Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Value-based attention but not divisive normalization influences decisions with multiple alternatives

Matters Arising to this article was published on 14 September 2020

Abstract

Violations of economic rationality principles in choices between three or more options are critical for understanding the neural and cognitive mechanisms of decision-making. A recent study reported that the relative choice accuracy between two options decreases as the value of a third (distractor) option increases and attributed this effect to divisive normalization of neural value representations. In two preregistered experiments, a direct replication and an eye-tracking experiment, we assessed the replicability of this effect and tested an alternative account that assumes value-based attention to mediate the distractor effect. Surprisingly, we could not replicate the distractor effect in our experiments. However, we found a dynamic influence of distractor value on fixations to distractors as predicted by the value-based attention theory. Computationally, we show that extending an established sequential sampling decision-making model by a value-based attention mechanism offers a comprehensive account of the interplay between value, attention, response times and decisions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Valuation and choice task in the two experiments.
Fig. 2: Analyses of distractor effects on relative choice accuracy.
Fig. 3: Analyses of distractor effects on RT.
Fig. 4: Evidence for value-based attention.
Fig. 5: Illustration and predictions of the aDDM with value-based attention.

Data availability

Data of all participants included in the final samples of the two experiments are publicly available on OSF (https://osf.io/qrv2e/).

Code availability

Custom code that supports the findings of this study is publicly available on OSF (https://osf.io/qrv2e/).

References

  1. 1.

    Glimcher, P. W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    CAS  PubMed  Google Scholar 

  2. 2.

    Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    CAS  Google Scholar 

  3. 3.

    Louie, K., Grattan, L. E. & Glimcher, P. W. Reward value-based gain control: divisive normalization in parietal cortex. J. Neurosci. 31, 10627–10639 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Louie, K., Khaw, M. W. & Glimcher, P. W. Normalization is a general neural mechanism for context-dependent decision making. Proc. Natl Acad. Sci. USA 110, 6139–6144 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Savage, L. J. The Foundations of Statistics (Wiley, 1954).

  6. 6.

    Luce, R. D. Individual Choice Behavior: A Theoretical Analysis (Dover Publications, 1959).

  7. 7.

    Busemeyer, J. R., Gluth, S., Rieskamp, J. & Turner, B. M. Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends Cogn. Sci. 23, 251–263 (2019).

    PubMed  Google Scholar 

  8. 8.

    Huber, J., Payne, J. W. & Puto, C. Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9, 90–98 (1982).

    Google Scholar 

  9. 9.

    Gluth, S., Hotaling, J. M. & Rieskamp, J. The attraction effect modulates reward prediction errors and intertemporal choices. J. Neurosci. 37, 371–382 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Google Scholar 

  11. 11.

    Anderson, B. A., Laurent, P. A. & Yantis, S. Value-driven attentional capture. Proc. Natl Acad. Sci. USA 108, 10367–10371 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Gluth, S., Spektor, M. S. & Rieskamp, J. Value-based attentional capture affects multi-alternative decision making. eLife 7, e39659 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Tsetsos, K., Chater, N. & Usher, M. Salience driven value integration explains decision biases and preference reversal. Proc. Natl Acad. Sci. USA 109, 9659–9664 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Glickman, M., Tsetsos, K. & Usher, M. Attentional selection mediates framing and risk-bias effects. Psychol. Sci. 29, 2010–2019 (2018).

    PubMed  Google Scholar 

  15. 15.

    Usher, M., Tsetsos, K., Glickman, M. & Chater, N. Selective integration: an attentional theory of choice biases and adaptive choice. Curr. Dir. Psychol. Sci. https://doi.org/10.1177/0963721419862277 (2019).

  16. 16.

    Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    CAS  PubMed  Google Scholar 

  17. 17.

    Krajbich, I. & Rangel, A. Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proc. Natl Acad. Sci. USA 108, 13852–13857 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67, 641–666 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  Google Scholar 

  20. 20.

    Asendorpf, J. B. et al. Recommendations for increasing replicability in psychology. Eur. J. Pers. 27, 108–119 (2013).

    Google Scholar 

  21. 21.

    Simonsohn, U. Small telescopes: detectability and the evaluation of replication results. Psychol. Sci. 26, 559–569 (2015).

    PubMed  Google Scholar 

  22. 22.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Google Scholar 

  23. 23.

    McFadden, D. Economic choices. Am. Econ. Rev. 91, 351–378 (2001).

    Google Scholar 

  24. 24.

    Polanía, R., Krajbich, I., Grueschow, M. & Ruff, C. C. Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron 82, 709–720 (2014).

    PubMed  Google Scholar 

  25. 25.

    Palminteri, S., Khamassi, M., Joffily, M. & Coricelli, G. Contextual modulation of value signals in reward and punishment learning. Nat. Commun. 6, 8096 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Fontanesi, L., Gluth, S., Spektor, M. S. & Rieskamp, J. A reinforcement learning diffusion decision model for value-based decisions. Psychon. Bull. Rev. 26, 1099–1121 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pearson, D. et al. Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Atten. Percept. Psychophys. 78, 2226–2240 (2016).

    PubMed  Google Scholar 

  28. 28.

    Shimojo, S., Simion, C., Shimojo, E. & Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 6, 1317–1322 (2003).

    CAS  PubMed  Google Scholar 

  29. 29.

    Fiedler, S. & Glöckner, A. The dynamics of decision making in risky choice: an eye-tracking analysis. Front. Psychol. 3, 335 (2012).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cavanagh, J. F., Wiecki, T. V., Kochar, A. & Frank, M. J. Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143, 1476–1488 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Stewart, N., Gächter, S., Noguchi, T. & Mullett, T. L. Eye movements in strategic choice. J. Behav. Decis. Mak. 29, 137–156 (2016).

    PubMed  Google Scholar 

  32. 32.

    Thomas, A. W., Molter, F., Krajbich, I., Heekeren, H. R. & Mohr, P. N. C. Gaze bias differences capture individual choice behaviour. Nat. Hum. Behav. 3, 625–635 (2019).

  33. 33.

    Smith, S. M. & Krajbich, I. Gaze amplifies value in decision making. Psychol. Sci. 30, 116–128 (2019).

    PubMed  Google Scholar 

  34. 34.

    Holper, L. et al. Adaptive value normalization in the prefrontal cortex is reduced by memory load. eneuro 4, ENEURO.0365-17.2017 (2017).

  35. 35.

    Padoa-Schioppa, C. Range-adapting representation of economic value in the orbitofrontal cortex. J. Neurosci. 29, 14004–14014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cox, K. M. & Kable, J. W. BOLD subjective value signals exhibit robust range adaptation. J. Neurosci. 34, 16533–16543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kobayashi, S., Pinto de Carvalho, O. & Schultz, W. Adaptation of reward sensitivity in orbitofrontal neurons. J. Neurosci. 30, 534–544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Furl, N. Facial-attractiveness choices are predicted by divisive normalization. Psychol. Sci. 27, 1379–1387 (2016).

    PubMed  Google Scholar 

  39. 39.

    Rustichini, A., Conen, K. E., Cai, X. & Padoa-Schioppa, C. Optimal coding and neuronal adaptation in economic decisions. Nat. Commun. 8, 1208 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Chang, L. W., Gershman, S. J. & Cikara, M. Comparing value coding models of context-dependence in social choice. J. Exp. Soc. Psychol. 85, 103847 (2019).

    Google Scholar 

  41. 41.

    Li, V., Michael, E., Balaguer, J., Herce Castañón, S. & Summerfield, C. Gain control explains the effect of distraction in human perceptual, cognitive, and economic decision making. Proc. Natl Acad. Sci. USA 115, E8825–E8834 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Tajima, S., Drugowitsch, J., Patel, N. & Pouget, A. Optimal policy for multi-alternative decisions. Nat. Neurosci. 22, 1503–1511 (2019).

    CAS  PubMed  Google Scholar 

  43. 43.

    Khaw, M. W., Glimcher, P. W. & Louie, K. Normalized value coding explains dynamic adaptation in the human valuation process. Proc. Natl Acad. Sci. USA 114, 12696–12701 (2017).

    CAS  PubMed  Google Scholar 

  44. 44.

    Mohr, P. N. C., Heekeren, H. R. & Rieskamp, J. Attraction effect in risky choice can be explained by subjective distance between choice alternatives. Sci. Rep. 7, 8942 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Frederick, S., Lee, L. & Baskin, E. The limits of attraction. J. Mark. Res 51, 487–507 (2014).

    Google Scholar 

  46. 46.

    Spektor, M. S., Gluth, S., Fontanesi, L. & Rieskamp, J. How similarity between choice options affects decisions from experience: the accentuation-of-differences model. Psychol. Rev. 126, 52–88 (2019).

    PubMed  Google Scholar 

  47. 47.

    Tusche, A. & Hutcherson, C. A. Cognitive regulation alters social and dietary choice by changing attribute representations in domain-general and domain-specific brain circuits. eLife 7, e31185 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Grueschow, M., Polania, R., Hare, T. A. & Ruff, C. C. Automatic versus choice-dependent value representations in the human brain. Neuron 85, 874–885 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

    Google Scholar 

  50. 50.

    Mullett, T. L. & Stewart, N. Implications of visual attention phenomena for models of preferential choice. Decision 3, 231–253 (2016).

    PubMed  Google Scholar 

  51. 51.

    Cavanagh, S. E., Malalasekera, W. M. N., Miranda, B., Hunt, L. T. & Kennerley, S. W. Visual fixation patterns during economic choice reflect covert valuation processes that emerge with learning. Proc. Natl Acad. Sci. USA 116, 22795–22801 (2019).

    CAS  PubMed  Google Scholar 

  52. 52.

    Callaway, F. & Griffiths, T. Attention in value-based choice as optimal sequential sampling. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/57v6k (2019).

  53. 53.

    Sims, C. A. Implications of rational inattention. J. Monet. Econ. 50, 665–690 (2003).

    Google Scholar 

  54. 54.

    Towal, R. B., Mormann, M. & Koch, C. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proc. Natl Acad. Sci. USA 110, E3858–E3867 (2013).

    CAS  PubMed  Google Scholar 

  55. 55.

    Turner, B. M. et al. A Bayesian framework for simultaneously modeling neural and behavioral data. Neuroimage 72, 193–206 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Brandt, M. J. et al. The Replication Recipe: what makes for a convincing replication? J. Exp. Soc. Psychol. 50, 217–224 (2014).

    Google Scholar 

  57. 57.

    Becker, G. M., DeGroot, M. H. & Marschak, J. Measuring utility by a single-response sequential method. Behav. Sci. 9, 226–232 (1964).

    CAS  PubMed  Google Scholar 

  58. 58.

    Mechera-Ostrovsky, T. & Gluth, S. Memory beliefs drive the memory bias on value-based decisions. Sci. Rep. 8, 10592 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Holmes, A. P. & Friston, K. J. Generalisability, random effects & population inference. Neuroimage 7, S754 (1998).

    Google Scholar 

  60. 60.

    Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2013).

  61. 61.

    Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (SAGE, 1991).

Download references

Acknowledgements

We thank K. Louie for providing us with materials from the original study and for approving the preregistration protocol of the direct replication experiment. Further thanks go to I. Krajbich and A. Rangel for sharing their data and to I. Krajbich and J. Rieskamp for comments on an earlier version of the manuscript. S.G. was supported by a grant from the Swiss National Science Foundation (no. 100014_172761). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

All authors designed the study. N.K., M.K. and C.L.V. collected the data. All authors analysed the data. S.G. wrote the manuscript. N.K., M.K. and C.L.V. revised the manuscript.

Corresponding author

Correspondence to Sebastian Gluth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Marike Schiffer

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Figs. 1–11, Supplementary Tables 1–4 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gluth, S., Kern, N., Kortmann, M. et al. Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nat Hum Behav 4, 634–645 (2020). https://doi.org/10.1038/s41562-020-0822-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing