Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intelligence, health and death

Abstract

The field of cognitive epidemiology studies the prospective associations between cognitive abilities and health outcomes. We review research in this field over the past decade and describe how our understanding of the association between intelligence and all-cause mortality has consolidated with the appearance of new, population-scale data. To try to understand the association better, we discuss how intelligence relates to specific causes of death, diseases/diagnoses and biomarkers of health through the adult life course. We examine the extent to which mortality and health associations with intelligence might be attributable to people’s differences in education, other indicators of socioeconomic status, health literacy and adult environments and behaviours. Finally, we discuss whether genetic data provide new tools to understand parts of the intelligence–health associations. Social epidemiologists, differential psychologists and behavioural and statistical geneticists, among others, contribute to cognitive epidemiology; advances will occur by building on a common cross-disciplinary knowledge base.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hierarchical model of intelligence.
Fig. 2: Why is higher intelligence in youth associated with better health and living longer?.

Similar content being viewed by others

References

  1. Whalley, L. J. & Deary, I. J. Longitudinal cohort study of childhood IQ and survival up to age 76. Br. Med. J. 322, 819 (2001).

    Article  CAS  Google Scholar 

  2. Deary, I. J. & Batty, G. D. Cognitive epidemiology: a glossary. J. Epidemiol. Community Health 61, 378–384 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deary, I. J. Introduction to the special issue on cognitive epidemiology. Intelligence 37, 517–519 (2009).

    Article  Google Scholar 

  4. Deary, I. J. Cognitive epidemiology: its rise, its current issues, and its challenges. Pers. Individ. Diff. 49, 337–343 (2010).

    Article  Google Scholar 

  5. Deary, I. J., Weiss, A. & Batty, G. D. Intelligence and personality as predictors of illness and death: how researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychol. Sci. Public Interest 11, 53–79 (2010).

    Article  PubMed  Google Scholar 

  6. Calvin, C. M. et al. Intelligence in youth and all-cause mortality: systematic review with meta-analysis. Int. J. Epidemiol. 40, 626–644 (2011).

    Article  PubMed  Google Scholar 

  7. Schmidt, F. L. & Hunter, J. General mental ability in the world of work: occupational attainment and job performance. J. Pers. Soc. Psychol. 86, 162–173 (2004).

    Article  PubMed  Google Scholar 

  8. Strenze, T. Intelligence and socio-economic success: a meta-analytic review of longitudinal research. Intelligence 35, 401–426 (2007).

    Article  Google Scholar 

  9. Ritchie, S. J. & Tucker-Drob, E. M. How much does education improve intelligence? A meta-analysis. Psychol. Sci. 29, 1358–1369 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bosworth, B. Increasing disparities in mortality by socioeconomic status. Ann. Rev. Public Health 39, 237–251 (2018).

    Article  Google Scholar 

  11. Byhoff, E., Hamati, M. C., Power, R., Burgard, S. A. & Chopra, V. Increasing educational attainment and mortality reduction: a systematic review and taxonomy. BMC Public Health 17, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Korda, R. J. et al. Education inequalities in adult all-cause mortality: first national data for Australia using linked census and mortality data. Int. J. Epidemiol. 49, 511–518 (2020).

    Article  PubMed  Google Scholar 

  13. Gottfredson, L. S. Intelligence: is it the epidemiologists’ elusive “fundamental cause” of social class inequalities in health? J. Pers. Soc. Psychol. 86, 174–199 (2004).

    Article  PubMed  Google Scholar 

  14. Clouston, S. A., Richards, M., Cadar, D. & Hofer, S. M. Educational inequalities in health behaviors at midlife: is there a role for early-life cognition? J. Health Soc. Behav. 56, 323–340 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hauser, R. M. & Palloni, A. Adolescent IQ and survival in the Wisconsin Longitudinal Study. J. Gerontol. B 66B, 91–101 (2011).

    Article  Google Scholar 

  16. Maller, J. B. Vital indices and their relation to psychological and social factors. Hum. Biol. 5, 94–121 (1933).

    Google Scholar 

  17. Furu, M., Lindgarde, F., Ljung, B.-O., Munck, I. & Kristenson, H. Premature death, cognitive ability and socio-economic background: A longitudinal study of 834 men. Stockholm Institute of Education: Department of Educational Research: Reports on Education and Psychology Nr 1 (1984).

  18. O’Toole, B. I., Adena, M. A. & Jones, M. P. Risk factors for mortality in Australian Vietnam-era national servicemen: a case–control study. Community Health Stud. 12, 408–417 (1988).

    Article  PubMed  Google Scholar 

  19. O’Toole, B. I. & Stankov, L. Ultimate validity of psychological tests. Pers. Individ. Diff. 13, 699–716 (1992).

    Article  Google Scholar 

  20. Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

    Article  Google Scholar 

  21. Batty, G. D. et al. IQ in early adulthood and mortality by middle age: cohort study of 1 million Swedish men. Epidemiology 20, 100–109 (2009).

    Article  PubMed  Google Scholar 

  22. Iveson, M. H., Čukić, I., Der, G., Batty, G. D. & Deary, I. J. Intelligence and all-cause mortality in the 6-Day Sample of the Scottish Mental Survey 1947 and their siblings: testing the contribution of family background. Int. J. Epidemiol. 47, 89–96 (2018).

    Article  PubMed  Google Scholar 

  23. Bratsberg, B. & Rogeberg, O. Childhood socioeconomic status does not explain the IQ–mortality gradient. Intelligence 62, 148–154 (2017).

    Article  Google Scholar 

  24. Christensen, G. T., Mortensen, E. L., Christensen, K. & Osler, M. Intelligence in young adulthood and cause-specific mortality in the Danish Conscription Database—a cohort study of 728,160 men. Intelligence 59, 64–71 (2016).

    Article  Google Scholar 

  25. Čukić, I., Brett, C. E., Calvin, C. M., Batty, G. D. & Deary, I. J. Childhood IQ and survival to 79: follow-up of 94% of the Scottish Mental Survey 1947. Intelligence 63, 45–50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lager, A., Seblova, D., Falkstedt, D. & Lovden, M. Cognitive and emotional outcomes after prolonged education: a quasi-experiment on 320,182 Swedish boys. Int. J. Epidemiol. 46, 303–311 (2016).

    PubMed Central  Google Scholar 

  27. Twig, G. et al. Cognitive function in adolescence and the risk for premature diabetes and cardiovascular mortality in adulthood. Cardiovasc. Diabetol. 17, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Calvin, C. M. et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. Br. Med. J. 357, j2708 (2017).

    Article  Google Scholar 

  29. Hayat, A. A. et al. Understanding the relationship between cognition and death: a within cohort examination of cognitive measures and mortality. Eur. J. Epidemiol. 33, 1049–1062 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Toole, B. I. Intelligence and behaviour and motor vehicle accident mortality. Accid. Anal. Prev. 22, 211–221 (1990).

    Article  PubMed  Google Scholar 

  31. Gunnell, D., Magnusson, P. K. & Rasmussen, F. Low intelligence test scores in 18 year old men and risk of suicide: cohort study. Br. Med. J. 330, 167 (2005).

    Article  CAS  Google Scholar 

  32. Batty, G. D., Deary, I. J., Tengstrom, A. & Rasmussen, F. IQ in early adulthood and later risk of death by homicide: cohort study of 1 million men. Br. J. Psychiat. 193, 461–465 (2008).

    Article  Google Scholar 

  33. Wraw, C., Deary, I. J., Gale, C. R. & Der, G. Intelligence in youth and health at age 50. Intelligence 53, 23–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Osler, M., Christensen, G. T., Garde, E., Mortensen, E. L. & Christensen, K. Cognitive ability in young adulthood and risk of dementia in a cohort of Danish men, brothers, and twins. Alzheimers Dement. 13, 1355–1363 (2017).

    Article  PubMed  Google Scholar 

  35. Nyberg, J. et al. Cardiovascular and cognitive fitness at age 18 and risk of early-onset dementia. Brain 137, 1514–1523 (2014).

    Article  PubMed  Google Scholar 

  36. Huang, A. R., Strombotne, K. L., Horner, E. M. & Lapham, S. J. Adolescent cognitive aptitudes and later-in-life Alzheimer disease and related disorders. JAMA Netw. Open 1, e181726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Russ, T. C. et al. Childhood cognitive ability and incident dementia. Epidemiology 28, 361–364 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmidt, M. et al. Cognitive test scores in young men and subsequent risk of type 2 diabetes, cardiovascular morbidity, and death. Epidemiology 24, 632–636 (2013).

    Article  PubMed  Google Scholar 

  39. Christensen, G. T., Rozing, M. P., Mortensen, E. L., Christensen, K. & Osler, M. L. Young adult cognitive ability and subsequent major depression in a cohort of 666,804 Danish men. J. Affect. Disord. 235, 162–167 (2018).

    Article  PubMed  Google Scholar 

  40. Richards, M. et al. IQ in childhood and the metabolic syndrome in middle age. Intelligence 37, 567–572 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gale, C. R., Batty, G. D., Tynelius, P., Deary, I. J. & Rasmussen, F. Intelligence in early adulthood and subsequent hospitalization for mental disorders. Epidemiology 21, 70–77 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Twig, G. et al. Cognitive function and the risk for diabetes among young men. Diabetes Care 37, 2982–2988 (2014).

    Article  PubMed  Google Scholar 

  43. Altschul, D. M., Wraw, C., Der, G., Gale, C. R. & Deary, I. J. Hypertension development by midlife and the roles of premorbid cognitive function, sex, and their interaction. Hypertension 73, 812–819 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kraft, M., Arts, K., Traag, T., Otten, F. & Bosma, H. The contribution of intellectual abilities to young adult’s educational differences in health care use. Intelligence 68, 1–5 (2018).

    Article  Google Scholar 

  45. Karama, S. et al. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Mol. Psychiat. 19, 555–559 (2014).

    Article  CAS  Google Scholar 

  46. Luciano, M. et al. Reverse causation in the association between C-reactive protein ad fibrinogen levels and cognitive abilities in an ageing sample. Psychosom. Med. 71, 404–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gow, A. J. et al. Cytomegalovirus infection and cognitive abilities in old age. Neurobiol. Aging 34, 1846–1852 (2013).

    Article  PubMed  Google Scholar 

  48. Altschul, D. M., Starr, J. M. & Deary, I. J. Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia 61, 1946–1955 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gale, C. R., Boot, T., Starr, J. M. & Deary, I. J. Intelligence and socioeconomic position in childhood in relation to frailty and cumulative allostatic load in later life: the Lothian Birth Cohort 1936. J. Epidemiol. Community Health 70, 576–582 (2016).

    Article  PubMed  Google Scholar 

  50. Sorberg, A., Allebeck, P. & Hemmingsson, T. IQ and somatic health in late adolescence. Intelligence 44, 155–162 (2014).

    Article  Google Scholar 

  51. Cukierman-Yaffe, T. et al. Cognitive performance at late adolescence and the risk for impaired fasting glucose among young adults. J. Clin. Endocrinol. Metab. 100, 4409–4416 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Schaefer, J. D. et al. Early-life intelligence predicts midlife biological age. J. Gerontol. B 71, 968–977 (2016).

    Article  Google Scholar 

  53. Belsky, D. W. et al. Impact of personal-history characteristics on the Pace of Aging: implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell 16, 644–651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ariansen et al. The educational gradient in coronary heart disease: the association with cognition in a cohort of 57,279 male conscripts. J. Epidemiol. Community Health 69, 322–329 (2015).

    Article  PubMed  Google Scholar 

  55. Meincke, R. H., Osler, M., Mortensen, E. L. & Hansen, A. M. Is intelligence in early adulthood associated with midlife physical performance among Danish males?. J. Aging Health 28, 530–545 (2016).

    Article  PubMed  Google Scholar 

  56. Vasilopoulos, T. et al. Individual differences in cognitive ability at age 20 predict pulmonary function 35 years later. J. Epidemiol. Community Health 69, 261–265 (2015).

    Article  PubMed  Google Scholar 

  57. Deary, I. J., Whalley, L. J., Batty, G. D. & Starr, J. M. Physical fitness and lifetime cognitive change. Neurology 67, 1195–1200 (2006).

    Article  PubMed  Google Scholar 

  58. Backhouse, E. V., McHutchison, C. A., Cvoro, V., Shenkin, S. D. & Wardlaw, J. M. Early life risk factors for cerebrovascular disease: a systematic review and meta-analysis. Neurology 88, 109 (2017).

    Article  Google Scholar 

  59. Calvin, C. M. et al. Multivariate genetic analyses of cognition and education from two population samples of 174,000 and 166,000 school children. Behav. Genet. 42, 699–710 (2012).

    Article  PubMed  Google Scholar 

  60. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deary, I. J. & Johnson, W. Intelligence and education: causal perceptions drive analytic processes and therefore conclusions. Int. J. Epidemiol. 39, 1362–1369 (2010).

    Article  PubMed  Google Scholar 

  62. Marmot, M. & Kivimaki, M. Social inequalities in mortality: a problem of cognitive function? Eur. Heart J. 30, 1819–1820 (2009).

    Article  PubMed  Google Scholar 

  63. Trzaskowski, M. et al. Genetic influence on family socioeconomic status and children’s intelligence. Intelligence 42, 83–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Krapohl, E. & Plomin, R. Genetic link between family socioeconomic status and children’s educational achievement estimated from genome-wide SNPs. Mol. Psychiat. 21, 437–443 (2016).

    Article  CAS  Google Scholar 

  65. Bridger, E. & Daly, M. Does cognitive ability buffer the link between childhood disadvantage and adult health? Health Psychol. 36, 966–976 (2017).

    Article  PubMed  Google Scholar 

  66. Mõttus, R., Luciano, M., Starr, J. M., McCarthy, M. I. & Deary, I. J. Childhood cognitive ability moderates later-life manifestation of type 2 diabetes genetic risk. Health Psychol. 34, 915–919 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sanderson, E., Smith, G. D., Bowden, J. & Munafò, M. R. Mendelian randomisation analysis of the effect of educational attainment and cognitive ability on smoking behaviour. Nat. Commun. 10, 2949 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wraw, C., Der, G., Gale, C. R. & Deary, I. J. Intelligence in youth and health behaviours in middle age. Intelligence 69, 71–86 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Batty, G. D. et al. Childhood mental ability and adult alcohol intake and alcohol problems: the 1970 British Cohort Study. Am. J. Public. Health 98, 2237–2243 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gale, C. R., Deary, I. J., Schoon, I. & Batty, G. D. IQ in childhood and vegetarianism in adulthood: the 1970 British Cohort Study. Br. Med. J. 334, 245 (2007).

    Article  Google Scholar 

  71. Batty, G. D., Deary, I. J., Schoon, I. & Gale, C. R. Childhood mental ability in relation to food intake and physical activity in adulthood: the 1970 British Cohort Study. Pediatrics 119, e38–e45 (2007).

    Article  PubMed  Google Scholar 

  72. Osler, M., Godtfredsen, N. S. & Prescott, E. Childhood social circumstances and health behaviour in midlife: the Metropolit 1953 Danish male birth cohort. Int. J. Epidemiol. 37, 1367–1384 (2008).

    Article  PubMed  Google Scholar 

  73. Batty, G. D., Deary, I. J., Schoon, I. & Gale, C. R. Mental ability across childhood in relation to risk factors for premature mortality in adult life: the 1970 British Cohort Study. J. Epidemiol. Community Health 61, 997–1003 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sjölund, S., Hemmingsson, T. & Allebeck, P. IQ and level of alcohol consumption—findings from a national survey of Swedish conscripts. Alcohol. Clin. Exp. Res. 39, 548–555 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Corley, J. et al. Alcohol intake and cognitive abilities in old age: the Lothian Birth Cohort 1936 study. Neuropsychology 25, 166–175 (2011).

    Article  PubMed  Google Scholar 

  76. Sjölund, S., Allebeck, P. & Hemmingsson, T. Intelligence quotient (IQ) in adolescence and later risk of alcohol-related hospital admissions and deaths-37-year follow-up of Swedish conscripts. Addiction 107, 89–97 (2012).

    Article  PubMed  Google Scholar 

  77. Cheng, H. & Furnham, A. Correlates of adult binge drinking: evidence from a British cohort. PLoS ONE 8, e78838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Batty, G. D., Deary, I. J. & Macintyre, S. Childhood IQ and life course socioeconomic position in relation to alcohol induced hangovers in adulthood: the Aberdeen Children of the 1950s study. J. Epidem. Community Health 60, 872–874 (2006).

    Article  Google Scholar 

  79. Sjölund, S., Hemmingsson, T., Gustafsson, J.-E. & Allebeck, P. IQ and alcohol-related morbidity and mortality among Swedish men and women: the importance of socioeconomic position. J. Epidemiol. Community Health 69, 858–864 (2015).

    Article  PubMed  Google Scholar 

  80. Taylor, M. et al. Childhood mental ability and smoking cessation in adulthood: prospective observational study linking the Scottish Mental Survey 1932 and the Midspan studies. J. Epidemiol. Community Health 57, 464–465 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Daly, M. & Egan, M. Childhood cognitive ability and smoking initiation, relapse and cessation throughout adulthood: evidence from two British cohort studies. Addiction 112, 651–659 (2017).

    Article  PubMed  Google Scholar 

  82. Batty, G. D., Deary, I. J. & Macintyre, S. Childhood IQ in relation to risk factors for premature mortality in middle-aged persons: the Aberdeen Children of the 1950s study. J. Epidemiol. Community Health 61, 241–247 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kumpulainen, S. M. et al. Childhood cognitive ability and physical activity in young adulthood. Health Psychol. 36, 587–597 (2017).

    Article  PubMed  Google Scholar 

  84. Wallert, J., Lissaker, C., Madison, G., Held, C. & Olsson, E. Young adulthood cognitive ability predicts statin adherence in middle-aged men after first myocardial infarction: a Swedish National Registry study. Eur. J. Prev. Cardiol. 24, 639–646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Berkman, N. D., Sheridan, S. L., Donahue, K. E., Halpern, D. J. & Crotty, K. Low health literacy and health outcomes: an updated systematic review. Ann. Intern. Med. 155, 97–107 (2011).

    Article  PubMed  Google Scholar 

  86. von Wagner, C., Steptoe, A., Wolf, M. S. & Wardle, J. Health literacy and health actions: a review and a framework from health psychology. Health Educ. Behav. 36, 860–877 (2009).

    Article  Google Scholar 

  87. Bostock, S. & Steptoe, A. Association between low functional health literacy and mortality in older adults: longitudinal cohort study. Br. Med. J. 344, e1602 (2012).

    Article  Google Scholar 

  88. Smith, S. G., Jackson, S. E., Kobayashi, L. C. & Steptoe, A. Social isolation, health literacy, and mortality risk: findings from the English Longitudinal Study of Ageing. Health Psychol. 37, 160–169 (2018).

    Article  PubMed  Google Scholar 

  89. Fawns-Ritchie, C., Starr, J. M. & Deary, I. J. Role of cognitive ability in the association between functional health literacy and mortality in the Lothian Birth Cohort 1936: a prospective cohort study. BMJ Open 8, e022502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mõttus, R. et al. Towards understanding the links between health literacy and physical health. Health Psychol. 33, 164–173 (2014).

    Article  PubMed  Google Scholar 

  91. Reeve, C. L. & Basalik, D. Is health literacy an example of construct proliferation? A conceptual and empirical valuation of its redundancy with general cognitive ability. Intelligence 44, 93–102 (2014).

    Article  Google Scholar 

  92. Kelley, T. L. Interpretation of Educational Measurements, pp. 62–65 (World Book Company, 1927).

  93. Marioni, R. E. et al. Molecular genetic contributions to socioeconomic status and intelligence. Intelligence 44, 26–32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haworth, C. M. et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol. Psychiatry 15, 1112–1120 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Plomin, R. & Deary, I. J. Genetics and intelligence differences: five special findings. Mol. Psychiat. 20, 98–108 (2015).

    Article  CAS  Google Scholar 

  96. Hill, W. D. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hill, W. D. et al. Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Mol. Psychiat. 23, 2347–2362 (2018).

    Article  Google Scholar 

  100. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Harris, S. E. et al. Molecular genetic contributions to self-rated health. Int. J. Epidemiol. 46, 994–1009 (2016).

    PubMed Central  Google Scholar 

  102. Romeis, J. C. et al. Heritability of self-reported health. Health Serv. Res. 35, 995–1010 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bartels, M. & Boomsma, D. I. Born to be Happy? The etiology of subjective well-being. Behav. Genet. 39, 605 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Furberg, H. et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

    Article  CAS  Google Scholar 

  106. Deelen, J. et al. Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum. Mol. Genet 23, 4420–4432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Luciano, M. et al. Shared genetic aetiology between cognitive ability and cardiovascular disease risk factors: Generation Scotland’s Scottish Family Health Study. Intelligence 38, 304–313 (2010).

    Article  Google Scholar 

  108. Arden, R. et al. The association between intelligence and lifespan is mostly genetic. Int. J. Epidemiol. 45, 178–185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Deary, I. J., Harris, S. E. & Hill, W. D. What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Curr. Opin. Psychol. 27, 6–12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hill, W. D., Harris, S. E. & Deary, I. J. What genome-wide association studies reveal about the association between intelligence and mental health. Curr. Opin. Psychol. 27, 25–30 (2019).

    Article  PubMed  Google Scholar 

  111. Rietveld, C. A. et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc. Natl Acad. Sci. U. S. A. 111, 13790–13794 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deary, I. J. et al. Genetic contributions to stability and change in intelligence from childhood to old age. Nature 482, 212–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Hill, W. D. et al. Age-dependent pleiotropy between general cognitive function and major psychiatric disorders. Biol. Psychiat. 80, 266–273 (2016).

    Article  PubMed  Google Scholar 

  114. Hill, W. D & Deary, I. J. Shared genetic aetiology between childhood intelligence and longevity. Preprint at medRxiv https://doi.org/10.1101/2021.02.10.21251491

  115. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Davies, N. M., Holmes, M. V. & Smith, G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Br. Med. J. 362, 1–11 (2018).

    Google Scholar 

  117. Anderson, E. L. et al. Education, intelligence and Alzheimer’s disease: evidence from a multivariable two-sample Mendelian randomization study. Int. J. Epidemiol. 49, 1163–1172 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sanderson, E., Smith, G. D., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

    Article  PubMed  Google Scholar 

  119. Davies, N. M. et al. Multivariable two-sample Mendelian randomization estimates of the effects of intelligence and education on health. eLife 8, e43990 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Iveson, M. H., Dibben, C. & Deary, I. J. Early life circumstances and the risk of function-limiting long-term conditions in later life. Longitud. Life Course Stud. 11, 157–180 (2020).

    Article  Google Scholar 

  121. Caspi, A. et al. Childhood forecasting of a small segment of the population with large economic burden. Nat. Hum. Behav. 1, 0005 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Deary, I. J. Intelligence. Annu. Rev. Psychol. 63, 453–482 (2012).

    Article  PubMed  Google Scholar 

  123. Carroll, J. B. Human Cognitive Abilities: A Survey of Factor Analytic Studies (Oxford Univ. Press, 1993).

  124. Spearman, C. “General intelligence,” objectively determined and measured. Am. J. Psychol. 15, 201–293 (1904).

    Article  Google Scholar 

  125. Spearman, C. The Abilities of Man: Their Nature and Measurement (MacMillan, 1927).

  126. Deary, I. J. The stability of intelligence from childhood to old age. Curr. Dir. Psychol. Sci. 23, 239–245 (2014).

    Article  Google Scholar 

  127. de la Fuente, J., Davies, G., Grotzinger, A. D., Tucker-Drob, E. M. & Deary, I. J. A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data. Nat. Hum. Behav. 5, 49–58 (2021).

    Article  PubMed  Google Scholar 

  128. Salthouse, T. A. Trajectories of normal cognitive aging. Psychol. Aging 34, 17–24 (2019).

    Article  PubMed  Google Scholar 

  129. Tucker-Drob, E. M., Brandmaier, A. M. & Lindenberger, U. Coupled cognitive changes in adulthood: a meta-analysis. Psychol. Bull. 145, 273–301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M. & Deary, I. J. Structural brain imaging correlates of general. Intell. UK Biobank. Intell. 76, 101376 (2019).

    CAS  Google Scholar 

  131. Deary, I. J. Looking for ‘system integrity’ in cognitive epidemiology. Gerontology 58, 545–553 (2012).

    Article  PubMed  Google Scholar 

  132. Harden, K. P. & Koellinger, P. D. Using genetics for social science. Nat. Hum. Behav. (in press). https://doi.org/10.1038/s41562-020-0862-5

  133. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291 (2015). (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14, 483 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abdellaoui et al. Genetic correlates of social stratification in Great Britain. Nat. Hum. Behav. 3, 1332–1342 (2019).

    Article  PubMed  Google Scholar 

  139. Hill, W. D. et al. Molecular genetic contributions to social deprivation and household income in UK Biobank. Curr. Biol. 26, 3083–3089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hill, W. D. et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat. Commun. 10, 5741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  PubMed  Google Scholar 

  142. Smith, G. D. & Ebrahim, S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? Br. Med. J. 330, 1076–1079 (2005).

    Article  Google Scholar 

  143. Wang, B. et al. Genetic nurture effects on education: a systematic review and meta-analysis. bioRxiv, https://doi.org/10.1101/2021.01.15.426782

  144. Koellinger, P. D. & de Vlaming, R. Mendelian randomization: the challenge of unobserved environmental confounds. Int. J. Epidemiol. 48, 665–671 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Davies, N. M. et al. Within family Mendelian randomisation studies. Hum. Mol. Genet. 28, 170–179 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are members of the Lothian Birth Cohorts group at the University of Edinburgh, which is supported by Age UK (Disconnected Mind grant), the Medical Research Council (MR/R024065/1) and the US National Institutes of Health (1RO1AG054628-01A1). The authors are grateful to D. Altschul for helpful comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Deary.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deary, I.J., Hill, W.D. & Gale, C.R. Intelligence, health and death. Nat Hum Behav 5, 416–430 (2021). https://doi.org/10.1038/s41562-021-01078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01078-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing