Mapping global variation in human mobility


The geographic variation of human movement is largely unknown, mainly due to a lack of accurate and scalable data. Here we describe global human mobility patterns, aggregated from over 300 million smartphone users. The data cover nearly all countries and 65% of Earth’s populated surface, including cross-border movements and international migration. This scale and coverage enable us to develop a globally comprehensive human movement typology. We quantify how human movement patterns vary across sociodemographic and environmental contexts and present international movement patterns across national borders. Fitting statistical models, we validate our data and find that human movement laws apply at 10 times shorter distances and movement declines 40% more rapidly in low-income settings. These results and data are made available to further understanding of the role of human movement in response to rapid demographic, economic and environmental changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Aggregated human movements show strong geographic and temporal variability.
Fig. 2: Aggregated human movement data from 70,010,784 unique location flows (~300 million participants) covering 65% of Earth’s populated surface reveal variability in human movements across the world.
Fig. 3: Formalization of geographic variation in human movement patterns explained by sociodemographic indicators.
Fig. 4: Relative frequency of international travel varies by country and is influenced by the proximity to an international border.

Data availability

Human movement summary data for 242 countries and territories presented in this work are available online at The aggregated dataset used for this study is available upon reasonable request to the corresponding authors and with permission of Google, LLC. Interested parties should contact the corresponding authors via email to obtain a request form, which will be reviewed by Google, LLC, and the corresponding authors.

Code availability

Standard R-packages were used to produce results for this analysis. No custom code was developed.


  1. 1.

    Démurger, S. Infrastructure development and economic growth: an explanation for regional disparities in China? J. Comp. Econ. 29, 95–117 (2001).

    Article  Google Scholar 

  2. 2.

    Steele, J. E. et al. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 14, 20160690 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Einav, L. & Levin, J. Economics in the age of big data. Science 346, 1243089 (2014).

    PubMed  Article  Google Scholar 

  4. 4.

    Lima, A., Stanojevic, R., Papagiannaki, D., Rodriguez, P. & Gonzalez, M. C. Understanding individual human routing behaviour. J. R. Soc. Interface 13, 20160021 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Butler, D. What the numbers say about refugees. Nature 543, 22–23 (2017).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Lu, X. et al. Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen. Climatic Change 138, 505–519 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Lu, X., Bengtsson, L. & Holme, P. Predictability of population displacement after the 2010 Haiti earthquake. Proc. Natl Acad. Sci. USA 109, 11576–11581 (2012).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342 (2013).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Kraemer, M. U. G. et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science (2020).

  10. 10.

    Ouma, P. O. et al. Access to emergency hospital care provided by the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial analysis. Lancet Glob. Health 6, e342–e350 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kraemer, M. U. G. et al. Progress and challenges in infectious disease cartography. Trends Parasitol. 32, 19–29 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. 14.

    Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327, 1018–1021 (2010).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Abel, G. J. & Sander, N. Quantifying global international migration flows. Science 343, 1520–1522 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Azose, J. J. & Raftery, A. E. Estimation of emigration, return migration, and transit migration between all pairs of countries. Proc. Natl Acad. Sci. USA 116, 116–122 (2019).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ruktanonchai, N. W. et al. Census-derived migration data as a tool for informing malaria elimination policy. Malar. J. 15, 273 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Sorichetta, A. et al. Mapping internal connectivity through human migration in malaria endemic countries. Sci. Data 3, 160066 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Marshall, J. M. et al. Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries. Malar. J. 15, 1–12 (2016).

    Article  Google Scholar 

  21. 21.

    Marshall, J. M. et al. Mathematical models of human mobility of relevance to malaria transmission in Africa. Sci. Rep. 8, 7713 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Blondel, V. D., Decuyper, A. & Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 1–55 (2015).

    Article  Google Scholar 

  23. 23.

    Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e37027 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Cheng, Z., Caverlee, J., Lee, K. & Sui, D. Z. Exploring millions of footprints in location sharing services. ICWSM 2010, 81–88 (2011).

    Google Scholar 

  25. 25.

    Ruktanonchai, N. W. et al. Identifying malaria transmission foci for elimination using human mobility data. PLOS Comput. Biol. 12, e1004846 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Althoff, T. et al. Large-scale physical activity data reveal worldwide activity inequality. Nature 547, 336–339 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Garcia, D. et al. Analyzing gender inequality through large-scale Facebook advertising data. Proc. Natl Acad. Sci. USA 115, 6958–6963 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wood, C. S. et al. Taking connected mobile-health diagnostics of infectious diseases to the field. Nature 566, 467–474 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ruktanonchai, N. W., Ruktanonchai, C. W., Floyd, J. R. & Tatem, A. J. Using Google Location History data to quantify fine-scale human mobility. Int. J. Health Geogr. 17, 28 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gridded Population of the World, Version 4 (GPWv4): Population count adjusted to match 2015 revision of UN WPP country totals, revision 10 (CIESIN, Columbia University, 2017).

  31. 31.

    Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 1459–1544 (2016).

    Article  Google Scholar 

  33. 33.

    Barbosa, H. et al. Human mobility: Models and applications. Phys. Rep. 734, 1–74 (2018).

    Article  Google Scholar 

  34. 34.

    Deville, P., Song, C., Eagle, N., Blondel, V. D. & Barabási, A. Scaling identity connects human mobility and social interactions. Proc. Natl Acad. Sci. USA 113, 7047–7052 (2016).

  35. 35.

    Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D. & Giannotti, F. Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 215, 61–73 (2013).

    Article  Google Scholar 

  36. 36.

    Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Yan, X., Zhao, C., Fan, Y., Di, Z. & Wang, W. Universal predictability of mobility patterns in cities. J. R. Soc. Interface 11, 20140834 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Clauset, A. Trends and fluctuations in the severity of interstate wars. Sci. Adv. 4, eaao3580 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Clauset, A. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  Google Scholar 

  40. 40.

    Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Abel, G. J. Estimating global migration flow tables using place of birth data. Demogr. Res. 28, 505–546 (2013).

    Article  Google Scholar 

  42. 42.

    More Mexicans Leaving than Coming to the U.S. (Pew Research Center, 2015).

  43. 43.

    Verma, T., Araújo, N. A. M. & Herrmann, H. J. Revealing the structure of the world airline network. Sci. Rep. 4, 5638 (2015).

    Article  CAS  Google Scholar 

  44. 44.

    Servick, K. Mind the phone. Science 350, 1306–1309 (2015).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    World Development Indicators (The World Bank, 2018).

  46. 46.

    Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W. & Buckee, C. O. The impact of biases in mobile phone ownership on estimates of human mobility. J. R. Soc. Interface 10, 20120986 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Schich, M. et al. A network framework of cultural history. Science 345, 558–562 (2014).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Blumenstock, J. Don’t forget people in the use of big data for development. Nature 561, 170–172 (2018).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Kirmse, A., Udeshi, T., Bellver, P. & Shuma, J. Extracting patterns from location history. In Proc. 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (eds Agrawal, D. & Cruz, I.) 397–400 (Association for Computing Machinery, 2011).

  50. 50.

    Dwork, C. in Automata, Languages and Programming (eds Bugliesi, M. et al.) 1–12 (Springer, 2006).

  51. 51.

    Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 211–407 (2013).

    Article  Google Scholar 

  52. 52.

    Metcalf, J. & Crawford, K. Where are human subjects in big data research? The emerging ethics divide. Big Data Soc. 3, 205395171665021 (2016).

    Article  Google Scholar 

  53. 53.

    Ess, C. & Jones, S. Ethical Decision-Making and Internet Research. Association of Internet Research Ethics Working Committee (IGI Global, 2004).

  54. 54.

    Golder, S. A. & Macy, M. W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333, 1878–1881 (2012).

    Article  CAS  Google Scholar 

  55. 55.

    Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Article  Google Scholar 

  57. 57.

    Lambiotte, R. et al. Geographical dispersal of mobile communication networks. Phys. A Stat. Mech. Appl. 387, 5317–5325 (2008).

    Article  Google Scholar 

  58. 58.

    Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Article  CAS  Google Scholar 

  59. 59.

    Zhao, K., Musolesi, M., Hui, P., Rao, W. & Tarkoma, S. Explaining the power-law distribution of human mobility through transportation modality decomposition. Sci. Rep. 5, 9136 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Vuong, Q. H. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307–333 (1989).

    Article  Google Scholar 

  61. 61.

    Efron, B. & Tibshirani, R. J. An Introduction to Boostrap (Chapman and Hall, 1993).

  62. 62.

    Black, R., Bennett, S. R. G., Thomas, S. M. & Beddington, J. R. Climate change: migration as adaptation. Nature 478, 447–449 (2011).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Global Burden of Disease Collaborative Network Global Burden of Disease Study 2016 (GBD 2016) Socio-demographic Index (SDI) 1970−2016 (Institute for Health Metrics and Evaluation, 2017);–2016

  64. 64.

    Fullman, N. et al. Measuring performance on the healthcare access and quality index for 195 countries and territories and selected subnational locations: a systematic analysis from the global burden of disease study 2016. Lancet 391, 2236–2271 (2018).

    Article  Google Scholar 

  65. 65.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).

  66. 66.

    Wesolowski, A. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nat. Commun. 8, 2069 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Wesolowski, A. et al. Commentary: containing the Ebola outbreak – the potential and challenge of mobile network data. PLoS Curr. (29 September 2014).

  68. 68.

    Kraemer, M. U. G. et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infect. Dis. 17, 330–338 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Anthes, E. Pecket psychiatry. Nature 532, 4–6 (2016).

    Article  CAS  Google Scholar 

Download references


We thank A. Bar, C. Black, A. Broder, S. Cadrecha, S. Cason, C. Cattuto, C. Chou, K. Chou, I. Conroy, L. Davidoff, J. Dean, J. Degener, D. Desfontaines, X. Dotiwalla, P. Eastham, J. Freidenfelds, E. Gabrilovich, V. Hoang, S. Holland, M. Howell, P.-P. Jiang, A. Lange, B. Mehta, C. Niedermeyer, G. Park, O. Pybus, P. Ramaswami, C. Rigby, K. Rough, F. Sekles, C. Seto, A. Stein, C. Thota, M. Tizzoni, A. Vespignani and A. Zlatinov for their insights and guidance. M.U.G.K. is supported by the Society in Science, the Branco Weiss Fellowship, administered by the ETH Zurich and acknowledges funding from a Training Grant from the National Institute of Child Health and Human Development (T32HD040128) and the Oxford Martin School. J.S.B. and M.U.G.K. acknowledge support from the National Library of Medicine of the National Institutes of Health (R01LM010812, R01LM011965) and a Google Faculty Award (to M.U.G.K.). Q.Z., T.A.P. and D.L.S. are supported by a BMGF grant (OPP1110495). T.A.P. also acknowledges support from the Defense Advanced Research Projects Agency (D16AP00114). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




M.U.G.K., A.S., R.C.R. and J.S.B. conceived and planned the study. M.U.G.K., A.S., R.C.R., T.A.P. and Q.Z. analysed the data. M.U.G.K. wrote the first draft of the manuscript, and all authors contributed to subsequent revisions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Moritz U. G. Kraemer or Robert C. Reiner Jr or John S. Brownstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Aisha Bradshaw.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 2–4 and 7 and Supplementary Figs. 1–16.

Reporting Summary

Supplementary Tables 1, 5 and 6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kraemer, M.U.G., Sadilek, A., Zhang, Q. et al. Mapping global variation in human mobility. Nat Hum Behav (2020).

Download citation