Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Speaking rhythmically can shape hearing

Abstract

Evidence suggests that temporal predictions arising from the motor system can enhance auditory perception. However, in speech perception, we lack evidence of perception being modulated by production. Here we show a behavioural protocol that captures the existence of such auditory–motor interactions. Participants performed a syllable discrimination task immediately after producing periodic syllable sequences. Two speech rates were explored: a ‘natural’ (individually preferred) and a fixed ‘non-natural’ (2 Hz) rate. Using a decoding approach, we show that perceptual performance is modulated by the stimulus phase determined by a participant’s own motor rhythm. Remarkably, for ‘natural’ and ‘non-natural’ rates, this finding is restricted to a subgroup of the population with quantifiable auditory–motor coupling. The observed pattern is compatible with a neural model assuming a bidirectional interaction of auditory and speech motor cortices. Crucially, the model matches the experimental results only if it incorporates individual differences in the strength of the auditory–motor connection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental paradigm.
Fig. 2: Analysis pipeline.
Fig. 3: Speech production entrains speech perception in high synchronizers.
Fig. 4: Speech perception entrained visual perception in high and low synchronizers.
Fig. 5: Neural model compatible with the behavioural observations.

Data availability

The data that support this study are available from the corresponding authors upon request.

Code availability

Custom code that supports the findings of this study is available from the corresponding authors upon request.

References

  1. 1.

    Coull, J. T. A in Brain Mapping (ed. Toga, A. W.) 565–570 (Academic Press, 2015).

  2. 2.

    Merchant, H. & Yarrow, K. How the motor system both encodes and influences our sense of time. Time Percept. Action 8, 22–27 (2016).

    Google Scholar 

  3. 3.

    Morillon, B. & Baillet, S. Motor origin of temporal predictions in auditory attention. Proc. Natl Acad. Sci. USA 114, E8913 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Morillon, B., Schroeder, C. E. & Wyart, V. Motor contributions to the temporal precision of auditory attention. Nat. Commun. 5, 5255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H. & Lakatos, P. Dynamics of active sensing and perceptual selection. Cogn. Neurosci. 20, 172–176 (2010).

    CAS  Google Scholar 

  6. 6.

    Morillon, B., Hackett, T. A., Kajikawa, Y. & Schroeder, C. E. Predictive motor control of sensory dynamics in auditory active sensing. Curr. Opin. Neurobiol. 31, 230–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Davis, M. H. & Johnsrude, I. S. Hierarchical processing in spoken language comprehension. J. Neurosci. 23, 3423–3431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Devlin, J. T. & Aydelott, J. Speech perception: motoric contributions versus the motor theory. Curr. Biol. 19, R198–R200 (2009).

    CAS  PubMed  Google Scholar 

  9. 9.

    Scott, S. K., McGettigan, C. & Eisner, F. A little more conversation, a little less action–candidate roles for the motor cortex in speech perception. Nat. Rev. Neurosci. 10, 295–302 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wild, C. J. et al. Effortful listening: the processing of degraded speech depends critically on attention. J. Neurosci. 32, 14010–14021 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chen, J. L., Penhune, V. B. & Zatorre, R. J. Listening to musical rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854 (2008).

    PubMed  Google Scholar 

  12. 12.

    Fujioka, T., Trainor, L. J., Large, E. W. & Ross, B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32, 1791–1802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Grahn, J. A. & Rowe, J. B. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci. 29, 7540–7548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Besle, J. et al. Tuning of the human neocortex to the temporal dynamics of attended events. J. Neurosci. 31, 3176–3185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

    PubMed  Google Scholar 

  16. 16.

    Giraud, A.-L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Google Scholar 

  18. 18.

    Rimmele, J. M., Morillon, B., Poeppel, D. & Arnal, L. H. Proactive sensing of periodic and aperiodic auditory patterns. Trends Cogn. Sci. 22, 870–882 (2018).

    PubMed  Google Scholar 

  19. 19.

    Haegens, S. & Zion Golumbic, E. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2017.12.002 (2017).

    Article  PubMed  Google Scholar 

  20. 20.

    Tian, X. & Poeppel, D. Dynamics of self-monitoring and error detection in speech production: evidence from mental imagery and MEG. J. Cogn. Neurosci. 27, 352–364 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ding, N. et al. Temporal modulations in speech and music. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2017.02.011 (2017).

    Article  PubMed  Google Scholar 

  22. 22.

    Coupé, C., Oh, Y. M., Dediu, D. & Pellegrino, F. Different languages, similar encoding efficiency: comparable information rates across the human communicative niche. Sci. Adv. 5, eaaw2594 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Morillon, B., Arnal, L. H., Schroeder, C. E. & Keitel, A. Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception. Neurosci. Biobehav. Rev. 107, 136–142 (2019).

    PubMed  Google Scholar 

  24. 24.

    Keitel, A., Gross, J. & Kayser, C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLOS Biol. 16, e2004473 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Park, H., Ince, R. A. A., Schyns, P. G., Thut, G. & Gross, J. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Curr. Biol. 25, 1649–1653 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cason, N., Astesano, C. & Schon, D. Bridging music and speech rhythm: rhythmic priming and audio–motor training affect speech perception. Acta Psychol. (Amst.) 155, 43–50 (2015).

    Google Scholar 

  27. 27.

    Cason, N. & Schon, D. Rhythmic priming enhances the phonological processing of speech. Neuropsychologia 50, 2652–2658 (2012).

    PubMed  Google Scholar 

  28. 28.

    Falk, S., Lanzilotti, C. & Schon, D. Tuning neural phase entrainment to speech. J. Cogn. Neurosci. 29, 1378–1389 (2017).

    PubMed  Google Scholar 

  29. 29.

    Hickok, G., Farahbod, H. & Saberi, K. The rhythm of perception: entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychol. Sci. 26, 1006–1013 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kösem, A., Basirat, A., Azizi, L. & van Wassenhove, V. High-frequency neural activity predicts word parsing in ambiguous speech streams. J. Neurophysiol. 116, 2497 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sanabria, D. & Correa, Á. Electrophysiological evidence of temporal preparation driven by rhythms in audition. Biol. Psychol. 92, 98–105 (2013).

    PubMed  Google Scholar 

  32. 32.

    McPherson, T., Berger, D., Alagapan, S. & Fröhlich, F. Intrinsic rhythmicity predicts synchronization–continuation entrainment performance. Sci. Rep. 8, 11782 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Assaneo, M. F. et al. Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning. Nat. Neurosci. 22, 627–632 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Park, H., Thut, G. & Gross, J. Predictive entrainment of natural speech through two fronto-motor top-down channels. Lang. Cogn. Neurosci. 35, 739–751 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zalta, A., Petkoski, S. & Morillon, B. Natural rhythms of periodic temporal attention. Nat. Commun. 11, 1051 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Assaneo, M. F. & Poeppel, D. The coupling between auditory and motor cortices is rate-restricted: evidence for an intrinsic speech-motor rhythm. Sci. Adv. 4, eaao3842 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schönbrodt, F. D. & Wagenmakers, E.-J. Bayes factor design analysis: planning for compelling evidence. Psychon. Bull. Rev. 25, 128–142 (2018).

    PubMed  Google Scholar 

  38. 38.

    Nobre, A. C., Correa, A. & Coull, J. T. The hazards of time. Sens. Syst. 17, 465–470 (2007).

    CAS  Google Scholar 

  39. 39.

    Thomas, E. A. C. Reaction-time studies: the anticipation and interaction of responses. Br. J. Math. Stat. Psychol. 20, 1–29 (1967).

    CAS  PubMed  Google Scholar 

  40. 40.

    Grabenhorst, M., Michalareas, G., Maloney, L. T. & Poeppel, D. The anticipation of events in time. Nat. Commun. 10, 5802 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yeung, M. K. S. & Strogatz, S. H. Time delay in the kuramoto model of coupled oscillators. Phys. Rev. Lett. 82, 648–651 (1999).

    CAS  Google Scholar 

  42. 42.

    Poeppel, D. & Assaneo, M. F. Speech rhythms and their neural foundations. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-020-0304-4 (2020).

    Article  PubMed  Google Scholar 

  43. 43.

    Doelling, K. B., Assaneo, M. F., Bevilacqua, D., Pesaran, B. & Poeppel, D. An oscillator model better predicts cortical entrainment to music. Proc. Natl Acad. Sci. USA 116, 10113 (2019).

    CAS  PubMed  Google Scholar 

  44. 44.

    Ruspantini, I. et al. Corticomuscular coherence is tuned to the spontaneous rhythmicity of speech at 2–3 Hz. J. Neurosci. 32, 3786 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hansen, P., Kringelbach, M., & Salmelin, R. (eds.). MEG: an Introduction to Methods (Oxford Univ. Press, 2010).

  46. 46.

    Tian, X. & Poeppel, D. The effect of imagination on stimulation: the functional specificity of efference copies in speech processing. J. Cogn. Neurosci. 25, 1020–1036 (2013).

    PubMed  Google Scholar 

  47. 47.

    Timm, J., Schönwiesner, M., Schröger, E. & SanMiguel, I. Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency. Cortex 80, 5–20 (2016).

  48. 48.

    Cao, L., Thut, G. & Gross, J. The role of brain oscillations in predicting self-generated sounds. NeuroImage 147, 895–903 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lakatos, P., Gross, J. & Thut, G. A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29, R890–R905 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chang, E. F., Niziolek, C. A., Knight, R. T., Nagarajan, S. S. & Houde, J. F. Human cortical sensorimotor network underlying feedback control of vocal pitch. Proc. Natl Acad. Sci. USA 110, 2653 (2013).

    CAS  PubMed  Google Scholar 

  51. 51.

    Riecke, L., Formisano, E., Sorger, B., Baskent, D. & Gaudrain, E. Neural entrainment to speech modulates speech intelligibility. Curr. Biol. https://doi.org/10.1016/j.cub.2017.11.033 (2017).

    Article  PubMed  Google Scholar 

  52. 52.

    Riecke, L., Formisano, E., Herrmann, C. S. & Sack, A. T. 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimulat. 8, 777–783 (2015).

    Google Scholar 

  53. 53.

    Henry, M. J. & Obleser, J. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc. Natl Acad. Sci. USA 109, 20095 (2012).

    CAS  PubMed  Google Scholar 

  54. 54.

    Stefanics, G. et al. Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci. 30, 13578–13585 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Riecke, L., Sack, A. T. & Schroeder, C. E. Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming. Curr. Biol. 25, 3196–3201 (2015).

    CAS  PubMed  Google Scholar 

  56. 56.

    Zoefel, B., Davis, M. H., Valente, G. & Riecke, L. How to test for phasic modulation of neural and behavioural responses. NeuroImage 202, 116175 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Repp, B. H. & Penel, A. Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychol. Res. 68, 252–270 (2004).

    PubMed  Google Scholar 

  58. 58.

    Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  PubMed  Google Scholar 

  59. 59.

    Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).

    Google Scholar 

  60. 60.

    Kontsevich, L. L. & Tyler, C. W. Bayesian adaptive estimation of psychometric slope and threshold. Vision Res. 39, 2729–2737 (1999).

    CAS  PubMed  Google Scholar 

  61. 61.

    Chi, T., Ru, P. & Shamma, S. A. Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am. 118, 887–906 (2005).

    PubMed  Google Scholar 

  62. 62.

    NSL MATLAB Toolbox (Neural Systems Laboratory, University of Maryland, 2003).

  63. 63.

    Moskowitz, C. S. & Pepe, M. S. Quantifying and comparing the predictive accuracy of continuous prognostic factors for binary outcomes. Biostat. Oxf. Engl. 5, 113–127 (2004).

    Google Scholar 

  64. 64.

    Huang, Y., Sullivan Pepe, M. & Feng, Z. Evaluating the predictiveness of a continuous marker. Biometrics 63, 1181–1188 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    JASP version 0.12 (JASP Team, 2020).

  66. 66.

    Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course pp. xiii, 264 (Cambridge Univ. Press, 2013).

  67. 67.

    Cabral, J. et al. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. NeuroImage 90, 423–435 (2014).

    PubMed  Google Scholar 

  68. 68.

    Guenther, F. H., Ghosh, S. S. & Tourville, J. A. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 96, 280–301 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Grabenhorst, J.-R. King and L. Gwilliams for their valuable input regarding the data analysis, M. Fichter for data recordings and S. Brendecke for graphics support. This work was funded by the Max-Planck-Institute for Empirical Aesthetics. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

M.F.A., J.M.R. and D.P. conceived of and designed the experiments. J.M.R. collected the data. M.F.A. and J.M.R. conceived and designed the analyses. M.F.A. performed the main analyses and contributed the SSS-test analysis toolbox. Y.S.P. and M.F.A. generated the computational model. M.F.A., J.M.R. and D.P. interpreted the results. M.F.A. and J.M.R. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to M. Florencia Assaneo or Johanna M. Rimmele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Marike Schiffer.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Assaneo, M.F., Rimmele, J.M., Sanz Perl, Y. et al. Speaking rhythmically can shape hearing. Nat Hum Behav 5, 71–82 (2021). https://doi.org/10.1038/s41562-020-00962-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing