Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary dynamics of higher-order interactions in social networks

Subjects

Abstract

We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in larger groups. Here, we study the evolutionary dynamics of a public goods game in social systems with higher-order interactions. First, we show that the game on uniform hypergraphs corresponds to the replicator dynamics in the well-mixed limit, providing a formal theoretical foundation to study cooperation in networked groups. Second, we unveil how the presence of hubs and the coexistence of interactions in groups of different sizes affects the evolution of cooperation. Finally, we apply the proposed framework to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work provides a way to implement informed actions to boost cooperation in social groups.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Higher-order versus pairwise interactions in a PGG.
Fig. 2: A PGG with higher-order interactions in URHs.
Fig. 3: A PGG with higher-order interactions in hyperdegree-heterogeneous random hypergraphs.
Fig. 4: A PGG with higher-order interactions in order-heterogeneous random hypergraphs.
Fig. 5: Synergy factors of scientific collaborations.

Data availability

The APS dataset is provided by the APS at: https://journals.aps.org/datasets.

Code availability

Custom code that supports the findings of this study is available from the corresponding author upon request.

References

  1. Nowak, M. A. & Highfield, R. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Free Press, 2011).

  2. Santos, F. C., Rodrigues, J. F. & Pacheco, J. M. Graph topology plays a determinant role in the evolution of cooperation. Proc. R. Soc. B 273, 51–55 (2006).

    CAS  PubMed  Google Scholar 

  3. Rand, D. G., Arbesman, S. & Christakis, N. A. Dynamic social networks promote cooperation in experiments with humans. Proc. Natl Acad. Sci. USA 108, 19193–19198 (2011).

    CAS  PubMed  Google Scholar 

  4. Hrdy, S. B. et al. Mothers and Others: The Evolutionary Origins of Mutual Understanding (Harvard Univ. Press, 2011).

  5. Henrich, J. et al. In search of homo economicus: behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 91, 73–78 (2001).

  6. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Henrich, N. & Henrich, J. P. Why Humans Cooperate: A Cultural and Evolutionary Explanation (Oxford Univ. Press, 2007).

  8. Rand, D. G. & Nowak, M. A. Human cooperation. Trends Cognit. Sci. 17, 413–425 (2013).

    Google Scholar 

  9. Kraft-Todd, G., Yoeli, E., Bhanot, S. & Rand, D. Promoting cooperation in the field. Curr. Opin. Behav. Sci. 3, 96–101 (2015).

    Google Scholar 

  10. Perc, M. et al. Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017).

    Google Scholar 

  11. Jackson, M. O. & Zenou, Y. Economic Analyses of Social Networks (Edward Elgar Publishing, 2013).

  12. Weibull, J. W. Evolutionary Game Theory (MIT Press, 1995).

  13. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics (Cambridge Univ. Press, 1998).

  14. Nowak, M. A. Evolutionary Dynamics (Harvard Univ. Press, 2006).

  15. Axelrod, R. The Evolution of Cooperation (Basic Books, 1984).

  16. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992).

    Google Scholar 

  17. Santos, F. C. & Pacheco, J. M. Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005).

    CAS  PubMed  Google Scholar 

  18. Santos, F. C., Pacheco, J. M. & Lenaerts, T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl Acad. Sci. USA 103, 3490–3494 (2006).

    CAS  PubMed  Google Scholar 

  19. Gómez-Gardeñes, J., Campillo, M., Floría, L. M. & Moreno, Y. Dynamical organization of cooperation in complex networks. Phys. Rev. Lett. 98, 108103 (2007).

    PubMed  Google Scholar 

  20. Tarnita, C. E., Antal, T., Ohtsuki, H. & Nowak, M. A. Evolutionary dynamics in set structured populations. Proc. Natl Acad. Sci. USA 106, 8601–8604 (2009).

    CAS  PubMed  Google Scholar 

  21. Fotouhi, B., Momeni, N., Allen, B. & Nowak, M. A. Evolution of cooperation on large networks with community structure. J. R. Soc. Interface 16, 20180677 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Wang, Z., Szolnoki, A. & Perc, M. Evolution of public cooperation on interdependent networks: The impact of biased utility functions. Europhys. Lett. 97, 48001 (2012).

    Google Scholar 

  23. Gómez-Gardeñes, J., Reinares, I., Arenas, A. & Floría, L. M. Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Gómez-Gardeñes, J., Gracia-Lázaro, C., Floría, L. M. & Moreno, Y. Evolutionary dynamics on interdependent populations. Phys. Rev. E 86, 056113 (2012).

    Google Scholar 

  25. Wang, Z., Szolnoki, A. & Perc, M. Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Z., Wang, L. & Perc, M. Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89, 052813 (2014).

    Google Scholar 

  27. Battiston, F., Perc, M. & Latora, V. Determinants of public cooperation in multiplex networks. New J. Phys. 19, 073017 (2017).

    Google Scholar 

  28. Fu, F. & Chen, X. Leveraging statistical physics to improve understanding of cooperation in multiplex networks. New J. Phys. 19, 071002 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Fotouhi, B., Momeni, N., Allen, B. & Nowak, M. A. Conjoining uncooperative societies facilitates evolution of cooperation. Nat. Human Behav. 2, 492 (2018).

    Google Scholar 

  30. Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433, 312–316 (2005).

    CAS  PubMed  Google Scholar 

  31. Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017).

    CAS  PubMed  Google Scholar 

  33. Archetti, M. & Scheuring, I. Game theory of public goods in one-shot social dilemmas without assortment. J. Theor. Biol. 299, 9–20 (2012).

    PubMed  Google Scholar 

  34. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M. & Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Santos, F. C., Santos, M. D. & Pacheco, J. M. Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008).

    CAS  PubMed  Google Scholar 

  36. Szolnoki, A., Perc, M. & Szabó, G. Topology-independent impact of noise on cooperation in spatial public goods games. Phys. Rev. E 80, 056109 (2009).

    Google Scholar 

  37. Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Google Scholar 

  38. Sigmund, K. Punish or perish? Retaliation and collaboration among humans. Trends Ecol. Evol. 22, 593–600 (2007).

    PubMed  Google Scholar 

  39. Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998).

    CAS  Google Scholar 

  40. Milinski, M., Semmann, D., Bakker, T. C. M. & Krambeck, H.-J. Cooperation through indirect reciprocity: image scoring or standing strategy? Proc. R. Soc. Lond. B 268, 2495–2501 (2001).

    CAS  Google Scholar 

  41. Nax, H. H., Perc, M., Szolnoki, A. & Helbing, D. Stability of cooperation under image scoring in group interactions. Sci. Rep. 5, 12145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fehr, E. Donat lose your reputation. Nature 432, 449–450 (2004).

    CAS  PubMed  Google Scholar 

  43. Gächter, S. Reputation and reciprocity: Consequences for the labour relation. Scand. J. Econ. 104, 1–26 (2002).

    Google Scholar 

  44. Fu, F., Hauert, C., Nowak, M. A. & Wang, L. Reputation-based partner choice promotes cooperation in social networks. Phys. Rev. E 78, 026117 (2008).

    Google Scholar 

  45. Latora, V, Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and Applications (Cambridge Univ. Press, 2017).

  46. Berge, C. Hypergraphs: Combinatorics of Finite Sets (Elsevier, 1984).

  47. Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Google Scholar 

  48. Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D. & Sánchez, A. Evolutionary games defined at the network mesoscale: the public goods game. Chaos 21, 016113 (2011).

  49. Gómez-Gardeñes, J., Vilone, D. & Sánchez, A. Disentangling social and group heterogeneities: public goods games on complex networks. Europhys. Lett. 95, 68003 (2011).

  50. Peña, J. & Rochat, Y. Bipartite graphs as models of population structures in evolutionary multiplayer games. PLoS ONE 7, e44514 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Wu, J. & Zusai, D. A potential game approach to modelling evolution in a connected society. Nat. Hum. Behav. 3, 604–610 (2019).

    PubMed  Google Scholar 

  52. Taylor, P. & Jonker, L. Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978).

    Google Scholar 

  53. Wu, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology. Nature 566, 378–382 (2019).

    CAS  PubMed  Google Scholar 

  54. Wuchty, S., Jones, B. F. & Uzzi, B. The increasing dominance of teams in production of knowledge. Science 316, 1036–1039 (2007).

    CAS  PubMed  Google Scholar 

  55. Klug, M. & Bagrow, J. P. Understanding the group dynamics and success of teams. R. Soc. Open Sci. 3, 160007 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    CAS  PubMed  Google Scholar 

  57. Bettencourt, L. M. A. The origins of scaling in cities. Science 340, 1438 (2013).

    CAS  PubMed  Google Scholar 

  58. Battiston, F. et al. Taking census of physics. Nat. Rev. Phys. 1, 89–97 (2019).

    Google Scholar 

  59. Milojević, S. Principles of scientific research team formation and evolution. Proc. Natl Acad. Sci. USA 111, 3984–3989 (2014).

    PubMed  Google Scholar 

  60. Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015).

    Google Scholar 

  61. Rand, D. G., Dreber, A., Ellingsen, T., Fudenberg, D. & Nowak, M. A. Positive interactions promote public cooperation. Science 325, 1272–1275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Andreoni, J., Harbaugh, W. & Vesterlund, L. The carrot or the stick: rewards, punishments, and cooperation. Am. Econ. Rev. 93, 893–902 (2003).

    Google Scholar 

  63. Gächter, S., Renner, E. & Sefton, M. The long-run benefits of punishment. Science 322, 1510 (2008).

    PubMed  Google Scholar 

  64. Boyd, R., Gintis, H. & Bowles, S. Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science 328, 617–620 (2010).

    CAS  PubMed  Google Scholar 

  65. Jordan, J. J., Hoffman, M., Bloom, P. & Rand, D. G. Third-party punishment as a costly signal of trustworthiness. Nature 530, 473–476 (2016).

    PubMed  Google Scholar 

  66. Eliad-Badt, E. Decomposition of the complete hypergraph into stars. Discrete Math. 71, 107–117 (1988).

    Google Scholar 

  67. Jhun, B., Minjae, J. & Kahng, B. Simplicial SIS model in scale-free uniform hypergraph. J. Stat. Mech. https://doi.org/10.1088/1742-5468/ab5367 (2019).

  68. APS Dataset https://journals.aps.org/datasets.

Download references

Acknowledgements

U.A.-R. acknowledges support from the Spanish Government through the Maria de Maeztu excellence accreditation 2018-2022 (ref. MDM-2017-0714) and from the Basque Government through the postdoctoral programme (ref. POS-2017-1-0022). F.B. acknowledges partial support from ERC synergy grant 810115 (DYNASNET). V.L. acknowledges support from the Leverhulme Trust Research Fellowship ‘CREATE: the network components of creativity and success’. Y.M. acknowledges partial support from the Government of Aragón and FEDER funds, Spain through grant E36-20R to FENOL, by MINECO and FEDER funds (grant FIS2017-87519-P) and from Intesa Sanpaolo Innovation Center. M.P. was supported by the Slovenian Research Agency (grant numbers J1-2457, J1-9112 and P1-0403). G.F.A. acknowledges support from Intesa Sanpaolo Innovation Center. We thank M. Clarin from COSNET Lab for help and assistance with the figures. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

U.A.-R., F.B. and V.L. conceived the study with contributions from G.F.A., M.P. and Y.M. U.A.-R. performed the calculations. U.A.-R., F.B., G.F.A., M.P., Y.M. and V.L. analysed the data and discussed the results. U.A.-R., F.B., G.F.A., M.P., Y.M. and V.L. wrote the paper.

Corresponding author

Correspondence to Unai Alvarez-Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Aisha Bradshaw

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figs. 1–5 and Supplementary Table 1.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Rodriguez, U., Battiston, F., de Arruda, G.F. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat Hum Behav 5, 586–595 (2021). https://doi.org/10.1038/s41562-020-01024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-01024-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing