Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interplay of chronotype and school timing predicts school performance

Abstract

Most adolescents exhibit very late chronotypes and attend school early in the morning, a misalignment that can affect their health and psychological well-being. Here we examine how the interaction between the chronotype and school timing of an individual influences academic performance, studying a unique sample of 753 Argentinian students who were randomly assigned to start school in the morning (07:45), afternoon (12:40) or evening (17:20). Although chronotypes tend to align partially with class time, this effect is insufficient to fully account for the differences with school start time. We show that (1) for morning-attending students, early chronotypes perform better than late chronotypes in all school subjects, an effect that is largest for maths; (2) this effect vanishes for students who attend school in the afternoon; and (3) late chronotypes benefit from evening classes. Together, these results demonstrate that academic performance is improved when school times are better aligned with the biological rhythms of adolescents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In adolescents, chronotype (MSFsc) is related to the interaction between age and school timing.
Fig. 2: Slopes of the regression lines between chronotype (MSFsc) and grades depend on school timing, age and school subject.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Roenneberg, T., Kumar, C. J. & Merrow, M. The human circadian clock entrains to sun time. Curr. Biol. 17, R44–R45 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Wittmann, M., Dinich, J., Merrow, M. & Roenneberg, T. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23, 497–509 (2006).

    Article  PubMed  Google Scholar 

  3. Roenneberg, T. Having trouble typing? What on earth is chronotype? J. Biol. Rhythms 30, 487–491 (2015).

    Article  PubMed  Google Scholar 

  4. Adan, A. et al. Circadian typology: a comprehensive review. Chronobiol. Int. 29, 1153–1175 (2012).

    Article  PubMed  Google Scholar 

  5. Roenneberg, T., Pilz, L., Zerbini, G. & Winnebeck, E. Chronotype and social jetlag—a (self-) critical review. Biology 8, 54 (2019).

    Article  PubMed Central  Google Scholar 

  6. Casiraghi, L. P. et al. Human period-3 gene involvement in diurnal preference among argentinean bipolar disorders patients. Sleep Sci. 3, 22–26 (2010).

    Google Scholar 

  7. Patke, A. et al. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169, 203–215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirano, A. et al. A cryptochrome 2 mutation yields advanced sleep phase in humans. eLife 5, e16695 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wright, K. P. Jr. et al. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 23, 1554–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stothard, E. R. et al. Circadian entrainment to the natural light-dark cycle across seasons and the weekend. Curr. Biol. 27, 508–513 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roenneberg, T., Hut, R., Daan, S. & Merrow, M. Entrainment concepts revisited. J. Biol. Rhythms 25, 329–339 (2010).

    Article  PubMed  Google Scholar 

  12. Roenneberg, T. et al. A marker for the end of adolescence. Curr. Biol. 14, R1038–R1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Fischer, D., Lombardi, D. A., Marucci-Wellman, H. & Roenneberg, T. Chronotypes in the US—influence of age and sex. PLoS One 12, e0178782 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Randler, C., Fassl, C. & Kalb, N. From lark to owl: developmental changes in morningness-eveningness from new-borns to early adulthood. Sci. Rep. 7, 45874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skeldon, A. C., Phillips, A. J. & Dijk, D. J. The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: a modeling approach. Sci. Rep. 7, 45158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kantermann, T., Sung, H. & Burgess, H. J. Comparing the morningness-eveningness questionnaire and munich chronotype questionnaire to the dim light melatonin onset. J. Biol. Rhythms 30, 449–453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baehr, E. K., Revelle, W. & Eastman, C. I. Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness. J. Sleep Res. 9, 117–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Duffy, J. F., Dijk, D. J., Hall, E. F. & Czeisler, C. A. Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J. Investig. Med 47, 141–150 (1999).

    CAS  PubMed  Google Scholar 

  19. Mecacci, L. & Zani, A. Morningness-eveningness preferences and sleep-waking dairy data of morning and evening types in student and worker samples. Ergonomics 26, 1147–1153 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Santisteban, J. A., Brown, T. G. & Gruber, R. Association between the munich chronotype questionnaire and wrist actigraphy. Sleep Disord. 2018, 5646848 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roenneberg, T. et al. Human activity and rest in situ. Methods Enzymol. 552, 257–283 (2015).

    Article  PubMed  Google Scholar 

  22. Horne, J. A. & Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 4, 97–110 (1976).

    CAS  PubMed  Google Scholar 

  23. Roenneberg, T., Wirz-Justice, A. & Merrow, M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms 18, 80–90 (2003).

    Article  PubMed  Google Scholar 

  24. Adan, A. & Natale, V. Gender differences in morningness-eveningness preference. Chronobiol. Int. 19, 709–720 (2002).

    Article  PubMed  Google Scholar 

  25. Bailey, S. L. & Heitkemper, M. M. Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol. Int. 18, 249–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Carrier, J., Monk, T. H., Buysse, D. J. & Kupfer, D. J. Sleep and morningness-eveningness in the ‘middle’ years of life (20-59 y). J. Sleep Res. 6, 230–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zerbini, G. & Merrow, M. Time to learn: how chronotype impacts education. Psych. J. 6, 263–276 (2017).

    Article  PubMed  Google Scholar 

  28. Lipnevich, A. A. et al. How distinctive are morningness and eveningness from the big five factors of personality? A meta-analytic investigation. J. Pers. Soc. Psychol. 112, 491–509 (2017).

    Article  PubMed  Google Scholar 

  29. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Roenneberg, T., Allebrandt, K. V., Merrow, M. & Vetter, C. Social jetlag and obesity. Curr. Biol. 22, 939–943 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Carskadon, M. A. Sleep in adolescents: the perfect storm. Pediatr. Clin. North Am. 58, 637–647 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carskadon, M. A. Adolescent Sleep Patterns: Biological, Social, and Psychological Influences (Cambridge Univ. Press, 2002).

  33. Talbot, L. S., McGlinchey, E. L., Kaplan, K. A., Dahl, R. E. & Harvey, A. G. Sleep deprivation in adolescents and adults: changes in affect. Emotion 10, 831–841 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Diaz-Morales, J. F. & Escribano, C. Social jetlag, academic achievement and cognitive performance: understanding gender/sex differences. Chronobiol. Int. 32, 822–831 (2015).

    Article  PubMed  Google Scholar 

  35. Malone, S. K. et al. Social jet lag, chronotype and body mass index in 14-17-year-old adolescents. Chronobiol. Int. 33, 1255–1266 (2016).

  36. Levandovski, R. et al. Depression scores associate with chronotype and social jetlag in a rural population. Chronobiol. Int. 28, 771–778 (2011).

    Article  PubMed  Google Scholar 

  37. Wahlstrom, K. School start time and sleepy teens. Arch. Pediatr. Adolesc. Med. 164, 676–677 (2010).

    Article  PubMed  Google Scholar 

  38. Owens, J. A., Belon, K. & Moss, P. Impact of delaying school start time on adolescent sleep, mood, and behavior. Arch. Pediatr. Adolesc. Med. 164, 608–614 (2010).

    Article  PubMed  Google Scholar 

  39. Wheaton, A. G., Chapman, D. P. & Croft, J. B. School start times, sleep, behavioral, health, and academic outcomes: a review of the literature. J. Sch. Health 86, 363–381 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dunster, G. P. et al. Sleepmore in Seattle: later school start times are associated with more sleep and better performance in high school students. Sci. Adv. 4, eaau6200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tonetti, L., Natale, V. & Randler, C. Association between circadian preference and academic achievement: a systematic review and meta-analysis. Chronobiol. Int. 32, 792–801 (2015).

    Article  PubMed  Google Scholar 

  42. Preckel, F., Lipnevich, A. A., Schneider, S. & Roberts, R. D. Chronotype, cognitive abilities, and academic achievement: a meta-analytic investigation. Learn. Individ. Dif. 21, 483–492 (2011).

    Article  Google Scholar 

  43. Hasher, L. et al. in Attention and Performance XVII: Cognitive Regulation of Performance: Interaction of Theory and Application (eds Gopher, D. & Koriat, A.) 653–675 (MIT Press, 1999).

  44. Goldstein, D., Hahn, C. S., Hasher, L., Wiprzycka, U. J. & Zelazo, P. D. Time of day, intellectual performance, and behavioral problems in morning versus evening type adolescents: is there a synchrony effect? Pers. Individ. Dif. 42, 431–440 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hahn, C. et al. Circadian rhythms in executive function during the transition to adolescence: the effect of synchrony between chronotype and time of day. Dev. Sci. 15, 408–416 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hasher, L., Goldstein, D. & May, C. in Human Learning and Memory: Advances in Theory and Application (eds Izawa, C. & Ohta, N.) 199–218 (Lawrence Erlbaum Associates, 2005).

  47. Itzek-Greulich, H., Randler, C. & Vollmer, C. The interaction of chronotype and time of day in a science course: adolescent evening types learn more and are more motivated in the afternoon. Learn. Individ. Dif. 51, 189–198 (2016).

    Article  Google Scholar 

  48. Preckel, F. et al. Morningness-eveningness and educational outcomes: the lark has an advantage over the owl at high school. Br. J. Educ. Psychol. 83, 114–134 (2013).

    Article  PubMed  Google Scholar 

  49. Zerbini, G. et al. Lower school performance in late chronotypes: underlying factors and mechanisms. Sci. Rep. 7, 4385 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. May, C. P., Hasher, L. & Foong, N. Implicit memory, age, and time of day: paradoxical priming effects. Psychol. Sci. 16, 96–100 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Intons-Peterson, M. J., Rocchi, P., West, T., McLellan, K. & Hackney, A. Age, testing at preferred or nonpreferred times (testing optimality), and false memory. J. Exp. Psychol. 25, 23–40 (1999).

    CAS  Google Scholar 

  52. May, C. P. Synchrony effects in cognition: the costs and a benefit. Psychon. Bull. Rev. 6, 142–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Lara, T., Madrid, J. A. & Correa, A. The vigilance decrement in executive function is attenuated when individual chronotypes perform at their optimal time of day. PLoS One 9, e88820 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Arrona-Palacios, A. & Diaz-Morales, J. F. Morningness-eveningness is not associated with academic performance in the afternoon school shift: preliminary findings. Br. J. Educ. Psychol. 88, 480–498 (2017).

  55. Martin, J. S., Gaudreault, M. M., Perron, M. & Laberge, L. Chronotype, light exposure, sleep, and daytime functioning in high school students attending morning or afternoon school shifts: an actigraphic study. J. Biol. Rhythms 31, 205–217 (2016).

    Article  PubMed  Google Scholar 

  56. van der Vinne, V. et al. Timing of examinations affects school performance differently in early and late chronotypes. J. Biol. Rhythms 30, 53–60 (2015).

    Article  PubMed  Google Scholar 

  57. Estevan, I., Silva, A. & Tassino, B. School start times matter, eveningness does not. Chronobiol. Int. 35, 1753–1757 (2018).

    Article  PubMed  Google Scholar 

  58. Wyatt, J. K., Ritz-De Cecco, A., Czeisler, C. A. & Dijk, D. J. Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am. J. Physiol. 277, R1152–R1163 (1999).

    CAS  PubMed  Google Scholar 

  59. Paruthi, S. et al. Recommended amount of sleep for pediatric populations: a consensus statement of the american academy of sleep medicine. J. Clin. Sleep Med. 12, 785–786 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Watson, N. F. et al. Delaying middle school and high school start times promotes student health and performance: an american academy of sleep medicine position statement. J. Clin. Sleep Med. 13, 623–625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hirshkowitz, M. et al. National sleep foundation’s updated sleep duration recommendations: final report. Sleep Health 1, 233–243 (2015).

    Article  PubMed  Google Scholar 

  62. Akaike, H. in Second International Symposium on Information Theory (eds Pretrov, B. N. & Casaki, F.) 267–281 (Akademiai Kiado, 1973).

  63. Randler, C. Morningness-eveningness comparison in adolescents from different countries around the world. Chronobiol. Int. 25, 1017–1028 (2008).

    Article  PubMed  Google Scholar 

  64. Carissimi, A. et al. The influence of school time on sleep patterns of children and adolescents. Sleep Med. 19, 33–39 (2016).

    Article  PubMed  Google Scholar 

  65. Perez-Lloret, S. et al. A multi-step pathway connecting short sleep duration to daytime somnolence, reduced attention, and poor academic performance: an exploratory cross-sectional study in teenagers. J. Clin. Sleep Med. 9, 469–473 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Touitou, Y. Adolescent sleep misalignment: a chronic jet lag and a matter of public health. J. Physiol. Paris 107, 323–326 (2013).

    Article  PubMed  Google Scholar 

  67. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Lovato, N. & Lack, L. The effects of napping on cognitive functioning. Prog. Brain Res. 185, 155–166 (2010).

    Article  PubMed  Google Scholar 

  69. Stickgold, R. & Walker, M. P. Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci. 28, 408–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Lo, J. C. et al. Neurobehavioral impact of successive cycles of sleep restriction with and without naps in adolescents. Sleep 40, zsw042 (2017).

  71. Arbabi, T., Vollmer, C., Dorfler, T. & Randler, C. The influence of chronotype and intelligence on academic achievement in primary school is mediated by conscientiousness, midpoint of sleep and motivation. Chronobiol. Int. 32, 349–357 (2015).

    Article  PubMed  Google Scholar 

  72. Rahafar, A., Maghsudloo, M., Farhangnia, S., Vollmer, C. & Randler, C. The role of chronotype, gender, test anxiety, and conscientiousness in academic achievement of high school students. Chronobiol. Int. 33, 1–9 (2016).

    Article  PubMed  Google Scholar 

  73. Roeser, K., Schlarb, A. A. & Kübler, A. The chronotype-academic performance model (CAM): daytime sleepiness and learning motivation link chronotype and school performance in adolescents. Personal. Individ. Dif. 54, 836–840 (2013).

    Article  Google Scholar 

  74. Carrell, S. E., Maghakian, T. & West, J. E. A’s from Zzzz’s? The causal effect of school start time on the academic achievement of adolescents. Am. Economic J. 3, 62–81 (2011).

    Google Scholar 

  75. Thacher, P. V. & Onyper, S. V. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. Sleep 39, 271–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Porcheret, K. et al. Chronotype and environmental light exposure in a student population. Chronobiol. Int. 35, 1365–1374 (2018).

  77. van der Lely, S. et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J. Adolesc. Health. 56, 113–119 (2015).

    Article  PubMed  Google Scholar 

  78. Meijer, A. M., Reitz, E. & Dekovic, M. Parenting matters: a longitudinal study into parenting and adolescent sleep. J. Sleep Res. 25, 556–564 (2016).

    Article  PubMed  Google Scholar 

  79. Kira, G., Maddison, R., Hull, M., Blunden, S. & Olds, T. Sleep education improves the sleep duration of adolescents: a randomized controlled pilot study. J. Clin. Sleep Med. 10, 787–792 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Portaluppi, F., Smolensky, M. H. & Touitou, Y. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27, 1911–1929 (2010).

    Article  PubMed  Google Scholar 

  81. Adan, A. & Almirall, H. Adaptation and standardization of a Spanish version of the morningness-eveningness questionnaire: individual differences. Personal. Individ. Dif. 11, 1123–1130 (1990).

    Article  Google Scholar 

  82. Kass, R. E. & Kaftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  83. Russell, L. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. https://CRAN.R-project.org/package=emmeans (2018).

  84. Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. (Academic, Elsevier, 2010).

  85. Kleinman, K. & Huang, S. S. Calculating power by bootstrap, with an application to cluster-randomized trials. EGEMS 4, 1202 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dewald, J. F., Meijer, A. M., Oort, F. J., Kerkhof, G. A. & Bogels, S. M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: a meta-analytic review. Sleep Med. Rev. 14, 179–189 (2010).

    Article  PubMed  Google Scholar 

  87. Santhi, N. et al. Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions. PLoS One 8, e79688 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Haraszti, R. A., Ella, K., Gyongyosi, N., Roenneberg, T. & Kaldi, K. Social jetlag negatively correlates with academic performance in undergraduates. Chronobiol. Int. 31, 603–612 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank students, members of the faculty and staff at the authorities of the Escuela Superior de Comercio Carlos Pellegrini for their participation and help, and for allowing us to conduct this study; L. Rodríguez, M. Bentura, A. Barral, M. Belén Varela, I. Santa Cruz, V. Sarmiento, L. Leone, A. Haimovici, M. Montané, G. Rodriguez Ferrante and G. Gellon. This research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Quilmes, Agencia Nacional de Promoción Científica y Tecnológica. M.S. is sponsored by CONICET, FONCyT Argentina grant PICT-2013-1653 and the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition Scholar Award. D.A.G. is funded by CONICET, FONCyT and Universidad Nacional de Quilmes. A.P.G. is sponsored by CONICET. M.J.L is funded by CONICET and Universidad Nacional de Quilmes. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.P.G., M.S., D.A.G. and M.J.L. Data collection: A.P.G., G.B. and M.J.L. Data analysis: A.P.G. and M.J.L. Interpretation: A.P.G., M.S., G.B., D.A.G. and M.J.L. Writing: A.P.G. and M.J.L., with revisions from all other authors.

Corresponding author

Correspondence to María J. Leone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editors: Mary Elizabeth Sutherland and Stavroula Kousta.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Discussion, Supplementary Figs. 1–7, Supplementary Tables 1–9 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldin, A.P., Sigman, M., Braier, G. et al. Interplay of chronotype and school timing predicts school performance. Nat Hum Behav 4, 387–396 (2020). https://doi.org/10.1038/s41562-020-0820-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-0820-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing