Neurobehavioural characterisation and stratification of reinforcement-related behaviour

Abstract

Reinforcement-related cognitive processes, such as reward processing, inhibitory control and social–emotional regulation are critical components of externalising and internalising behaviours. It is unclear to what extent the deficit in each of these processes contributes to individual behavioural symptoms, how their neural substrates give rise to distinct behavioural outcomes and whether neural activation profiles across different reinforcement-related processes might differentiate individual behaviours. We created a statistical framework that enabled us to directly compare functional brain activation during reward anticipation, motor inhibition and viewing emotional faces in the European IMAGEN cohort of 2,000 14-year-old adolescents. We observe significant correlations and modulation of reward anticipation and motor inhibition networks in hyperactivity, impulsivity, inattentive behaviour and conduct symptoms, and we describe neural signatures across cognitive tasks that differentiate these behaviours. We thus characterise shared and distinct functional brain activation patterns underling different externalising symptoms and identify neural stratification markers, while accounting for clinically observed comorbidity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Workflow of the analyses.
Fig. 2: Activation maps of MID, SST, EFT and their overlay.
Fig. 3

Data availability

IMAGEN data are available from a dedicated database: https://imagen2.cea.fr.

Code availability

Custom code that supports the findings of this study is available from the corresponding author upon request.

References

  1. 1.

    Castellanos, F. X., Sonuga-Barke, E. J., Milham, M. P. & Tannock, R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10, 117–123 (2006).

    PubMed  Google Scholar 

  2. 2.

    Blanken, L. M. et al. Cognitive functioning in children with internalising, externalising and dysregulation problems: a population-based study. Eur. Child Adolesc. Psychiatry 26, 445–456 (2017).

    PubMed  Google Scholar 

  3. 3.

    Shakoor, S., McGuire, P., Cardno, A. G., Freeman, D. & Ronald, A. A twin study exploring the association between childhood emotional and behaviour problems and specific psychotic experiences in a community sample of adolescents. J. Child Psychol. Psychiatry 59, 565–573 (2018).

    PubMed  Google Scholar 

  4. 4.

    Schumann, G. et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Chen, J. E. & Glover, G. H. Erratum to: functional magnetic resonance imaging methods. Neuropsychol. Rev. 25, 314 (2015).

    PubMed  Google Scholar 

  6. 6.

    Nymberg, C. et al. Neural mechanisms of attention-deficit/hyperactivity disorder symptoms are stratified by MAOA genotype. Biol. Psychiatry 74, 607–614 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: neuropsychiatric implications. Nat. Rev. Neurosci. 18, 158–171 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185 (2014).

    PubMed  Google Scholar 

  10. 10.

    Quinlan, E. B. et al. Psychosocial stress and brain function in adolescent psychopathology. Am. J. Psychiatry 174, 785–794 (2017).

    PubMed  Google Scholar 

  11. 11.

    Adolphs, R. Cognitive neuroscience of human social behaviour. Nat. Rev. Neurosci. 4, 165–178 (2003).

    CAS  PubMed  Google Scholar 

  12. 12.

    Jia, T. et al. Neural basis of reward anticipation and its genetic determinants. Proc. Natl Acad. Sci. USA 113, 3879–3884 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Gerdes, A. B. et al. Emotional sounds modulate early neural processing of emotional pictures. Front. Psychol. 4, 741 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Serences, J. T. Value-based modulations in human visual cortex. Neuron 60, 1169–1181 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Pleger, B., Blankenburg, F., Ruff, C. C., Driver, J. & Dolan, R. J. Reward facilitates tactile judgments and modulates hemodynamic responses in human primary somatosensory cortex. J. Neurosci. 28, 8161–8168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Goodman, A., Lamping, D. L. & Ploubidis, G. B. When to use broader internalising and externalising subscales instead of the hypothesised five subscales on the strengths and difficulties questionnaire (SDQ): data from British parents, teachers and children. J. Abnorm. Child Psychol. 38, 1179–1191 (2010).

    PubMed  Google Scholar 

  18. 18.

    Mumford, J. A. et al. Detecting network modules in fMRI time series: a weighted network analysis approach. Neuroimage 52, 1465–1476 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vinod, H. D. Canonical ridge and econometrics of joint production. J. Econometrics 4, 147–166 (1976).

    Google Scholar 

  20. 20.

    Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L. & Hommer, D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12, 3683–3687 (2001).

    CAS  PubMed  Google Scholar 

  21. 21.

    Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    PubMed  Google Scholar 

  22. 22.

    Grosbras, M. H. & Paus, T. Brain networks involved in viewing angry hands or faces. Cereb. Cortex 16, 1087–1096 (2006).

    PubMed  Google Scholar 

  23. 23.

    Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).

    CAS  PubMed  Google Scholar 

  24. 24.

    Bartels, M. et al. Childhood aggression and the co-occurrence of behavioural and emotional problems: results across ages 3–16 years from multiple raters in six cohorts in the EU-ACTION project. Eur. Child Adolesc. Psychiatry 27, 1105–1121 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kuhfeld, W. F. A note on Roy’s largest root. Psychometrika 51, 479–481 (1986).

    Google Scholar 

  26. 26.

    Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal Sci. 8, 355–362 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).

  28. 28.

    Krueger, R. F. et al. Progress in achieving quantitative classification of psychopathology. World Psychiatry 17, 282–293 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Pas, P., van den Munkhof, H. E., du Plessis, S. & Vink, M. Striatal activity during reactive inhibition is related to the expectation of stop-signals. Neuroscience 361, 192–198 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Fox, P. T. & Friston, K. J. Distributed processing; distributed functions? Neuroimage 61, 407–426 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Robinson, J. L., Laird, A. R., Glahn, D. C., Lovallo, W. R. & Fox, P. T. Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum. Brain Mapp. 31, 173–184 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Li, J. et al. Primary auditory cortex is required for anticipatory motor response. Cereb. Cortex 27, 3254–3271 (2017).

    PubMed  Google Scholar 

  35. 35.

    Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H. & Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    CAS  PubMed  Google Scholar 

  36. 36.

    Rubia, K., Smith, A. B., Brammer, M. J. & Taylor, E. Temporal lobe dysfunction in medication-naive boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol. Psychiatry 62, 999–1006 (2007).

    PubMed  Google Scholar 

  37. 37.

    Swanson, J. M. et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol. Rev. 17, 39–59 (2007).

    PubMed  Google Scholar 

  38. 38.

    Hobson, C. W., Scott, S. & Rubia, K. Investigation of cool and hot executive function in ODD/CD independently of ADHD. J. Child Psychol. Psychiatry 52, 1035–1043 (2011).

    PubMed  Google Scholar 

  39. 39.

    Scheres, A., Oosterlaan, J. & Sergeant, J. A. Response inhibition in children with DSM-IV subtypes of AD/HD and related disruptive disorders: the role of reward. Child Neuropsychol. 7, 172–189 (2001).

    CAS  PubMed  Google Scholar 

  40. 40.

    Burke, J. D., Waldman, I. & Lahey, B. B. Predictive validity of childhood oppositional defiant disorder and conduct disorder: implications for the DSM-V. J. Abnorm. Psychol. 119, 739–751 (2010).

    PubMed  Google Scholar 

  41. 41.

    Spencer, T., Biederman, J. & Wilens, T. Attention-deficit/hyperactivity disorder and comorbidity. Pediatr. Clin. North Am. 46, 915–927 (1999).

    CAS  PubMed  Google Scholar 

  42. 42.

    Jensen, P. S., Martin, D. & Cantwell, D. P. Comorbidity in ADHD: implications for research, practice, and DSM-V. J. Am. Acad. Child Adolesc. Psychiatry 36, 1065–1079 (1997).

    CAS  PubMed  Google Scholar 

  43. 43.

    Heidbreder, R. ADHD symptomatology is best conceptualized as a spectrum: a dimensional versus unitary approach to diagnosis. Atten. Defic. Hyperact. Disord. 7, 249–269 (2015).

    PubMed  Google Scholar 

  44. 44.

    Whelan, R. et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat. Neurosci. 15, 920–925 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Goodman, R. Psychometric properties of the strengths and difficulties questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40, 1337–1345 (2001).

    CAS  PubMed  Google Scholar 

  46. 46.

    Herjanic, B. & Reich, W. Development of a structured psychiatric interview for children: agreement between child and parent on individual symptoms. J. Abnorm. Child Psychol. 25, 21–31 (1997).

    CAS  PubMed  Google Scholar 

  47. 47.

    Goodman, R., Ford, T., Richards, H., Gatward, R. & Meltzer, H. The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J. Child Psychol. Psychiatry 41, 645–655 (2000).

    CAS  PubMed  Google Scholar 

  48. 48.

    Ernst, M. et al. Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42, 1585–1597 (2004).

    PubMed  Google Scholar 

  49. 49.

    Cooney, R. E., Atlas, L. Y., Joormann, J., Eugene, F. & Gotlib, I. H. Amygdala activation in the processing of neutral faces in social anxiety disorder: is neutral really neutral? Psychiatry Res. 148, 55–59 (2006).

    PubMed  Google Scholar 

  50. 50.

    Passamonti, L. et al. Neural abnormalities in early-onset and adolescence-onset conduct disorder. Arch. Gen. Psychiatry 67, 729–738 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pardini, D. A. & Phillips, M. Neural responses to emotional and neutral facial expressions in chronically violent men. J. Psychiatry Neurosci. 35, 390–398 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gan, G. et al. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex. Biol. Psychiatry 76, 698–707 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Combes, S. et al. Relationships between sensory and physicochemical measurements in meat of rabbit from three different breeding systems using canonical correlation analysis. Meat Sci. 80, 835–841 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Leurgans, S. E., Moyeed, R. A. & Silverman, B. W. Canonical correlation-analysis when the data are curves. J. R. Stat. Soc. B Met. 55, 725–740 (1993).

    Google Scholar 

  56. 56.

    Sherry, A. & Henson, R. K. Conducting and interpreting canonical correlation analysis in personality research: a user-friendly primer. J. Pers. Assess. 84, 37–48 (2005).

    PubMed  Google Scholar 

  57. 57.

    Efron, B. & Stein, C. The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981).

    Google Scholar 

  58. 58.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Fisher, R. A. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1, 3–32 (1921).

    Google Scholar 

  60. 60.

    Dunn, O. J. & Clark, V. Correlation coefficients measured on the same individuals. J. Am. Stat. Assoc. 64, 366–377 (1969).

    Google Scholar 

  61. 61.

    Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).

    Google Scholar 

  62. 62.

    Meng, X.-L., Rosenthal, R. & Rubin, D. B. Comparing correlated correlation coefficients. Psychol. Bull. 111, 172–175 (1992).

    Google Scholar 

  63. 63.

    Lumley, T., Diehr, P., Emerson, S. & Chen, L. The importance of the normality assumption in large public health data sets. Annu. Rev. Public Health 23, 151–169 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (reinforcement-related behaviour in normal brain function and psychopathology; LSHM-CT-2007-037286), the Horizon 2020-funded ERC Advanced Grant ‘STRATIFY’ (brain network-based stratification of reinforcement-related disorders; 695313), National Natural Science Foundation of China (81801773 and 81873909), the Shanghai Pujiang Project (18PJ1400900), ERANID (understanding the interplay between cultural, biological and subjective factors in drug use pathways; PR-ST-0416-10004), BRIDGET (JPND brain imaging, cognition, dementia and next generation GEnomics; MR/N027558/1), the Human Brain Project (SGA 2, 785907, and SGA 3, 945539), the FP7 project MATRICS (603016), the Medical Research Council Grant ‘c-VEDA’ (consortium on vulnerability to externalizing disorders and addictions; MR/N000390/1), the National Institute of Health (NIH) (R01DA049238, A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers), the National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministerium für Bildung und Forschung (grants 01GS08152 and 01EV0711 and Forschungsnetz AERIAL 01EE1406A and 01EE1406B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940, TRR 265 and NE 1383/14-1), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institutes of Health (NIH)-funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: ANR ANR-12-SAMA-0004, AAPG2019 - GeBra), the Eranet Neuron (AF12-NEUR0008-01 - WM2NA and ANR-18-NEUR00002-01 - ADORe), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte Contre les Drogues et les Conduites Addictives (MILDECA), the Assistance-Publique – Hôpitaux de Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant AP-RM-17-013), the Fédération pour la Recherche sur le Cerveau, the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797) and U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403 (supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence), the 111 Project (B18015), the National Key Research and Development Program of China (2018YFC0910503 and 2018YFC1312900), the NSFC (81930095 and 91630314), The Key Project of Shanghai Science and Technology Innovation Plan (16JC1420402), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01) and Zhangjiang Lab. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Consortia

Contributions

G.S. and T.J. designed the study. T.J. and G.S. wrote the manuscript. A.I., E.B.Q., N.T., Q.L. and B.F. edited the first draft. All authors critically reviewed the manuscript. T.B., G.J.B., A.L.W.B., U.B., C.B., S.D., J.F., H.F., A.G., H.G., P.G., A.H., B.I., J.-L.M., M.-L.P.M., F.N., T.P., L.P., J.H.F., M.N.S., H.W., R.W. and G.S. were the principal investigators. E.B.Q., T.B., G.J.B., A.L.W.B., U.B., C.B., H.F., A.G., H.G., P.G., A.H., B.I., J.-L.M., M.-L.P.M., F.N., D.P.O., T.P., L.P., J.H.F., M.N.S., H.W., R.W. and G.S. acquired the data. T.J. and A.I. analysed the data.

Corresponding authors

Correspondence to Tianye Jia or Gunter Schumann.

Ethics declarations

Competing interests

T.B. served in an advisory or consultancy role for Lundbeck, Medice, Neurim Pharmaceuticals, Oberberg and Shire. He received conference support or speaker’s fees from Lilly, Medice, Novartis and Shire. He has been involved in clinical trials conducted by Shire and Vifor Pharma. He received royalties from Hogrefe, Kohlhammer, CIP Medien and Oxford University Press. The present work is unrelated to the above grants and relationships. G.J.B. has received honoraria from General Electric Healthcare for teaching on scanner programming courses. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor recognition statement: Primary Handling Editor: Marike Schiffer.

Extended data

Extended Data Fig. 1 Dendrograms of heirachical clustering for WVCNA nodes.

Dendrogram trees and static cut at 90% quantile of height of branches for (A) MID, (B) SST and (C) EFT nodes from WVCNA.

Extended Data Fig. 2 Overlapped functional brain regions.

Overlapped Functional Brain Regions (Cohen’s D > 0.30) Identified across All Three Tasks.

Extended Data Fig. 3 Extended RCCA results between fMRI and externalizing behaviours.

RCCA results between fMRI and externalising behaviours based on 1000 Permutation with predefined Regulation Parameters: A. The Effect Size (η2) and Confidence Intervals; B. P-values.

Extended Data Fig. 4 Extended RCCA results between fMRI and internalizing behaviours.

RCCA results between fMRI and internalising behaviours based on 1000 Permutation with predefined regulation parameters.

Extended Data Fig. 5 The design of monetary incentive delay (MID) task.

The figure of experimental paradigm was adapted from a previous publication6.

Extended Data Fig. 6 The design of emotional face task (EFT).

The figure of experimental paradigm was adapted from a previous publication22.

Extended Data Fig. 7 The design of stop signal task (SST).

The figure of experimental paradigm was adapted from a previous publication52.

Extended Data Fig. 8 Plot of soft-threshold for MID (A), EFT (B) and SST (C).

The soft-thresholds were picked as 7 for MID, 8 for EFT and 7 for SST.

Supplementary information

Supplementary Information

Supplementary Tables 2–4 and the full list of consortium members.

Reporting Summary

Supplementary Table 1

a, Functional brain regions identified through WVCNA for the MID task and the following hierarchical clustering results at the height of the top 90%. b, Functional brain regions identified through WVCNA for the SST task and the following hierarchical clustering results at the height of the top 90%. c, Functional brain regions identified through WVCNA for the EFT task and the following hierarchical clustering results at the height of the top 90%

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Ing, A., Quinlan, E.B. et al. Neurobehavioural characterisation and stratification of reinforcement-related behaviour. Nat Hum Behav 4, 544–558 (2020). https://doi.org/10.1038/s41562-020-0846-5

Download citation