Abstract
The scope of unconscious processing is highly debated, with recent studies showing that even high-level functions such as perceptual integration and category-based attention occur unconsciously. For example, upright faces that are suppressed from awareness through interocular suppression break into awareness more quickly than inverted faces. Similarly, verbal object cues boost otherwise invisible objects into awareness. Here, we replicate these findings, but find that they reflect a general difference in detectability not specific to interocular suppression. To dissociate conscious and unconscious influences on visual detection effects, we use an additional discrimination task to rule out conscious processes as a cause for these differences. Results from this detection–discrimination dissociation paradigm reveal that, while face orientation is processed unconsciously, category-based attention requires awareness. These findings provide insights into the function of conscious perception and offer an experimental approach for mapping out the scope and limits of unconscious processing.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Holistic processing of gaze cues during interocular suppression
Scientific Reports Open Access 11 May 2022
-
Gaze direction and face orientation modulate perceptual sensitivity to faces under interocular suppression
Scientific Reports Open Access 10 May 2022
-
Semantic and spatial congruency mould audiovisual integration depending on perceptual awareness
Scientific Reports Open Access 25 May 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
Data from individual participants that formed the basis of the findings of this study are available at https://osf.io/sn8cr/.
Code availability
Custom code that was used to extract individual participant results is available at https://osf.io/sn8cr/. Additional code is available from the corresponding author upon request.
References
Cohen, M. A. & Dennett, D. C. Consciousness cannot be separated from function. Trends Cogn. Sci. 15, 358–364 (2011).
Baars, B. J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005).
Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).
Kanai, R. et al. Information generation as a functional basis of consciousness. Neurosci. Conscious. 2019, niz016 (2019).
Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988).
Kanwisher, N. Neural events and perceptual awareness. Cognition 79, 89–113 (2001).
Hassin, R. R. Yes it can: on the functional abilities of the human unconscious. Perspect. Psychol. Sci. 8, 195–207 (2013).
Mudrik, L., Faivre, N. & Koch, C. Information integration without awareness. Trends Cogn. Sci. 18, 488–496 (2014).
Koch, C. & Tsuchiya, N. Attention and consciousness: two distinct brain processes. Trends Cogn. Sci. 11, 16–22 (2007).
Soto, D. & Silvanto, J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn. Sci. 18, 520–525 (2014).
Van Gaal, S. & Lamme, V. A. F. Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist 18, 287–301 (2012).
Hesselmann, G. & Moors, P. Definitely maybe: can unconscious processes perform the same functions as conscious processes? Front. Psychol. 6, 584 (2015).
Schmidt, T. Invisible stimuli, implicit thresholds: why invisibility judgments cannot be interpreted in isolation. Adv. Cogn. Psychol. 11, 31–41 (2015).
Newell, B. R. & Shanks, D. R. Unconscious influences on decision making: a critical review. Behav. Brain Sci. 37, 1–19 (2014).
Holender, D. Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: a survey and appraisal. Behav. Brain Sci. 9, 1–23 (1986).
Gayet, S., Van Der Stigchel, S. & Paffen, C. L. E. Breaking continuous flash suppression: competing for consciousness on the pre-semantic battlefield. Front. Psychol. 5, 460 (2014).
Yang, E., Brascamp, J., Kang, M. S. & Blake, R. On the use of continuous flash suppression for the study of visual processing outside of awareness. Front. Psychol. 5, 724 (2014).
Jiang, Y., Costello, P. & He, S. Processing of invisible stimuli: advantage of upright faces and recognizable words in overcoming interocular suppression. Psychol. Sci. 18, 349–355 (2007).
Stein, T. & Sterzer, P. Unconscious processing under interocular suppression: getting the right measure. Front. Psychol. 5, 387 (2014).
Stein, T., Hebart, M. N. & Sterzer, P. Breaking continuous flash suppression: a new measure of unconscious processing during interocular suppression? Front. Hum. Neurosci. 5, 167 (2011).
Stein, T. in Transitions between Consciousness and Unconsciousness (ed. Hesselmann, G.) 1–38 (Routledge, 2019).
Tsuchiya, N. & Koch, C. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101 (2005).
Axelrod, V., Bar, M. & Rees, G. Exploring the unconscious using faces. Trends Cogn. Sci. 19, P35–P45 (2015).
Abir, Y., Sklar, A. Y., Dotsch, R., Todorov, A. & Hassin, R. R. The determinants of consciousness of human faces. Nat. Hum. Behav. 2, 194–199 (2018).
Stewart, L. H. et al. Unconscious evaluation of faces on social dimensions. J. Exp. Psychol. Gen. 141, 715–727 (2012).
Schmack, K., Burk, J., Haynes, J. D. & Sterzer, P. Predicting subjective affective salience from cortical responses to invisible object stimuli. Cereb. Cortex 26, 3453–3460 (2016).
Gayet, S., Paffen, C. L. E., Belopolsky, A. V., Theeuwes, J. & Van der Stigchel, S. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition 149, 77–83 (2016).
Yang, E., Zald, D. H. & Blake, R. Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion 7, 882–886 (2007).
Wang, L., Weng, X. & He, S. Perceptual grouping without awareness: superiority of Kanizsa triangle in breaking interocular suppression. PLoS ONE 7, e40106 (2012).
Moors, P., Wagemans, J. & De-Wit, L. Causal events enter awareness faster than non-causal events. PeerJ 2017, e2932 (2017).
Hung, S. M., Styles, S. J. & Hsieh, P. J. Can a word sound like a shape before you have seen it? Sound–shape mapping prior to conscious awareness. Psychol. Sci. 28, 263–275 (2017).
Stein, T., Kaiser, D. & Peelen, M. V. Interobject grouping facilitates visual awareness. J. Vis. 15, 10 (2015).
Alsius, A. & Munhall, K. G. Detection of audiovisual speech correspondences without visual awareness. Psychol. Sci. 24, 423–431 (2013).
Tan, J. S. & Yeh, S. L. Audiovisual integration facilitates unconscious visual scene processing. J. Exp. Psychol. Hum. Percept. Perform. 41, 1325–1335 (2015).
Zhou, W., Jiang, Y., He, S. & Chen, D. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 20, 1356–1358 (2010).
Zhang, P., Jiang, Y. & He, S. Voluntary attention modulates processing of eye-specific visual information. Psychol. Sci. 23, 254–260 (2012).
Stein, T. & Peelen, M. V. Content-specific expectations enhance stimulus detectability by increasing perceptual sensitivity. J. Exp. Psychol. Gen. 144, 1089–1104 (2015).
Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. F. & Seth, A. K. Expectations accelerate entry of visual stimuli into awareness. J. Vis. 15, 13 (2015).
Gayet, S., Paffen, C. L. E. & Van der Stigchel, S. Information matching the content of visual working memory is prioritized for conscious access. Psychol. Sci. 24, 2472–2480 (2013).
Pan, Y., Lin, B., Zhao, Y. & Soto, D. Working memory biasing of visual perception without awareness. Atten. Percept. Psychophys. 76, 2051–2062 (2014).
Hung, S. M. & Hsieh, P. J. Syntactic processing in the absence of awareness and semantics. J. Exp. Psychol. Hum. Percept. Perform. 41, 1376–1384 (2015).
Yang, Y. H. & Yeh, S. L. Accessing the meaning of invisible words. Conscious. Cogn. 20, 223–233 (2011).
Costello, P., Jiang, Y., Baartman, B., McGlennen, K. & He, S. Semantic and subword priming during binocular suppression. Conscious. Cogn. 18, 375–382 (2009).
Lupyan, G. & Ward, E. J. Language can boost otherwise unseen objects into visual awareness. Proc. Natl Acad. Sci. U. S. A. 110, 14196–14201 (2013).
Ostarek, M. & Huettig, F. Spoken words can make the invisible visible–testing the involvement of low-level visual representations in spoken word processing. J. Exp. Psychol. Hum. Percept. Perform. 43, 499–508 (2017).
Sklar, A. Y. et al. Reading and doing arithmetic nonconsciously. Proc. Natl Acad. Sci. U. S. A. 109, 19614–19619 (2012).
Stein, T., Sterzer, P. & Peelen, M. V. Privileged detection of conspecifics: evidence from inversion effects during continuous flash suppression. Cognition 125, 64–79 (2012).
Zhou, G., Zhang, L., Liu, J., Yang, J. & Qu, Z. Specificity of face processing without awareness. Conscious. Cogn. 19, 408–412 (2010).
Sterzer, P., Stein, T., Ludwig, K., Rothkirch, M. & Hesselmann, G. Neural processing of visual information under interocular suppression: a critical review. Front. Psychol. 5, 453 (2014).
Sklar, A. Y., Deouell, L. Y. & Hassin, R. R. Integration despite fractionation: continuous flash suppression. Trends Cogn. Sci. 22, 956–957 (2018).
Moors, P., Hesselmann, G., Wagemans, J. & van Ee, R. Continuous flash suppression: stimulus fractionation rather than integration. Trends Cogn. Sci. 21, 719–721 (2017).
Moors, P. et al. Three criteria for evaluating high-level processing in continuous flash suppression. Trends Cogn. Sci. 23, 267–269 (2019).
Sterzer, P., Jalkanen, L. & Rees, G. Electromagnetic responses to invisible face stimuli during binocular suppression. Neuroimage 46, 803–808 (2009).
Suzuki, M. & Noguchi, Y. Reversal of the face-inversion effect in N170 under unconscious visual processing. Neuropsychologia 51, 400–409 (2013).
Schlossmacher, I., Junghöfer, M., Straube, T. & Bruchmann, M. No differential effects to facial expressions under continuous flash suppression: an event-related potentials study. NeuroImage 163, 276–285 (2017).
Moradi, F., Koch, C. & Shimojo, S. Face adaptation depends on seeing the face. Neuron 45, 169–175 (2005).
Amihai, I., Deouell, L. & Bentin, S. Conscious awareness is necessary for processing race and gender information from faces. Conscious. Cogn. 20, 269–279 (2011).
Stein, T. & Sterzer, P. High-level face shape adaptation depends on visual awareness: evidence from continuous flash suppression. J. Vis. 11, 5 (2011).
Nieuwenhuis, S. & de Kleijn, R. Consciousness of targets during the attentional blink: a gradual or all-or-none dimension? Atten. Percept. Psychophys. 73, 364–373 (2011).
Overgaard, M., Rote, J., Mouridsen, K. & Ramsøy, T. Z. Is conscious perception gradual or dichotomous? A comparison of report methodologies during a visual task. Conscious. Cogn. 15, 700–708 (2006).
Gayet, S., van Maanen, L., Heilbron, M., Paffen, C. L. E. & Van der Stigchel, S. Visual input that matches the content of visual working memory requires less (not faster) evidence sampling to reach conscious access. J. Vis. 16, 26 (2016).
Shapiro, K. L., Arnell, K. M. & Raymond, J. E. The attentional blink. Trends Cogn. Sci. 1, 291–296 (1997).
Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J. & Sergent, C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 204–211 (2006).
Breitmeyer, B. G. Psychophysical ‘blinding’ methods reveal a functional hierarchy of unconscious visual processing. Conscious. Cogn. 35, 234–250 (2015).
Stein, T., Peelen, M. V. & Sterzer, P. Adults’ awareness of faces follows newborns’ looking preferences. PLoS ONE 6, e29361 (2011).
Schmidt, T. & Vorberg, D. Criteria for unconscious cognition: three types of dissociation. Percept. Psychophys. 68, 489–504 (2006).
Reingold, E. M. & Merikle, P. M. Using direct and indirect measures to study perception without awareness. Percept. Psychophys. 44, 563–575 (1988).
Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T. & Schwarzbach, J. Different time courses for visual perception and action priming. Proc. Natl Acad. Sci. U. S. A. 100, 6275–6280 (2003).
Schmidt, T. The finger in flight: real-time motor control by visually masked color stimuli. Psychol. Sci. 13, 112–118 (2002).
Ludwig, K., Sterzer, P., Kathmann, N., Franz, V. H. & Hesselmann, G. Learning to detect but not to grasp suppressed visual stimuli. Neuropsychologia 51, 2930–2938 (2013).
Mastropasqua, T., Tse, P. U. & Turatto, M. Learning of monocular information facilitates breakthrough to awareness during interocular suppression. Atten. Percept. Psychophys. 77, 790–803 (2015).
Gayet, S. & Stein, T. Between-subject variability in the breaking continuous flash suppression paradigm: potential causes, consequences, and solutions. Front. Psychol. 8, 437 (2017).
Paffen, C. L. E., Gayet, S., Heilbron, M. & Van der Stigchel, S. Attention-based perceptual learning does not affect access to awareness. J. Vis. 18, 1–16 (2018).
Ramsøy, T. Z. & Overgaard, M. Introspection and subliminal perception. Phenomenol. Cogn. Sci. 3, 1–23 (2004).
Franz, V. H. & von Luxburg, U. No evidence for unconscious lie detection: a significant difference does not imply accurate classification. Psychol. Sci. 26, 1646–1648 (2015).
Battistoni, E., Stein, T. & Peelen, M. V. Preparatory attention in visual cortex. Ann. N. Y. Acad. Sci. 1396, 92–107 (2017).
Gayet, S. et al. No evidence for mnemonic modulation of interocularly suppressed visual input. Neuroimage 215, 116801 (2020).
Fahrenfort, J. J. et al. Neuronal integration in visual cortex elevates face category tuning to conscious face perception. Proc. Natl Acad. Sci. U. S. A. 109, 21504–21509 (2012).
Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).
Fahrenfort, J. J., Scholte, H. S. & Lamme, V. A. F. Masking disrupts reentrant processing in human visual cortex. J. Cogn. Neurosci. 19, 1488–1497 (2007).
Yuval-Greenberg, S. & Heeger, D. J. Continuous flash suppression modulates cortical activity in early visual cortex. J. Neurosci. 33, 9635–9643 (2013).
Crouzet, S. M., Kirchner, H. & Thorpe, S. J. Fast saccades toward faces: face detection in just 100 ms. J. Vis. 10, 16 (2010).
Fahrenfort, J. J., Van Leeuwen, J., Olivers, C. N. L. & Hogendoorn, H. Perceptual integration without conscious access. Proc. Natl Acad. Sci. U. S. A. 114, 3744–3749 (2017).
Moors, P., Boelens, D., van Overwalle, J. & Wagemans, J. Scene integration without awareness: no conclusive evidence for processing scene congruency during continuous flash suppression. Psychol. Sci. 27, 945–956 (2016).
Stein, T., Reeder, R. R. & Peelen, M. V. Privileged access to awareness for faces and objects of expertise. J. Exp. Psychol. Hum. Percept. Perform. 42, 788–798 (2016).
Kaiser, D., Quek, G. L., Cichy, R. M. & Peelen, M. V. Object vision in a structured world. Trends Cogn. Sci. 23, 672–685 (2019).
Lamme, V. A. F. Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12–18 (2003).
de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).
Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).
Kouider, S., de Gardelle, V., Sackur, J. & Dupoux, E. How rich is consciousness? The partial awareness hypothesis. Trends Cogn. Sci. 14, 301–307 (2010).
Cohen, M. A., Cavanagh, P., Chun, M. M. & Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 16, 411–417 (2012).
Bahrami, B., Lavie, N. & Rees, G. Attentional load modulates responses of human primary visual cortex to invisible stimuli. Curr. Biol. 17, 509–513 (2007).
Van Boxtel, J. J. A., Tsuchiya, N. & Koch, C. Opposing effects of attention and consciousness on afterimages. Proc. Natl Acad. Sci. U. S. A. 107, 8883–8888 (2010).
Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Unconscious orientation processing depends on perceptual load. J. Vis. 8, 12 (2008).
Naccache, L., Blandin, E. & Dehaene, S. Unconscious masked priming depends on temporal attention. Psychol. Sci. 13, 416–424 (2002).
Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Spatial attention can modulate unconscious orientation processing. Perception 37, 1520–1528 (2008).
Wyart, V. & Tallon-Baudry, C. Neural dissociation between visual awareness and spatial attention. J. Neurosci. 28, 2667–2679 (2008).
Kanai, R., Tsuchiya, N. & Verstraten, F. A. J. The scope and limits of top-down attention in unconscious visual processing. Curr. Biol. 16, 2332–2336 (2006).
Watanabe, M. et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science 334, 829–831 (2011).
Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).
Bansal, A. K. et al. Neural dynamics underlying target detection in the human brain. J. Neurosci. 34, 3042–3055 (2014).
Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).
Graziano, M. S. A. & Webb, T. W. The attention schema theory: a mechanistic account of subjective awareness. Front. Psychol. 6, 500 (2015).
Peters, M. A. K. & Lau, H. Human observers have optimal introspective access to perceptual processes even for visually masked stimuli. Elife 4, e09651 (2015).
Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S. & Shanks, D. R. Unconscious or underpowered? Probabilistic cuing of visual attention. J. Exp. Psychol. Gen. 149, 160–181 (2020).
Vadillo, M. A., Konstantinidis, E. & Shanks, D. R. Underpowered samples, false negatives, and unconscious learning. Psychon. Bull. Rev. 23, 87–102 (2016).
Shanks, D. R. Regressive research: the pitfalls of post hoc data selection in the study of unconscious mental processes. Psychon. Bull. Rev. 24, 752–775 (2017).
Dienes, Z. in Behavioral Methods in Consciousness Research (ed. Overgaard, M.) 199–220 (Oxford Academic, 2015).
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Lundqvist, D., Flykt, A., Öhman, A. The Karolinska directed emotional faces - KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section. Karolinska Institutet ISBN 91-630-7164-9.
Kelley, K. MBESS, version 4.0.0 and higher (2017).
Kelley, K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J. Stat. Softw. https://doi.org/10.18637/jss.v020.i08 (2007).
Miles, W. R. Ocular dominance in human adults. J. Gen. Psychol. 3, 412–430 (1930).
Rabovsky, M., Stein, T. & Abdel Rahman, R. Access to awareness for faces during continuous flash suppression is not modulated by affective knowledge. PLoS ONE 11, e0150931 (2016).
Stein, T., Siebold, A. & Van Zoest, W. Testing the idea of privileged awareness of self-relevant information. J. Exp. Psychol. Hum. Percept. Perform. 42, 303–307 (2016).
Yang, E., Blake, R. & McDonald, J. E. A new interocular suppression technique for measuring sensory eye dominance. Investig. Ophthalmol. Vis. Sci. 51, 588–593 (2010).
Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Lawrence Erlbaum, 2005).
JASP Team. J ASP (version 0.12.2) (2020).
Acknowledgements
The authors thank S. Gayet and Y. Pinto for suggestions on earlier versions of this manuscript, and D. Awad, T. Ciorli, C. Laurent, M. Leitjens, C. Riddell, F. Roelofs and M. Wiggers for help with data collection. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725970). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
T.S. and M.V.P. designed the study, interpreted the data and drafted the paper. T.S. analysed the data.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Human Behaviour thanks Anthony Atkinson, Stefan Van der Stigchel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The editors also thank Sheng He for providing signed comments.
Primary Handling Editor: Marike Schiffer.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Subject-level display of localization thresholds in Experiment 1.
Localization thresholds for low- and high-contrast upright and inverted faces from the four detection paradigms. Note the different scales. Every circles represents an individual participant.
Extended Data Fig. 2 Subject-level display of localization accuracy in Experiment 2.
Localization for accuracy for upright and inverted faces for the three different detection paradigms and presentation times. Every circles represents an individual participant.
Extended Data Fig. 3 Subject-level display of localization, detection and discrimination sensitivity in Experiment 3.
a, Localization sensitivity and (b) detection sensitivity for upright and inverted faces for the five different presentation times (values in square brackets refer to an additional blank screen of 8 ms between the face stimulus and the mask). For comparison, both panels also show discrimination sensitivity. c, Mean localization accuracy for upright and inverted faces shown for trials with correct (left panel) and incorrect (right panel) discrimination between upright and inverted faces. Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.
Extended Data Fig. 4 Subject-level display of localization and discrimination sensitivity in Experiment 4.
Localization and discrimination sensitivity for the four different presentation times in (a) Experiment 4a and (b) Experiment 4b. (c) Mean localization accuracy for validly and invalidly cued objects for trials with correct (left panel) and incorrect (right panel) discrimination between valid and invalid cues (collapsed across Experiment 4a and 4b). Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.
Supplementary information
Supplementary Information
Supplementary Discussion, Supplementary Fig. 1, Supplementary Results and Supplementary Tables 1 and 2.
Rights and permissions
About this article
Cite this article
Stein, T., Peelen, M.V. Dissociating conscious and unconscious influences on visual detection effects. Nat Hum Behav 5, 612–624 (2021). https://doi.org/10.1038/s41562-020-01004-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-020-01004-5
This article is cited by
-
Holistic processing of gaze cues during interocular suppression
Scientific Reports (2022)
-
Gaze direction and face orientation modulate perceptual sensitivity to faces under interocular suppression
Scientific Reports (2022)
-
Semantic and spatial congruency mould audiovisual integration depending on perceptual awareness
Scientific Reports (2021)