagious: associations of social norms with physical activity and healthy eating. Int. J. Behav. Nutr. Phys. Act. 7, 86 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Chevalier, M. Increase in sales due to in-store display. J. Mark. Res. 12, 426–431 (1975).

    Google Scholar 

  10. 10.

    Cruwys, T., Beyelander, K. E. & Hermans, R. C. J. Social modeling of eating: a review of when and why social influence affects food intake and choice. Appetite 86, 3–18 (2015).

    PubMed  Google Scholar 

  11. 11.

    Downs, J. S., Loewenstein, G. & Wisdom, J. Strategies for promoting healthier food choices. Am. Econ. Rev. 99, 159–164 (2009).

    PubMed  Google Scholar 

  12. 12.

    Thorndike, A. N., Sonnenberg, L., Riis, J., Barraclough, S. & Levy, D. E. A 2-phase labeling and choice architecture intervention to improve healthy food and beverage choices. Am. J. Public Health 102, 527–533 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    de la Haye, K., Robins, G., Mohr, P. & Wilson, C. Homophily and contagion as explanations for weight similarities among adolescent friends. J. Adolesc. Health 49, 421–427 (2011).

    PubMed  Google Scholar 

  15. 15.

    Valente, T. W., Fujimoto, K., Chou, C.-P. & Spruijt-Metz, D. Adolescent affiliations and adiposity: a social network analysis of friendships and obesity. J. Adolesc. Health 45, 202–204 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Fischler, C. Commensailty, society and culture. Soc. Sci. Inf. 50, 528–548 (2011).

    Google Scholar 

  17. 17.

    Herman, C. P. The social facilitation of eating. A review. Appetite 86, 61–73 (2015).

    PubMed  Google Scholar 

  18. 18.

    Higgs, S. Social norms and their influence on eating behaviours. Appetite 86, 38–44 (2015).

    PubMed  Google Scholar 

  19. 19.

    McLean, P. D. Culture in Networks (Polity, 2017).

  20. 20.

    Pachucki, M. A. & Breiger, R. L. Cultural holes: beyond relationality in social networks and culture. Annu. Rev. Sociol. 36, 205–224 (2010).

    Google Scholar 

  21. 21.

    Pachucki, M. C. et al. Eating with others and meal location are differentially associated with nutrient intake by sex: the Diabetes Study of Northern California (DISTANCE). Appetite 127, 203–213 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pachucki, M. A., Jacques, P. F. & Christakis, N. A. Social network concordance in food choice among spouses, friends, and siblings. Am. J. Public Health 101, 2170–2177 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rosenquist, J. N., Murabito, J., Fowler, J. H. & Christakis, N. A. The spread of alcohol consumption behavior in a large social network. Ann. Intern. Med. 152, 426–433 (2010). W141.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    U.S. Bureau of Labor Statistics. Average Hours per Day Spent in Selected Activities on Days Worked by Employment Status and Sex (2019).

  25. 25.

    Morrison, R. L. & Cooper-Thomas, H. D. in The Psychology of Friendship (eds M. Hojjat, & Moyer, A.) 123–140 (Oxford Univ. Press, 2016).

  26. 26.

    Rumens, N. Researching workplace friendships: drawing insights from the sociology of friendship. J. Soc. Pers. Relat. 34, 1149–1167 (2017).

    Google Scholar 

  27. 27.

    Lazer, D. et al. Computational social science. Science 323, 721–723 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Edelmann, A., Wolff, T., Montagne, D. & Bail, C. A. Computational social science and sociology. Annu. Rev. Sociol. 46, 61–81 (2020).

    Google Scholar 

  29. 29.

    Thorndike, A. N., Gelsomin, E. D., McCurley, J. L. & Levy, D. E. Calories purchased by hospital employees after implementation of a cafeteria traffic light-labeling and choice architecture program. JAMA Netw. Open 2, e196789 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Thorndike, A. N., Riis, J. & Levy, D. E. Social norms and financial incentives to promote employees’ healthy food choices: a randomized controlled trial. Prev. Med. 86, 12–18 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Smith, K. P. & Christakis, N. A. Social networks and health. Annu. Rev. Socio. 34, 405–429 (2008).

    Google Scholar 

  32. 32.

    Zhang, J. W. & Centola, D. Social networks and health: new developments in diffusion, online and offline. Annu. Rev. Sociol. 45, 91–109 (2019).

    CAS  Google Scholar 

  33. 33.

    VanderWeele, T. J. & Christakis, N. A. Network multipliers and public health. Int. J. Epidemiol. 48, 1032–1037 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Barnett, M. L., Landon, B. E., O’Malley, A. J., Keating, N. L. & Christakis, N. A. Mapping physician networks with self-reported and administrative data. Health Serv. Res. 46, 1592–1609 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Crandall, D. J. et al. Inferring social ties from geographic coincidences. Proc. Natl Acad. Sci. USA 107, 22436–22441 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hunter, R. F. et al. “Hidden” social networks in behavior change interventions. Am. J. Pub. Health 105, 513–516 (2015).

    Google Scholar 

  37. 37.

    Lauw, H. W., Lim, E.-P., Pang, H. & Tan, T.-T. Social network discovery by mining spatio-temporal events. Computational Math. Organ. Theory 11, 97–118 (2005).

    Google Scholar 

  38. 38.

    Matthews, L. J., DeWan, P. & Rula, E. Y. Methods for inferring health-related social networks among coworkers from online communication patterns. PLoS ONE 8, e55234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Paez, A., Scott, D. M. & Volz, E. Weight matrices for social influence analysis: an investigation of measurement errors and their effect on model identification and estimation quality. Soc. Netw. 30, 309–317 (2008).

    Google Scholar 

  40. 40.

    Wang, W., Neuman, E. J. & Newman, D. A. Statistical power of the social network autocorrelation model. Soc. Netw. 38, 88–99 (2014).

    Google Scholar 

  41. 41.

    Christakis, N. A. & Fowler, J. H. Social contagion theory: examining dynamic social networks and human behavior. Stat. Med. 32, 556–577 (2013).

    PubMed  Google Scholar 

  42. 42.

    Hubbard, A. E. et al. To GEE or not to GEE comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology 21, 467–474 (2010).

    PubMed  Google Scholar 

  43. 43.

    Zachrison, K. S., Iwashyna, T. J., Gebremariam, A., Hutchins, M. & Lee, J. M. Can longitudinal generalized estimating equation models distinguish network influence and homophily? An agent-based modeling approach to measurement characteristics. BMC Med. Res. Method. 16, 174 (2016).

    Google Scholar 

  44. 44.

    Levy, D. E., Riis, J., Sonnenberg, L. M., Barraclough, S. J. & Thorndike, A. N. Food choices of minority and low-income employees: a cafeteria intervention. Am. J. Prev. Med. 43, 240–248 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Smith, J. A., McPherson, M. & Smith-Lovin, L. Social distance in the United States sex, race, religion, age, and education homophily among confidants, 1985 to 2004. Am. Socio. Rev. 79, 432–456 (2014).

    Google Scholar 

  46. 46.

    VanderWeele, T. J. & Ding, P. Sensitivity analysis in observational research: introducing the E-value. Ann. Int. Med. 167, 268–274 (2017).

    PubMed  Google Scholar 

  47. 47.

    O’Malley, A. J., Elwert, F., Rosenquist, J. N., Zaslavsky, A. M. & Christakis, N. A. Estimating peer effects in longitudinal dyadic data using instrumental variables. Biometrics 70, 506–515 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    De la Haye, K., Robins, G., Mohr, P. & Wilson, C. Obesity-related behaviors in adolescent friendship networks. Soc. Netw. 32, 161–167 (2010).

    Google Scholar 

  49. 49.

    Burger, J. M. et al. Nutritious or delicious? The effect of descriptive norm information on food choice. J. Soc. Clin. Psychol. 29, 228–242 (2010).

    Google Scholar 

  50. 50.

    Mollen, S., Rimal, R. N., Ruiter, R. A. & Kok, G. Healthy and unhealthy social norms and food selection. Findings from a field-experiment. Appetite 65, 83–89 (2013).

    PubMed  Google Scholar 

  51. 51.

    Prinsen, S., de Ridder, D. T. & de Vet, E. Eating by example. Effects of environmental cues on dietary decisions. Appetite 70, 1–5 (2013).

    PubMed  Google Scholar 

  52. 52.

    Salmon, S. J., Fennis, B. M., de Ridder, D. T., Adriaanse, M. A. & De Vet, E. Health on impulse: when low self-control promotes healthy food choices. Health Psychol. 33, 103 (2014).

    PubMed  Google Scholar 

  53. 53.

    Robinson, E. & Higgs, S. Food choices in the presence of ‘healthy’ and ‘unhealthy’ eating partners. Br. J. Nutr. 109, 765–771 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Powell, K. et al. The role of social networks in the development of overweight and obesity among adults: a scoping review. BMC Pub. Health 15, 996 (2015).

    Google Scholar 

  55. 55.

    O’Malley, A. J. The analysis of social network data: an exciting frontier for statisticians. Stat. Med. 32, 539–555 (2013).

    PubMed  Google Scholar 

  56. 56.

    Shalizi, C. R. & Thomas, A. C. Homophily and contagion are generically confounded in observational social network studies. Socio. Method Res. 40, 211–239 (2011).

    Google Scholar 

  57. 57.

    VanderWeele, T. J. Inference for influence over multiple degrees of separation on a social network. Stat. Med. 32, 591–596 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Aral, S. & Nicolaides, C. Exercise contagion in a global social network. Nat. Commun. 8, 14753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Linnan, L., Fisher, E. B. & Hood, S. The power and potential of peer support in workplace interventions. Am. J. Health Promot. 28, Tahp2–Tahp10 (2013).

    PubMed  Google Scholar 

  60. 60.

    McCurley, J. L. et al. Association of worksite food purchases and employees’ overall dietary quality and health Am. J. Prevent. Med. 57, 87–94 (2019).

    Google Scholar 

  61. 61.

    Salganik, M. J. Bit by Bit: Social Research in the Digital Age (Princeton Univ. Press, 2018).

  62. 62.

    Adams, J. Gathering Social Network Data 1 edn (SAGE Publications, 2019).

  63. 63.

    Sonnenberg, L. et al. A traffic light food labeling intervention increases consumer awareness of health and healthy choices at the point-of-purchase. Preventive Med. 57, 253–257 (2013).

    Google Scholar 

  64. 64.

    Thorndike, A. N., Riis, J., Sonnenberg, L. M. & Levy, D. E. Traffic-light labels and choice architecture: promoting healthy food choices. Am. J. Prevent. Med. 46, 143–149 (2014).

    Google Scholar 

  65. 65.

    US Department of Health & Human Services. United States Department of Agriculture: Dietary Guidelines for Americans, 2005 (US Government Printing Office, 2004).

  66. 66.

    Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans 2015-2020 (Government Printing Office, 2015).

  67. 67.

    United States Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans, 2010 (US Department of Health and Human Services, US Department of Agriculture, 2010).

  68. 68.

    Stata Statistical Software: Release 15 (StataCorp LP, 2017).

  69. 69.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018);

  70. 70.

    O’Malley, A. J. & Marsden, P. V. The analysis of social networks. Health Serv. Outcomes Res Methodol. 8, 222–269 (2008).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Højsgaard, S., Halekoh, U. & Yan, J. The R package geepack for generalized estimating equations. J. Stat. Softw. 15, 2 (2006).

  72. 72.

    Fox, J., Kleiber, C. & Zeileis, A. ivreg: instrumental-variable regression by 2SLS for R (GitHub, 2020).

  73. 73.

    Williams, R. fracivp—fractional response ivprobit models for Stata (beta) (Univ. Notre Dame, 2020).

  74. 74.

    Hardin, J. W. & Hilbe, J. M. Generalized Estimating Equations (Chapman and Hall/CRC, 2002).

Download references


This work was supported in part by a National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) R21-DK109548 grant to D.E.L. and a National Heart Lung and Blood Institute (NHLBI) R01-HL125486 grant to A.N.T. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information




D.E.L., M.C.P., A.J.O. and A.N.T. designed the research. D.E.L., M.C.P. and A.Y. performed the research. D.E.L., M.C.P. and B.P. analysed data. D.E.L., M.C.P., A.J.O. and A.N.T. wrote the paper.

Corresponding author

Correspondence to Douglas E. Levy.

Ethics declarations

Competing interests

The cafeterias providing data for this project are owned by the MGH, which employs D.E.L., B.P. and A.N.T. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Christopher Gardner and George Wood for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–12 and Supplementary Tables 1–15.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levy, D.E., Pachucki, M.C., O’Malley, A.J. et al. Social connections and the healthfulness of food choices in an employee population. Nat Hum Behav 5, 1349–1357 (2021).

Download citation


Quick links