Abstract
Neutral models of evolution assume the absence of natural selection. Formerly confined to ecology and evolutionary biology, neutral models are spreading. In recent years they’ve been applied to explaining the diversity of baby names, scientific citations, cryptocurrencies, pot decorations, literary lexica, tumour variants and much more besides. Here, we survey important neutral models and highlight their similarities. We investigate the most widely used tests of neutrality, show that they are weak and suggest more powerful methods. We conclude by discussing the role of neutral models in the explanation of diversity. We suggest that the ability of neutral models to fit low-information distributions should not be taken as evidence for the absence of selection. Nevertheless, many studies, in increasingly diverse fields, make just such claims. We call this tendency ‘neutral syndrome’.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Darwin, C.R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. (John Murray, 1859).
Macarthur, R. H. On the relative abundance of bird species. Proc. Natl Acad. Sci. USA 43, 293–295 (1957).
Hutchinson, G. E. Homage to Santa Rosalia, or, why are there so many kinds of animals? Am. Nat. 153, 145–159 (1959).
Community Structure and the Niche (ed. Giller, P.) (Chapman and Hall, 1984).
Chase, J.M. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).
Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press; 1951., 1951).
Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331–333 (1953).
Clarke, B. C. The evolution of genetic diversity. Proc. R. Soc. Lond. B Biol. Sci. 205, 453–474 (1979).
Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. New Phytol. 201, 45–56 (2014).
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).
Plaks, V., Kong, N. & Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16, 225–238 (2015).
Chamberlin, E. H. The product as an economic variable. Q. J. Econ. 67, 1–29 (1953).
Hotelling, H. Stability in competition. Econ. J. (Lond.) 153, 41–57 (1929).
Lancaster, K. The economics of product variety: a survey. Mark. Sci. 9, 189–206 (1990).
Saviotti, P.P. Technological Evolution, Variety and the Economy (Edward Elgar, 1996).
Hannan, M. T. & Freeman, J. The population ecology of organizations. Am. J. Sociol. 82, 929–964 (1977).
Carroll, G. R. Concentration and specialization: dynamics of niche width in populations of organizations. Am. J. Sociol. 90, 1262–1283 (1985).
Singh, J. V. & Lumsden, C. J. Theory and research in organizational ecology. Annu. Rev. Sociol. 16, 161–195 (1990).
Gentzkow, M., Shapiro, J. M. & Sinkinson, M. Competition and ideological diversity: historical evidence from US newspapers. Am. Econ. Rev. 104, 3073–3114 (2014).
Fosfuri, A., Giarratana, M.S. & Sebrek, S.S. Resource partitioning and strategies in markets for technology. Strateg. Organ. https://doi.org/10.1177/1476127018791329 (2018).
Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).
Crow, J. & Kimura, M. An Introduction to Population Genetics Theory. (Harper and Row, 1970).
Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).
Bell, G. Neutral macroecology. Science 293, 2413–2418 (2001).
Neiman, F. Stylistic variation in evolutionary perspective–inferences from decorative diversity and interassemblage distance in Illinois woodland ceramic assemblages. American Antiquity 60, 7–36 (1995).
Shennan, S. & Wilkinson, J. Ceramic style change and neutral evolution: a case study from Neolithic Europe. Am. Antiq. 66, 577–593 (2001).
Hahn, M. W. & Bentley, R. A. Drift as a mechanism for cultural change: an example from baby names. Proc. Biol. Sci. 270(Suppl 1), S120–S123 (2003).
Bentley, R. A., Hahn, M. W. & Shennan, S. J. Random drift and culture change. Proc. Biol. Sci. 271, 1443–1450 (2004).
Bentley, R. A., Lipo, C. P., Herzog, H. A. & Hahn, M. W. Regular rates of popular culture change reflect random copying. Evol. Hum. Behav. 28, 151–158 (2007).
Lycett, S. J. Acheulean variation and selection: does handaxe symmetry fit neutral expectations? J. Archaeol. Sci. 35, 2640–2648 (2008).
Schauer, P. Cultural Evolution in the Age of Athens: Drift and Selection in Greek Figure-Painted Pottery. PhD thesis (University College London, 2008).
Bentley, R. A., Ormerod, P. & Shennan, S. Population-level neutral model already explains linguistic patterns. Proc. Bio.Sci. 278, 1770–1772 (2011). discussion 1773–1776.
Acerbi, A. & Bentley, R. A. Biases in cultural transmission shape the turnover of popular traits. Evol. Hum. Behav. 35, 228–236 (2014).
ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R. & Baronchelli, A. Evolutionary dynamics of the cryptocurrency market. R. Soc. Open Sci. 4, 170623–170623 (2017).
Newberry, M. G., Ahern, C. A., Clark, R. & Plotkin, J. B. Detecting evolutionary forces in language change. Nature 551, 223–226 (2017).
Simon, H. A. On a class of skew distribution functions. Biometrika 42, 425–440 (1955).
Price, D. J. Networks of scientific papers. Science 149, 510–515 (1965).
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).
Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46, 323–351 (2005).
Redner, S. Citation statistics from 110 years of Physical Review. Phys. Today 58, 49–54 (2005).
Ohta, T. & Gillespie, J. H. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49, 128–142 (1996).
Kreitman, M. The neutral theory is dead. Long live the neutral theory. BioEssays 18, 678–683 (1996). discussion 683.
Hey, J. The neutralist, the fly and the selectionist. Trends Ecol. Evol. 14, 35–38 (1999).
Proulx, S. R. & Adler, F. R. The standard of neutrality: still flapping in the breeze? J. Evol. Biol. 23, 1339–1350 (2010).
Kern, A. D. & Hahn, M. W. The Neutral Theory in light of natural selection. Mol. Biol. Evol. 35, 1366–1371 (2018).
Jensen, J. D. et al. The importance of the Neutral Theory in 1968 and 50 years on: a response to Kern and Hahn 2018. Evolution 73, 111–114 (2019).
Ricklefs, R. E. The unified neutral theory of biodiversity: do the numbers add up? Ecology 87, 1424–1431 (2006).
Leigh, E. G. Jr. Neutral theory: a historical perspective. J. Evol. Biol. 20, 2075–2091 (2007).
Clark, J. S. Beyond neutral science. Trends Ecol. Evol. 24, 8–15 (2009).
Wennekes, P. L., Rosindell, J. & Etienne, R. S. The neutral-niche debate: a philosophical perspective. Acta Biotheor. 60, 257–271 (2012).
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).
Clark, J. S. The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).
Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).
Tarabichi, M. et al. Neutral tumor evolution? Nat. Genet. 50, 1630–1633 (2018).
Heide, T. et al. Reply to ‘Neutral tumor evolution?’. Nat. Genet. 50, 1633–1637 (2018).
McDonald, T. O., Chakrabarti, S. & Michor, F. Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution. Nat. Genet. 50, 1620–1623 (2018).
Werner, B., Williams, M. J., Barnes, C. P., Graham, T. A. & Sottoriva, A. Reply to ‘Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution’. Nat. Genet. 50, 1624–1626 (2018).
Balaparya, A. & De, S. Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data. Nat. Genet. 50, 1626–1628 (2018).
Williams, M. J. et al. Reply to ‘Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data’. Nat. Genet. 50, 1628–1630 (2018).
Ayala, F. J. & Campbell, C. A. Frequency-dependent selection. Annu. Rev. Ecol. Syst. 5, 115–138 (1974).
Nosil, P. Frequency-dependent selection: when being different makes you not stand out. Curr. Biol. 16, R806–R808 (2006).
Volkov, I., Banavar, J. R., He, F., Hubbell, S. P. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005).
Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
Boyd, R. & Richerson, P.J. Culture and the Evolutionary Process (University of Chicago Press, 1985).
Richerson, P.J. & Boyd, R. Not by Genes Alone (University of Chicago Press, 2005).
Morgan, T. J. H. & Laland, K. N. The biological bases of conformity. Front. Neurosci. 6, 87 (2012).
Ohta, T. Population size and rate of evolution. J. Mol. Evol. 1, 305–314 (1972).
Akashi, H., Osada, N. & Ohta, T. Weak selection and protein evolution. Genetics 192, 15–31 (2012).
Willis, J.C. Age and Area: a Study in Geographical Distribution and Origin of Species (Cambridge University Press, 1922).
Willis, J.C. The Course of Evolution by Differentiation or Divergent Mutation Rather Than by Selection (Cambridge University Press, 1940).
Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).
Bentley, R. A. & Shennan, S. J. Cultural Transmission and Stochastic Network Growth. Am. Antiq. 68, 459–485 (2003).
Herzog, H. A., Bentley, R. A. & Hahn, M. W. Random drift and large shifts in popularity of dog breeds. Proc. Biol. Sci. 271(Suppl 5), S353–S356 (2004).
Bentley, R. A. Random drift versus selection in academic vocabulary: an evolutionary analysis of published keywords. PLoS One 3, e3057 (2008).
Tomasových, A. & Kidwell, S. M. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36, 672–695 (2010).
Premo, L. S. & Scholnick, J. B. The spatial scale of social learning affects cultural diversity. American Antiquity 76, 163–176 (2011).
Premo, L. S. Cultural transmission and diversity in time-averaged assemblages. Curr. Anthropol. 55, 105–114 (2014).
Porcic, M. Exploring the effects of assemblage accumulation on diversity and innovation rate estimates in neutral, conformist, and anti-conformist models of cultural transmission. J. Archaeol. Method Theory 22, 1071–1092 (2015).
Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the world-wide web. Nature 401, 130–131 (1999).
Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. Biosyst. 5, 1482–1493 (2009).
Clauset, A., Shalizi, C. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
Al Hammal, O., Alonso, D., Etienne, R. S. & Cornell, S. J. When can species abundance data reveal non-neutrality? PLOS Comput. Biol. 11, e1004134 (2015).
Takeuchi, Y. & Innan, H. Evaluating the performance of neutrality tests of a local community using a niche-structured simulation model. Oikos 124, 1203–1214 (2015).
Brzezinski, M. Power laws in citation distributions: evidence from Scopus. Scientometrics 103, 213–228 (2015).
McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).
Etienne, R. & Olff, H. A novel genealogical approach to neutral biodiversity theory. Ecol. Lett. 7, 170–175 (2004).
McGill, B. J., Maurer, B. A. & Weiser, M. D. Empirical evaluation of neutral theory. Ecology 87, 1411–1423 (2006).
Connolly, S. R. et al. Commonness and rarity in the marine biosphere. Proc. Natl Acad. Sci. USA 111, 8524–8529 (2014).
Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).
Gillespie, J. The Causes of Molecular Evolution (Oxford University Press, 1991).
Bell, G. The distribution of abundance in neutral communities. Am. Nat. 155, 606–617 (2000).
Magurran, A. E. Species abundance distributions: pattern or process? Funct. Ecol. 19, 177–181 (2005).
McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).
Purves, D. & Pacala, S. in Biotic Interactions in the Tropics (eds Burslem, D.F.R.P., Pinard, M.A. & Hartley, S.E.) 107–138 (Cambridge University Press, 2006).
Matthews, T. J. & Whittaker, R. J. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 4, 2263–2277 (2014).
Tokeshi, M. Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993).
Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).
Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).
Ewens, W. J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).
Ewens, W. Mathematical Population Genetics. 1. Theoretical Introduction (Springer, 2004).
Slatkin, M. An exact test for neutrality based on the Ewens sampling distribution. Genet. Res. 64, 71–74 (1994).
Slatkin, M. A correction to the exact test based on the Ewens sampling distribution. Genet. Res. 68, 259–260 (1996).
Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).
Watterson, G. A. The homozygosity test of neutrality. Genetics 88, 405–417 (1978).
Garrigan, D. & Hedrick, P. W. Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57, 1707–1722 (2003).
Lansing, J. S. et al. Male dominance rarely skews the frequency distribution of Y chromosome haplotypes in human populations. Proc. Natl Acad. Sci. USA 105, 11645–11650 (2008).
Etienne, R. S. A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol. Lett. 10, 608–618 (2007).
Jabot, F. & Chave, J. Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference. Am. Nat. 178, E37–E47 (2011).
Steele, J., Glatz, C. & Kandler, A. Ceramic diversity, random copying, and tests for selectivity in ceramic production. J. Archaeol. Sci. 37, 1348–1358 (2010).
Fama, E. F. The behaviour of stock-market prices. J. Bus. 38, 34–105 (1965).
Fama, E. F. Efficient capital markets: a review of theory and empirical work. Finance 25, 383–417 (1970).
Poterba, J. M. & Summers, L. H. Mean reversion in stock prices: evidence and implications. J. Financ. Econ. 22, 27–59 (1988).
Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008).
Mathieson, I. & McVean, G. Estimating selection coefficients in spatially structured populations from time series data of allele frequencies. Genetics 193, 973–984 (2013).
Feder, A. F., Kryazhimskiy, S. & Plotkin, J. B. Identifying signatures of selection in genetic time series. Genetics 196, 509–522 (2014).
Malaspinas, A.-S., Malaspinas, O., Evans, S. N. & Slatkin, M. Estimating allele age and selection coefficient from time-serial data. Genetics 192, 599–607 (2012).
Schraiber, J. G., Evans, S. N. & Slatkin, M. Bayesian inference of natural selection from allele frequency time series. Genetics 203, 493–511 (2016).
Khatri, B. S. Quantifying evolutionary dynamics from variant-frequency time series. Sci. Rep. 6, 32497 (2016).
Ferrer-Admetlla, A., Leuenberger, C., Jensen, J. D. & Wegmann, D. An approximate Markov model for the Wright-Fisher diffusion and its application to time series data. Genetics 203, 831–846 (2016).
Tataru, P., Simonsen, M., Bataillon, T. & Hobolth, A. Statistical inference in the Wright-Fisher model using allele frequency data. Syst. Biol. 66, e30–e46 (2017).
Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).
Crema, E., Edinborough, K., Kerig, T. & Shennan, S. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).
Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).
Kandler, A. & Shennan, S. A generative inference framework for analysing patterns of cultural change in sparse population data with evidence for fashion trends in LBK culture. J. R. Soc. Interface 12, 20150905 (2015).
Foll, M., Shim, H. & Jensen, J. D. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Mol. Ecol. Resour. 15, 87–98 (2015).
Shim, H., Laurent, S., Matuszewski, S., Foll, M. & Jensen, J. D. Detecting and quantifying changing selection intensities from time-sampled polymorphism data. G3 (Bethesda) 6, 893–904 (2016).
Chisholm, R. A. et al. Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett. 17, 855–865 (2014).
Clark, J. S. & McLachlan, J. S. Stability of forest biodiversity. Nature 423, 635–638 (2003).
Gillespie, J. H. A randomized SAS-CFF model of natural selection in a random environment. Theor. Popul. Biol. 21, 219–237 (1982).
Pham, T., Sheridan, P. & Shimodaira, H. Joint estimation of preferential attachment and node fitness in growing complex networks. Sci. Rep. 6, 32558 (2016).
Golosovsky, M. Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models. Phys. Rev. E 97, 062310 (2018).
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).
Haegeman, B. & Loreau, M. A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269, 150–165 (2011).
Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).
Shmueli, G. To explain or to predict? Stat. Sci. 25, 289–310 (2010).
Chisholm, R. A. et al. Species-area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).
Bell, G. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Phil. Trans. R. Soc. Lond. B 365, 87–97 (2010).
Condit, R., Chisholm, R. A. & Hubbell, S. P. Thirty years of forest census at Barro Colorado and the importance of immigration in maintaining diversity. PLoS One 7, e49826 (2012).
Leigh, E. G., Wright, S. J., Herre, E. A. & Putz, F. E. The decline of tree diversity on newly isolated tropical islands: A test of a null hypothesis and some implications. Evol. Ecol. 7, 76–102 (1993).
Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004).
Hu, X.-S., He, F. & Hubbell, S. P. Neutral theory in macroecology and population genetics. Oikos 113, 548–556 (2006).
Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).
Yule, G. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B 213, 21–87 (1924).
Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).
Fisher, R. A. The Genetical Theory of Natural Selection. (Clarendon Press, Oxford, 1930).
Moran, P. A. Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54, 60–71 (1958).
Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).
Harding, E. F. The probabilities of rooted tree- shapes generated by random bifurcation. Adv. Appl. Probab. 3, 44–77 (1971).
Mooers, A. & Heard, S. B. Inferring evolutionary process from the phylogenetic tree shape. Q. Rev. Biol. 72, 31–54 (1997).
Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 200, 1–17 (2006).
Zipf, G.K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Addison-Wesley, 1949).
Perc, M. The Matthew effect in empirical data. J. R. Soc. Interface 11, 20140378 (2014).
Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436 (2001).
Kong, J. S., Sarshar, N. & Roychowdhury, V. P. Experience versus talent shapes the structure of the Web. Proc. Natl Acad. Sci. USA 105, 13724–13729 (2008).
Vallade, M. & Houchmandzadeh, B. Analytical solution of a neutral model of biodiversity. Phys. Rev. E 68, 061902 (2003).
Alonso, D. & McKane, A. Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7, 901–910 (2004).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Primary Handling Editor: Aisha Bradshaw
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Leroi, A.M., Lambert, B., Rosindell, J. et al. Neutral syndrome. Nat Hum Behav 4, 780–790 (2020). https://doi.org/10.1038/s41562-020-0844-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-020-0844-7
This article is cited by
-
Measuring frequency-dependent selection in culture
Nature Human Behaviour (2022)
-
Neutral models are a tool, not a syndrome
Nature Human Behaviour (2021)
-
Neutral Theory is a tool that should be wielded with care
Nature Human Behaviour (2021)