How people decide what they want to know

Abstract

Immense amounts of information are now accessible to people, including information that bears on their past, present and future. An important research challenge is to determine how people decide to seek or avoid information. Here we propose a framework of information-seeking that aims to integrate the diverse motives that drive information-seeking and its avoidance. Our framework rests on the idea that information can alter people’s action, affect and cognition in both positive and negative ways. The suggestion is that people assess these influences and integrate them into a calculation of the value of information that leads to information-seeking or avoidance. The theory offers a framework for characterizing and quantifying individual differences in information-seeking, which we hypothesize may also be diagnostic of mental health. We consider biases that can lead to both insufficient and excessive information-seeking. We also discuss how the framework can help government agencies to assess the welfare effects of mandatory information disclosure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Neural correlates of information-seeking. It is hypothesized that information-seeking is achieved via neural architecture and computational rules similar to those used in reward-seeking.
Fig. 2: Integrative framework of information-seeking motives.

References

  1. 1.

    Kidd, C. & Hayden, B. Y. Neuron 88, 449–460 (2015).

  2. 2.

    Loewenstein, G. Psychol. Bull. 116, 75–98 (1994).

  3. 3.

    Stigler, G. J. J. Polit. Econ. 69, 213–225 (1961).

  4. 4.

    Grant, S., Kajii, A. & Polak, B. J. Econ. Theory 83, 233–259 (1998).

  5. 5.

    Charpentier, C. J., Bromberg-Martin, E. S. & Sharot, T. Proc. Natl Acad. Sci. USA 115, E7255–E7264 (2018).

  6. 6.

    Bromberg-Martin, E. S. & Hikosaka, O. Neuron 63, 119–126 (2009).

  7. 7.

    Eliaz, K. & Schotter, A. Am. Econ. Rev. 97, 166–169 (2007).

  8. 8.

    Berlyne, D. E. Psychol. Rev. 64, 329–339 (1957).

  9. 9.

    Kreps, D. M. & Porteus, E. L. Econom. J. 46, 185–200 (1978).

  10. 10.

    Ligneul, R., Mermillod, M. & Morisseau, T. NeuroImage 181, 490–500 (2018).

  11. 11.

    Brydevall, M., Bennett, D., Murawski, C. & Bode, S. Sci. Rep. 8, 6134 (2018).

  12. 12.

    Kang, M. J. et al. Psychol. Sci. 20, 963–973 (2009).

  13. 13.

    Smith, D. V., Rigney, A. E. & Delgado, M. R. Sci. Rep. 6, 20093 (2016).

  14. 14.

    Tricomi, E. & Fiez, J. A. Cogn. Affect. Behav. Neurosci. 12, 361–372 (2012).

  15. 15.

    Jessup, R. K. & O’Doherty, J. P. Eur. J. Neurosci. 39, 2014–2026 (2014).

  16. 16.

    Gruber, M. J., Gelman, B. D. & Ranganath, C. Neuron 84, 486–496 (2014).

  17. 17.

    van Lieshout, L. L. F., Vandenbroucke, A. R. E., Müller, N. C. J., Cools, R. & de Lange, F. P. J. Neurosci. 38, 2579–2588 (2018).

  18. 18.

    Bromberg-Martin, E. S. & Hikosaka, O. Nat. Neurosci. 14, 1209–1216 (2011).

  19. 19.

    Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Neuron 85, 602–614 (2015).

  20. 20.

    Schultz, W., Dayan, P. & Montague, P. R. Science 275, 1593–1599 (1997).

  21. 21.

    Thornton, R. L. Am. Econ. Rev. 98, 1829–1863 (2008).

  22. 22.

    Persoskie, A., Ferrer, R. A. & Klein, W. M. J. Behav. Med. 37, 977–987 (2014).

  23. 23.

    Dwyer, L. A., Shepperd, J. A. & Stock, M. L. Ann. Behav. Med. 49, 685–695 (2015).

  24. 24.

    Caplin, A. & Leahy, J. Q. J. Econ. 116, 55–79 (2001).

  25. 25.

    Koszegi, B. Econ. Theory 44, 415–444 (2010).

  26. 26.

    Golman, R., Hagman, D. & Loewenstein, G. J. Econ. Lit. 55, 96–135 (2017).

  27. 27.

    Brunnermeier, M. K. & Parker, J. A. Am. Econ. Rev. 95, 1092–1118 (2005).

  28. 28.

    Golman, R., Loewenstein, G., Molnar, A. & Saccardo, S. SSRN https://doi.org/10.2139/ssrn.2149362 (2019).

  29. 29.

    Golman, R. & Loewenstein, G. Decision 5, 143–164 (2018).

  30. 30.

    Hertwig, R. & Engel, C. Perspect. Psychol. Sci. 11, 359–372 (2016).

  31. 31.

    Bénabou, R. & Tirole, J. Q. J. Econ. 117, 871–915 (2002).

  32. 32.

    Karlsson, N., Loewenstein, G. & Seppi, D. J. Risk Uncertain. 38, 95–115 (2009).

  33. 33.

    Lerman, C. et al. J. Clin. Oncol. 16, 1650–1654 (1998).

  34. 34.

    Gigerenzer, G. & Garcia-Retamero, R. Psychol. Rev. 124, 179–196 (2017).

  35. 35.

    Loewenstein, G. Econ. J. (Lond.) 97, 666–684 (1987).

  36. 36.

    Craik, K.J.W. The Nature of Explanation. (CUP Archive, 1952).

  37. 37.

    Johnson-Laird, P.N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. (Harvard University Press, 1983).

  38. 38.

    Friston, K. Nat. Rev. Neurosci. 11, 127–138 (2010).

  39. 39.

    Kreps, D. M. & Porteus, E. L. Econometrica 46, 185–200 (1978).

  40. 40.

    Nickerson, R. S. Rev. Gen. Psychol. 2, 175–220 (1998).

  41. 41.

    Klayman, J. & Ha, Y.-W. Psychol. Rev. 94, 211–228 (1987).

  42. 42.

    Kappes, A., Harvey, A., Lohrenz, T., Montague, R. & Sharot, T. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0549-2 (2019).

  43. 43.

    Eliaz, K. & Schotter, A. Games Econ. Behav. 70, 304–324 (2010).

  44. 44.

    Kőszegi, B. Q. J. Econ. 121, 121–155 (2006).

  45. 45.

    Kobayashi, K. & Hsu, M. Proc. Natl Acad. Sci. USA 116, 13061–13066 (2019).

  46. 46.

    Kahneman, D. & Tversky, A. Psychol. Rev. 80, 237–251 (1973).

  47. 47.

    Weinstein, N. D. J. Pers. Soc. Psychol. 39, 806–820 (1980).

  48. 48.

    Langer, E. J. J. Pers. Soc. Psychol. 32, 311–328 (1975).

  49. 49.

    Sharot, T. Curr. Biol. 21, R941–R945 (2011).

  50. 50.

    Gilbert, D.T., Driver-Linn, E. & Wilson, T.D. in The Wisdom in Feeling: Psychological Processes in Emotional Intelligence (eds Barrett, L. F. & Salovey, P.) 114–143 (Guilford Press, 2002).

  51. 51.

    Sloman, S. & Fernbach, P. The Knowledge Illusion: Why We Never Think Alone. (Riverhead Books, 2017).

  52. 52.

    Pallier, G. et al. J. Gen. Psychol. 129, 257–299 (2002).

  53. 53.

    Aderka, I. M., Haker, A., Marom, S., Hermesh, H. & Gilboa-Schechtman, E. J. Abnorm. Psychol. 122, 7–12 (2013).

  54. 54.

    Hildebrand-Saints, L. & Weary, G. Pers. Soc. Psychol. Bull. 15, 150–160 (1989).

  55. 55.

    Camp, C. J. Educ. Gerontol. 12, 375–384 (1986).

  56. 56.

    Locander, W. B. & Hermann, P. W. The Effect of Self-confidence and Anxiety on Information Seeking in Consumer Risk Reduction. (SAGE Publications Sage CA, Los Angeles, CA, 1979).

  57. 57.

    Gray, K. M. & Tonge, B. J. J. Paediatr. Child Health 37, 221–226 (2001).

  58. 58.

    Jensen, P.S. et al. J. Am. Acad. Child Adolesc. Psychiatry 36, 1672–1679, discussion 1679–1681 (1997).

  59. 59.

    Holaway, R. M., Heimberg, R. G. & Coles, M. E. J. Anxiety Disord. 20, 158–174 (2006).

  60. 60.

    Luking, K. R., Pagliaccio, D., Luby, J. L. & Barch, D. M. Trends Cogn. Sci. 20, 456–468 (2016).

  61. 61.

    McCabe, C., Cowen, P. J. & Harmer, C. J. Psychopharmacol. (Berl.) 205, 667–677 (2009).

  62. 62.

    Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G. & Fava, M. J. Psychiatr. Res. 43, 76–87 (2008).

  63. 63.

    Alloy, L. B. & Abramson, L. Y. J. Exp. Psychol. 108, 441–485 (1979).

  64. 64.

    Nestler, E. J. & Carlezon, W. A. Jr. Biol. Psychiatry 59, 1151–1159 (2006).

  65. 65.

    Davie, C. A. Br. Med. Bull. 86, 109–127 (2008).

  66. 66.

    Grace, A. A. Nat. Rev. Neurosci. 17, 524–532 (2016).

  67. 67.

    Giancardo, L. et al. Sci. Rep. 6, 34468 (2016).

  68. 68.

    Shukla, P. & Solanki, R. Web based keystroke dynamics application for identifying emotional state. Inst. Eng. Technol. DAVV, Indore, India (2013).

  69. 69.

    Sunstein, C.R. The Cost-benefit Revolution. (MIT Press, 2018).

  70. 70.

    Sunstein, C. R. J. Risk Uncertain. 58, 121–142 (2019).

  71. 71.

    Food & Drug Administration. Fed. Regist. 76, 36628 (2011).

  72. 72.

    Food & Drug Administration. Fed. Regist. 79, 71155 (2014).

  73. 73.

    Thunström, L. Judgm. Decis. Mak. 14, 11–25 (2019).

  74. 74.

    Woolley, K. & Risen, J. L. J. Pers. Soc. Psychol. 114, 230–245 (2018).

  75. 75.

    Sakaki, M., Yagi, A. & Murayama, K. Neurosci. Biobehav. Rev. 88, 106–116 (2018).

  76. 76.

    Carstensen, L. L. Psychol. Aging 7, 331–338 (1992).

  77. 77.

    Allcott, H. & Kessler, J. B. Am. Econ. J. Appl. Econ. 11, 236–276 (2019).

Download references

Acknowledgements

We thank L. Rozenkrantz, J. Marks, F. Gesiarz, C. Kelly, I. De Taranto, C. Charpentier and Y. Wang for comments on previous versions of this manuscript. Y. Wang also assisted with generating brain images. T.S. is supported by a Wellcome Trust Senior Research Fellowship (214268/Z/18/Z).

Author information

Correspondence to Tali Sharot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Mary Elizabeth Sutherland; Stavroula Kousta

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Information:

Data previously not known with complete certainty.

Information-seeking:

The active pursuit of knowledge, for example by asking questions, reading and conducting online searches.

Curiosity:

The feeling of wanting to know. While curiosity is related to information-seeking the two concepts are distinct. In particular, it is possible to be curious but to avoid information or to seek information despite a lack of curiosity. For example, a person may be curious about whether they have a predisposition for cancer, but decide not to pursuit such information to avoid experiencing negative feelings. A person may also seek financial information to make better financial decisions, despite not being curious about such information.

Instrumental utility of information:

A measure quantifying the amount by which information will enable achieving an end goal.

Hedonic utility of information:

A measure quantifying the amount of pleasure (or other positive feeling) information would induce, minus the amount of pain (or other negative feeling) it would induce, from which we subtract the amount of pleasure ignorance would induce plus the amount of pain ignorance would induce.

Cognitive utility of information:

A measure quantifying the degree to which information would strengthen internal mental models.

Mental models:

Representation of concepts and the relationships among them, which are used to comprehend and anticipate reality.

Affect:

A physiological reaction that varies in valence (positive or negative) and arousal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharot, T., Sunstein, C.R. How people decide what they want to know. Nat Hum Behav 4, 14–19 (2020). https://doi.org/10.1038/s41562-019-0793-1

Download citation