Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissociating conscious and unconscious influences on visual detection effects

Subjects

Abstract

The scope of unconscious processing is highly debated, with recent studies showing that even high-level functions such as perceptual integration and category-based attention occur unconsciously. For example, upright faces that are suppressed from awareness through interocular suppression break into awareness more quickly than inverted faces. Similarly, verbal object cues boost otherwise invisible objects into awareness. Here, we replicate these findings, but find that they reflect a general difference in detectability not specific to interocular suppression. To dissociate conscious and unconscious influences on visual detection effects, we use an additional discrimination task to rule out conscious processes as a cause for these differences. Results from this detection–discrimination dissociation paradigm reveal that, while face orientation is processed unconsciously, category-based attention requires awareness. These findings provide insights into the function of conscious perception and offer an experimental approach for mapping out the scope and limits of unconscious processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experiment 1, comparing b-CFS with three other detection paradigms.
Fig. 2: Experiment 2, comparing b-CFS with two other detection paradigms.
Fig. 3: Dissociating conscious and unconscious contributions to detection effects.
Fig. 4: Experiment 3, testing unconscious processing of face orientation with the detection–discrimination dissociation approach.
Fig. 5: Experiment 4, testing the influence of category-based attention on conscious versus unconscious processing.

Data availability

Data from individual participants that formed the basis of the findings of this study are available at https://osf.io/sn8cr/.

Code availability

Custom code that was used to extract individual participant results is available at https://osf.io/sn8cr/. Additional code is available from the corresponding author upon request.

References

  1. 1.

    Cohen, M. A. & Dennett, D. C. Consciousness cannot be separated from function. Trends Cogn. Sci. 15, 358–364 (2011).

    PubMed  Google Scholar 

  2. 2.

    Baars, B. J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005).

    PubMed  Google Scholar 

  3. 3.

    Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kanai, R. et al. Information generation as a functional basis of consciousness. Neurosci. Conscious. 2019, niz016 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988).

  6. 6.

    Kanwisher, N. Neural events and perceptual awareness. Cognition 79, 89–113 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hassin, R. R. Yes it can: on the functional abilities of the human unconscious. Perspect. Psychol. Sci. 8, 195–207 (2013).

    PubMed  Google Scholar 

  8. 8.

    Mudrik, L., Faivre, N. & Koch, C. Information integration without awareness. Trends Cogn. Sci. 18, 488–496 (2014).

    PubMed  Google Scholar 

  9. 9.

    Koch, C. & Tsuchiya, N. Attention and consciousness: two distinct brain processes. Trends Cogn. Sci. 11, 16–22 (2007).

    PubMed  Google Scholar 

  10. 10.

    Soto, D. & Silvanto, J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn. Sci. 18, 520–525 (2014).

    PubMed  Google Scholar 

  11. 11.

    Van Gaal, S. & Lamme, V. A. F. Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist 18, 287–301 (2012).

    PubMed  Google Scholar 

  12. 12.

    Hesselmann, G. & Moors, P. Definitely maybe: can unconscious processes perform the same functions as conscious processes? Front. Psychol. 6, 584 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schmidt, T. Invisible stimuli, implicit thresholds: why invisibility judgments cannot be interpreted in isolation. Adv. Cogn. Psychol. 11, 31–41 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Newell, B. R. & Shanks, D. R. Unconscious influences on decision making: a critical review. Behav. Brain Sci. 37, 1–19 (2014).

    PubMed  Google Scholar 

  15. 15.

    Holender, D. Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: a survey and appraisal. Behav. Brain Sci. 9, 1–23 (1986).

    Google Scholar 

  16. 16.

    Gayet, S., Van Der Stigchel, S. & Paffen, C. L. E. Breaking continuous flash suppression: competing for consciousness on the pre-semantic battlefield. Front. Psychol. 5, 460 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Yang, E., Brascamp, J., Kang, M. S. & Blake, R. On the use of continuous flash suppression for the study of visual processing outside of awareness. Front. Psychol. 5, 724 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jiang, Y., Costello, P. & He, S. Processing of invisible stimuli: advantage of upright faces and recognizable words in overcoming interocular suppression. Psychol. Sci. 18, 349–355 (2007).

    PubMed  Google Scholar 

  19. 19.

    Stein, T. & Sterzer, P. Unconscious processing under interocular suppression: getting the right measure. Front. Psychol. 5, 387 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Stein, T., Hebart, M. N. & Sterzer, P. Breaking continuous flash suppression: a new measure of unconscious processing during interocular suppression? Front. Hum. Neurosci. 5, 167 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Stein, T. in Transitions between Consciousness and Unconsciousness (ed. Hesselmann, G.) 1–38 (Routledge, 2019).

  22. 22.

    Tsuchiya, N. & Koch, C. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101 (2005).

    CAS  PubMed  Google Scholar 

  23. 23.

    Axelrod, V., Bar, M. & Rees, G. Exploring the unconscious using faces. Trends Cogn. Sci. 19, P35–P45 (2015).

    Google Scholar 

  24. 24.

    Abir, Y., Sklar, A. Y., Dotsch, R., Todorov, A. & Hassin, R. R. The determinants of consciousness of human faces. Nat. Hum. Behav. 2, 194–199 (2018).

    Google Scholar 

  25. 25.

    Stewart, L. H. et al. Unconscious evaluation of faces on social dimensions. J. Exp. Psychol. Gen. 141, 715–727 (2012).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Schmack, K., Burk, J., Haynes, J. D. & Sterzer, P. Predicting subjective affective salience from cortical responses to invisible object stimuli. Cereb. Cortex 26, 3453–3460 (2016).

    PubMed  Google Scholar 

  27. 27.

    Gayet, S., Paffen, C. L. E., Belopolsky, A. V., Theeuwes, J. & Van der Stigchel, S. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition 149, 77–83 (2016).

    PubMed  Google Scholar 

  28. 28.

    Yang, E., Zald, D. H. & Blake, R. Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion 7, 882–886 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wang, L., Weng, X. & He, S. Perceptual grouping without awareness: superiority of Kanizsa triangle in breaking interocular suppression. PLoS ONE 7, e40106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Moors, P., Wagemans, J. & De-Wit, L. Causal events enter awareness faster than non-causal events. PeerJ 2017, e2932 (2017).

    Google Scholar 

  31. 31.

    Hung, S. M., Styles, S. J. & Hsieh, P. J. Can a word sound like a shape before you have seen it? Sound–shape mapping prior to conscious awareness. Psychol. Sci. 28, 263–275 (2017).

    PubMed  Google Scholar 

  32. 32.

    Stein, T., Kaiser, D. & Peelen, M. V. Interobject grouping facilitates visual awareness. J. Vis. 15, 10 (2015).

    PubMed  Google Scholar 

  33. 33.

    Alsius, A. & Munhall, K. G. Detection of audiovisual speech correspondences without visual awareness. Psychol. Sci. 24, 423–431 (2013).

    PubMed  Google Scholar 

  34. 34.

    Tan, J. S. & Yeh, S. L. Audiovisual integration facilitates unconscious visual scene processing. J. Exp. Psychol. Hum. Percept. Perform. 41, 1325–1335 (2015).

    PubMed  Google Scholar 

  35. 35.

    Zhou, W., Jiang, Y., He, S. & Chen, D. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 20, 1356–1358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zhang, P., Jiang, Y. & He, S. Voluntary attention modulates processing of eye-specific visual information. Psychol. Sci. 23, 254–260 (2012).

    PubMed  Google Scholar 

  37. 37.

    Stein, T. & Peelen, M. V. Content-specific expectations enhance stimulus detectability by increasing perceptual sensitivity. J. Exp. Psychol. Gen. 144, 1089–1104 (2015).

    PubMed  Google Scholar 

  38. 38.

    Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. F. & Seth, A. K. Expectations accelerate entry of visual stimuli into awareness. J. Vis. 15, 13 (2015).

    PubMed  Google Scholar 

  39. 39.

    Gayet, S., Paffen, C. L. E. & Van der Stigchel, S. Information matching the content of visual working memory is prioritized for conscious access. Psychol. Sci. 24, 2472–2480 (2013).

    PubMed  Google Scholar 

  40. 40.

    Pan, Y., Lin, B., Zhao, Y. & Soto, D. Working memory biasing of visual perception without awareness. Atten. Percept. Psychophys. 76, 2051–2062 (2014).

    PubMed  Google Scholar 

  41. 41.

    Hung, S. M. & Hsieh, P. J. Syntactic processing in the absence of awareness and semantics. J. Exp. Psychol. Hum. Percept. Perform. 41, 1376–1384 (2015).

    PubMed  Google Scholar 

  42. 42.

    Yang, Y. H. & Yeh, S. L. Accessing the meaning of invisible words. Conscious. Cogn. 20, 223–233 (2011).

    PubMed  Google Scholar 

  43. 43.

    Costello, P., Jiang, Y., Baartman, B., McGlennen, K. & He, S. Semantic and subword priming during binocular suppression. Conscious. Cogn. 18, 375–382 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lupyan, G. & Ward, E. J. Language can boost otherwise unseen objects into visual awareness. Proc. Natl Acad. Sci. U. S. A. 110, 14196–14201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ostarek, M. & Huettig, F. Spoken words can make the invisible visible–testing the involvement of low-level visual representations in spoken word processing. J. Exp. Psychol. Hum. Percept. Perform. 43, 499–508 (2017).

    PubMed  Google Scholar 

  46. 46.

    Sklar, A. Y. et al. Reading and doing arithmetic nonconsciously. Proc. Natl Acad. Sci. U. S. A. 109, 19614–19619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Stein, T., Sterzer, P. & Peelen, M. V. Privileged detection of conspecifics: evidence from inversion effects during continuous flash suppression. Cognition 125, 64–79 (2012).

    PubMed  Google Scholar 

  48. 48.

    Zhou, G., Zhang, L., Liu, J., Yang, J. & Qu, Z. Specificity of face processing without awareness. Conscious. Cogn. 19, 408–412 (2010).

    PubMed  Google Scholar 

  49. 49.

    Sterzer, P., Stein, T., Ludwig, K., Rothkirch, M. & Hesselmann, G. Neural processing of visual information under interocular suppression: a critical review. Front. Psychol. 5, 453 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sklar, A. Y., Deouell, L. Y. & Hassin, R. R. Integration despite fractionation: continuous flash suppression. Trends Cogn. Sci. 22, 956–957 (2018).

    PubMed  Google Scholar 

  51. 51.

    Moors, P., Hesselmann, G., Wagemans, J. & van Ee, R. Continuous flash suppression: stimulus fractionation rather than integration. Trends Cogn. Sci. 21, 719–721 (2017).

    PubMed  Google Scholar 

  52. 52.

    Moors, P. et al. Three criteria for evaluating high-level processing in continuous flash suppression. Trends Cogn. Sci. 23, 267–269 (2019).

    PubMed  Google Scholar 

  53. 53.

    Sterzer, P., Jalkanen, L. & Rees, G. Electromagnetic responses to invisible face stimuli during binocular suppression. Neuroimage 46, 803–808 (2009).

    PubMed  Google Scholar 

  54. 54.

    Suzuki, M. & Noguchi, Y. Reversal of the face-inversion effect in N170 under unconscious visual processing. Neuropsychologia 51, 400–409 (2013).

    PubMed  Google Scholar 

  55. 55.

    Schlossmacher, I., Junghöfer, M., Straube, T. & Bruchmann, M. No differential effects to facial expressions under continuous flash suppression: an event-related potentials study. NeuroImage 163, 276–285 (2017).

    PubMed  Google Scholar 

  56. 56.

    Moradi, F., Koch, C. & Shimojo, S. Face adaptation depends on seeing the face. Neuron 45, 169–175 (2005).

    CAS  PubMed  Google Scholar 

  57. 57.

    Amihai, I., Deouell, L. & Bentin, S. Conscious awareness is necessary for processing race and gender information from faces. Conscious. Cogn. 20, 269–279 (2011).

    PubMed  Google Scholar 

  58. 58.

    Stein, T. & Sterzer, P. High-level face shape adaptation depends on visual awareness: evidence from continuous flash suppression. J. Vis. 11, 5 (2011).

    PubMed  Google Scholar 

  59. 59.

    Nieuwenhuis, S. & de Kleijn, R. Consciousness of targets during the attentional blink: a gradual or all-or-none dimension? Atten. Percept. Psychophys. 73, 364–373 (2011).

    PubMed  Google Scholar 

  60. 60.

    Overgaard, M., Rote, J., Mouridsen, K. & Ramsøy, T. Z. Is conscious perception gradual or dichotomous? A comparison of report methodologies during a visual task. Conscious. Cogn. 15, 700–708 (2006).

    PubMed  Google Scholar 

  61. 61.

    Gayet, S., van Maanen, L., Heilbron, M., Paffen, C. L. E. & Van der Stigchel, S. Visual input that matches the content of visual working memory requires less (not faster) evidence sampling to reach conscious access. J. Vis. 16, 26 (2016).

    PubMed  Google Scholar 

  62. 62.

    Shapiro, K. L., Arnell, K. M. & Raymond, J. E. The attentional blink. Trends Cogn. Sci. 1, 291–296 (1997).

    CAS  PubMed  Google Scholar 

  63. 63.

    Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J. & Sergent, C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 204–211 (2006).

    PubMed  Google Scholar 

  64. 64.

    Breitmeyer, B. G. Psychophysical ‘blinding’ methods reveal a functional hierarchy of unconscious visual processing. Conscious. Cogn. 35, 234–250 (2015).

    PubMed  Google Scholar 

  65. 65.

    Stein, T., Peelen, M. V. & Sterzer, P. Adults’ awareness of faces follows newborns’ looking preferences. PLoS ONE 6, e29361 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Schmidt, T. & Vorberg, D. Criteria for unconscious cognition: three types of dissociation. Percept. Psychophys. 68, 489–504 (2006).

    PubMed  Google Scholar 

  67. 67.

    Reingold, E. M. & Merikle, P. M. Using direct and indirect measures to study perception without awareness. Percept. Psychophys. 44, 563–575 (1988).

    CAS  PubMed  Google Scholar 

  68. 68.

    Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T. & Schwarzbach, J. Different time courses for visual perception and action priming. Proc. Natl Acad. Sci. U. S. A. 100, 6275–6280 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Schmidt, T. The finger in flight: real-time motor control by visually masked color stimuli. Psychol. Sci. 13, 112–118 (2002).

    PubMed  Google Scholar 

  70. 70.

    Ludwig, K., Sterzer, P., Kathmann, N., Franz, V. H. & Hesselmann, G. Learning to detect but not to grasp suppressed visual stimuli. Neuropsychologia 51, 2930–2938 (2013).

    CAS  PubMed  Google Scholar 

  71. 71.

    Mastropasqua, T., Tse, P. U. & Turatto, M. Learning of monocular information facilitates breakthrough to awareness during interocular suppression. Atten. Percept. Psychophys. 77, 790–803 (2015).

    PubMed  Google Scholar 

  72. 72.

    Gayet, S. & Stein, T. Between-subject variability in the breaking continuous flash suppression paradigm: potential causes, consequences, and solutions. Front. Psychol. 8, 437 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Paffen, C. L. E., Gayet, S., Heilbron, M. & Van der Stigchel, S. Attention-based perceptual learning does not affect access to awareness. J. Vis. 18, 1–16 (2018).

    Google Scholar 

  74. 74.

    Ramsøy, T. Z. & Overgaard, M. Introspection and subliminal perception. Phenomenol. Cogn. Sci. 3, 1–23 (2004).

    Google Scholar 

  75. 75.

    Franz, V. H. & von Luxburg, U. No evidence for unconscious lie detection: a significant difference does not imply accurate classification. Psychol. Sci. 26, 1646–1648 (2015).

    PubMed  Google Scholar 

  76. 76.

    Battistoni, E., Stein, T. & Peelen, M. V. Preparatory attention in visual cortex. Ann. N. Y. Acad. Sci. 1396, 92–107 (2017).

    PubMed  Google Scholar 

  77. 77.

    Gayet, S. et al. No evidence for mnemonic modulation of interocularly suppressed visual input. Neuroimage 215, 116801 (2020).

    PubMed  Google Scholar 

  78. 78.

    Fahrenfort, J. J. et al. Neuronal integration in visual cortex elevates face category tuning to conscious face perception. Proc. Natl Acad. Sci. U. S. A. 109, 21504–21509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    CAS  PubMed  Google Scholar 

  80. 80.

    Fahrenfort, J. J., Scholte, H. S. & Lamme, V. A. F. Masking disrupts reentrant processing in human visual cortex. J. Cogn. Neurosci. 19, 1488–1497 (2007).

    CAS  PubMed  Google Scholar 

  81. 81.

    Yuval-Greenberg, S. & Heeger, D. J. Continuous flash suppression modulates cortical activity in early visual cortex. J. Neurosci. 33, 9635–9643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Crouzet, S. M., Kirchner, H. & Thorpe, S. J. Fast saccades toward faces: face detection in just 100 ms. J. Vis. 10, 16 (2010).

    PubMed  Google Scholar 

  83. 83.

    Fahrenfort, J. J., Van Leeuwen, J., Olivers, C. N. L. & Hogendoorn, H. Perceptual integration without conscious access. Proc. Natl Acad. Sci. U. S. A. 114, 3744–3749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Moors, P., Boelens, D., van Overwalle, J. & Wagemans, J. Scene integration without awareness: no conclusive evidence for processing scene congruency during continuous flash suppression. Psychol. Sci. 27, 945–956 (2016).

    PubMed  Google Scholar 

  85. 85.

    Stein, T., Reeder, R. R. & Peelen, M. V. Privileged access to awareness for faces and objects of expertise. J. Exp. Psychol. Hum. Percept. Perform. 42, 788–798 (2016).

    PubMed  Google Scholar 

  86. 86.

    Kaiser, D., Quek, G. L., Cichy, R. M. & Peelen, M. V. Object vision in a structured world. Trends Cogn. Sci. 23, 672–685 (2019).

    PubMed  Google Scholar 

  87. 87.

    Lamme, V. A. F. Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12–18 (2003).

    PubMed  Google Scholar 

  88. 88.

    de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).

    PubMed  Google Scholar 

  89. 89.

    Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    PubMed  Google Scholar 

  90. 90.

    Kouider, S., de Gardelle, V., Sackur, J. & Dupoux, E. How rich is consciousness? The partial awareness hypothesis. Trends Cogn. Sci. 14, 301–307 (2010).

    PubMed  Google Scholar 

  91. 91.

    Cohen, M. A., Cavanagh, P., Chun, M. M. & Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 16, 411–417 (2012).

    PubMed  Google Scholar 

  92. 92.

    Bahrami, B., Lavie, N. & Rees, G. Attentional load modulates responses of human primary visual cortex to invisible stimuli. Curr. Biol. 17, 509–513 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Van Boxtel, J. J. A., Tsuchiya, N. & Koch, C. Opposing effects of attention and consciousness on afterimages. Proc. Natl Acad. Sci. U. S. A. 107, 8883–8888 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Unconscious orientation processing depends on perceptual load. J. Vis. 8, 12 (2008).

    CAS  PubMed  Google Scholar 

  95. 95.

    Naccache, L., Blandin, E. & Dehaene, S. Unconscious masked priming depends on temporal attention. Psychol. Sci. 13, 416–424 (2002).

    PubMed  Google Scholar 

  96. 96.

    Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Spatial attention can modulate unconscious orientation processing. Perception 37, 1520–1528 (2008).

    PubMed  Google Scholar 

  97. 97.

    Wyart, V. & Tallon-Baudry, C. Neural dissociation between visual awareness and spatial attention. J. Neurosci. 28, 2667–2679 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Kanai, R., Tsuchiya, N. & Verstraten, F. A. J. The scope and limits of top-down attention in unconscious visual processing. Curr. Biol. 16, 2332–2336 (2006).

    CAS  PubMed  Google Scholar 

  99. 99.

    Watanabe, M. et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science 334, 829–831 (2011).

    CAS  PubMed  Google Scholar 

  100. 100.

    Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).

    CAS  PubMed  Google Scholar 

  101. 101.

    Bansal, A. K. et al. Neural dynamics underlying target detection in the human brain. J. Neurosci. 34, 3042–3055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  PubMed  Google Scholar 

  103. 103.

    Graziano, M. S. A. & Webb, T. W. The attention schema theory: a mechanistic account of subjective awareness. Front. Psychol. 6, 500 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Peters, M. A. K. & Lau, H. Human observers have optimal introspective access to perceptual processes even for visually masked stimuli. Elife 4, e09651 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S. & Shanks, D. R. Unconscious or underpowered? Probabilistic cuing of visual attention. J. Exp. Psychol. Gen. 149, 160–181 (2020).

    PubMed  Google Scholar 

  106. 106.

    Vadillo, M. A., Konstantinidis, E. & Shanks, D. R. Underpowered samples, false negatives, and unconscious learning. Psychon. Bull. Rev. 23, 87–102 (2016).

    PubMed  Google Scholar 

  107. 107.

    Shanks, D. R. Regressive research: the pitfalls of post hoc data selection in the study of unconscious mental processes. Psychon. Bull. Rev. 24, 752–775 (2017).

    PubMed  Google Scholar 

  108. 108.

    Dienes, Z. in Behavioral Methods in Consciousness Research (ed. Overgaard, M.) 199–220 (Oxford Academic, 2015).

  109. 109.

    Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  Google Scholar 

  110. 110.

    Lundqvist, D., Flykt, A., Öhman, A. The Karolinska directed emotional faces - KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section. Karolinska Institutet ISBN 91-630-7164-9.

  111. 111.

    Kelley, K. MBESS, version 4.0.0 and higher (2017).

  112. 112.

    Kelley, K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J. Stat. Softw. https://doi.org/10.18637/jss.v020.i08 (2007).

  113. 113.

    Miles, W. R. Ocular dominance in human adults. J. Gen. Psychol. 3, 412–430 (1930).

    Google Scholar 

  114. 114.

    Rabovsky, M., Stein, T. & Abdel Rahman, R. Access to awareness for faces during continuous flash suppression is not modulated by affective knowledge. PLoS ONE 11, e0150931 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Stein, T., Siebold, A. & Van Zoest, W. Testing the idea of privileged awareness of self-relevant information. J. Exp. Psychol. Hum. Percept. Perform. 42, 303–307 (2016).

    PubMed  Google Scholar 

  116. 116.

    Yang, E., Blake, R. & McDonald, J. E. A new interocular suppression technique for measuring sensory eye dominance. Investig. Ophthalmol. Vis. Sci. 51, 588–593 (2010).

    Google Scholar 

  117. 117.

    Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Lawrence Erlbaum, 2005).

  118. 118.

    JASP Team. J ASP (version 0.12.2) (2020).

Download references

Acknowledgements

The authors thank S. Gayet and Y. Pinto for suggestions on earlier versions of this manuscript, and D. Awad, T. Ciorli, C. Laurent, M. Leitjens, C. Riddell, F. Roelofs and M. Wiggers for help with data collection. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725970). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

T.S. and M.V.P. designed the study, interpreted the data and drafted the paper. T.S. analysed the data.

Corresponding author

Correspondence to Timo Stein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Anthony Atkinson, Stefan Van der Stigchel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The editors also thank Sheng He for providing signed comments.

Primary Handling Editor: Marike Schiffer.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Subject-level display of localization thresholds in Experiment 1.

Localization thresholds for low- and high-contrast upright and inverted faces from the four detection paradigms. Note the different scales. Every circles represents an individual participant.

Extended Data Fig. 2 Subject-level display of localization accuracy in Experiment 2.

Localization for accuracy for upright and inverted faces for the three different detection paradigms and presentation times. Every circles represents an individual participant.

Extended Data Fig. 3 Subject-level display of localization, detection and discrimination sensitivity in Experiment 3.

a, Localization sensitivity and (b) detection sensitivity for upright and inverted faces for the five different presentation times (values in square brackets refer to an additional blank screen of 8 ms between the face stimulus and the mask). For comparison, both panels also show discrimination sensitivity. c, Mean localization accuracy for upright and inverted faces shown for trials with correct (left panel) and incorrect (right panel) discrimination between upright and inverted faces. Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.

Extended Data Fig. 4 Subject-level display of localization and discrimination sensitivity in Experiment 4.

Localization and discrimination sensitivity for the four different presentation times in (a) Experiment 4a and (b) Experiment 4b. (c) Mean localization accuracy for validly and invalidly cued objects for trials with correct (left panel) and incorrect (right panel) discrimination between valid and invalid cues (collapsed across Experiment 4a and 4b). Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Fig. 1, Supplementary Results and Supplementary Tables 1 and 2.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stein, T., Peelen, M.V. Dissociating conscious and unconscious influences on visual detection effects. Nat Hum Behav 5, 612–624 (2021). https://doi.org/10.1038/s41562-020-01004-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing