The promise and the peril of using social influence to reverse harmful traditions

Abstract

For a policy-maker promoting the end of a harmful tradition, conformist social influence is a compelling mechanism. If an intervention convinces enough people to abandon the tradition, this can spill over and induce others to follow. A key objective is thus to activate such spillovers and amplify an intervention’s effects. With female genital cutting as a motivating example, we develop empirically informed analytical and simulation models to examine this idea. Even if conformity pervades decision-making, spillovers can range from irrelevant to indispensable. Our analysis highlights three considerations. First, ordinary forms of individual heterogeneity can severely limit spillovers, and understanding the heterogeneity in a population is essential. Second, although interventions often target samples of the population biased towards ending the harmful tradition, targeting a representative sample is a more robust way to achieve spillovers. Finally, if the harmful tradition contributes to group identity, the success of spillovers can depend critically on disrupting the link between identity and tradition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Heterogeneity and spillovers.
Fig. 2: Variation in intervention targets.
Fig. 3: The dominant effects of pre-existing preferences.
Fig. 4: Limited spillovers under homophily.
Fig. 5: The joint effects of selection bias and homophily.
Fig. 6: Combining heterogeneous responses to the intervention with selection bias and homophily.
Fig. 7: Group identity as a drag on beneficial change.

Code availability

Code is available as Supplementary Software with related details in the Supplementary Information and the Supplementary Software Guide.

References

  1. 1.

    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Shell-Duncan, B. & Hernlund, Y. Female ‘circumcision’ in Africa: dimensions of the practice and debates. In Female ‘Circumcision’ in Africa: Culture, Controversy, and Change (eds. Shell-Duncan, B. & Hernlund, Y.) 1–40 (Lynne Rienner, 2000).

  3. 3.

    Cloward, K. When Norms Collide: Local Responses to Activism Against Female Genital Mutilation and Early Marriage (Oxford University Press, 2016).

  4. 4.

    Shell-Duncan, B. From health to human rights: female genital cutting and the politics of intervention. Am. Anthropol. 110, 225–236 (2008).

    Article  Google Scholar 

  5. 5.

    Richerson, P. J. & Boyd, R. Not By Genes Alone: How Culture Transformed the Evolutionary Process. (University of Chicago Press, 2005).

  6. 6.

    Dolan, P. et al. Influencing behaviour: the mindspace way. J. Economic Psychol. 33, 264–277 (2012).

    Article  Google Scholar 

  7. 7.

    World Bank Group. Mind, Society, and Behavior: World Development Report 2015. (The World Bank, 2015).

  8. 8.

    Bicchieri, C. Norms in the Wild: How to Diagnose, Measure, and Change Social Norms (Oxford University Press, 2016).

  9. 9.

    Shell-Duncan, B., Wander, K., Hernlund, Y. & Moreau, A. Dynamics of change in the practice of female genital cutting in Senegambia. Soc. Sci. Med. 73, 1275–1283 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    UNFPA-UNICEF. Joint Evaluation of the UNFPA-UNICEF Joint Programme on Female Genital Mutilation/cutting: Accelerating Change. https://www.unfpa.org/admin-resource/unfpa-unicef-joint-evaluation-unfpa-unicef-joint-programme-female-genital (UNFPA, 2013).

  11. 11.

    Mackie, G., Moneti, F., Shakya, H. & Denny, E. What are social norms? How are they measured. https://www.unicef.org/protection/files/4_09_30_Whole_What_are_Social_Norms.pdf (UNICEF, 2015).

  12. 12.

    Platteau, J.-P., Camilotti, G. & Auriol, E. Eradicating women-hurting customs. In Towards Gender Equity in Development (eds Anderson, S., Beaman, L. & Platteau, J.) 319–356 (Oxford University Press, 2018).

  13. 13.

    Malhotra, A., Warner, A., McGonagle, A. & Lee-Rife, S. Solutions to end child marriage: what the evidence shows. https://www.icrw.org/wp-content/uploads/2016/10/Solutions-to-End-Child-Marriage.pdf (ICRW, 2011).

  14. 14.

    Lee-Rife, S., Malhotra, A., Warner, A. & Glinski, A. M. What works to prevent child marriage: a review of the evidence. Stud. Fam. Plan. 43, 287–303 (2012).

    Article  Google Scholar 

  15. 15.

    Bicchieri, C., Jiang, T. & Lindemans, J. W. A social norms perspective on child marriage: the general framework. http://repository.upenn.edu/pennsong/13/ (Penn Social Norms Group, 2014).

  16. 16.

    Shakya, H. B., Christakis, N. A. & Fowler, J. H. Social network predictors of latrine ownership. Soc. Sci. Med. 125, 129–138 (2015).

    PubMed  Article  Google Scholar 

  17. 17.

    World Health Organization. Changing cultural and social norms that support violence. https://apps.who.int/iris/handle/10665/44147 (WHO, 2009).

  18. 18.

    Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. New Engl. J. Med. 358, 2249–2258 (2008).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Mackie, G. Ending footbinding and infibulation: a convention account. Am. Sociol. Rev. 61, 999–1017 (1996).

    Article  Google Scholar 

  20. 20.

    Prentice, D. A. & Miller, D. T. Pluralistic ignorance and alcohol use on campus: some consequences of misperceiving the social norm. J. Personal. Soc. Psychol. 64, 243–256 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    Young, H. P. The evolution of social norms. Annu. Rev. Econ. 7, 359–387 (2015).

    Article  Google Scholar 

  22. 22.

    Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. New Engl. J. Med. 2007, 370–379 (2007).

    Article  Google Scholar 

  23. 23.

    Paluck, E. L., Shepherd, H. & Aronow, P. M. Changing climates of conflict: a social network experiment in 56 schools. Proc. Natl. Acad. Sci. 113, 566–571 (2016).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Allcott, H. Social norms and energy conservation. J. Public Econ. 95, 1082–1095 (2011).

    Article  Google Scholar 

  25. 25.

    Hallsworth, M., List, J. A., Metcalfe, R. D. & Vlaev, I. The behavioralist as tax collector: using natural field experiments to enhance tax compliance. J. Public Econ. 148, 14–31 (2017).

    Article  Google Scholar 

  26. 26.

    Castilla-Rho, J. C., Rojas, R., Andersen, M. S., Holley, C. & Mariethoz, G. Social tipping points in global groundwater management. Nat. Hum. Behav. 1, 640 (2017).

    PubMed  Article  Google Scholar 

  27. 27.

    Koch, C. M. & Nax, H. H. ‘Follow the Data’ – what data says about real-world behavior of commons problems. SSRN https://dx.doi.org/10.2139/ssrn.3075935 (2017).

  28. 28.

    World Health Organization. Female genital mutilation. http://www.who.int/news-room/fact-sheets/detail/female-genital-mutilation (WHO, 2018).

  29. 29.

    Hayford, S. R. Conformity and change: community effects on female genital cutting in Kenya. J. Health Soc. Behav. 46, 121–140 (2005).

    PubMed  Article  Google Scholar 

  30. 30.

    Bellemare, M. F., Novak, L. & Steinmetz, T. L. All in the family: explaining the persistence of female genital cutting in West Africa. J. Dev. Econ. 116, 252–265 (2015).

    Article  Google Scholar 

  31. 31.

    Efferson, C., Vogt, S., Elhadi, A., Ahmed, H. E. F. & Fehr, E. Female genital cutting is not a social coordination norm. Science 349, 1446–1447 (2015).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Howard, J. A. & Gibson, M. A. Frequency-dependent female genital cutting behaviour confers evolutionary fitness benefits. Nat. Ecol. Evolution 1, 0049 (2017).

    Article  Google Scholar 

  33. 33.

    Vogt, S., Zaid, N. A. M., Ahmed, H. E. F., Fehr, E. & Efferson, C. Changing cultural attitudes towards female genital cutting. Nature 538, 506–509 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    De Cao, E. & Lutz, C. Sensitive survey questions: measuring attitudes regarding female genital cutting through a list experiment. Oxf. Bull. Econ. Stat. 80, 871–892 (2018).

    Article  Google Scholar 

  35. 35.

    Gibson, M. A., Gurmu, E., Cobo, B., Rueda, M. M. & Scott, I. M. Indirect questioning method reveals hidden support for female genital cutting in South Central Ethiopia. PloS One 13, e0193985 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Efferson, C., Lalive, R., Richerson, P. J., McElreath, R. & Lubell, M. Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evol. Hum. Behav. 29, 56–65 (2008).

    Article  Google Scholar 

  37. 37.

    Morgan, T. J. H., Rendell, L. E., Ehn, M., Hoppitt, W. & Laland, K. N. The evolutionary basis of human social learning. Proc. R. Soc. B 279, 653–662 (2012).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Muthukrishna, M., Morgan, T. J. & Henrich, J. The when and who of social learning and conformist transmission. Evol. Hum. Behav. 37, 10–20 (2016).

    Article  Google Scholar 

  39. 39.

    Efferson, C. & Vogt, S. Behavioural homogenization with spillovers in a normative domain. Proc. R. Soc. B 285, 20180492 (2018).

    PubMed  Article  Google Scholar 

  40. 40.

    Shell-Duncan, B. & Hernlund, Y. Are there ‘stages of change’ in the practice of female genital cutting? Qualitative research findings from Senegal and the Gambia. Afr. J. Reprod. Health 10, 57–71 (2006).

    PubMed  Article  Google Scholar 

  41. 41.

    Howard, J. A. & Gibson, M. A. Is there a link between paternity concern and female genital cutting in West Africa? Evol. Hum. Behav. 40, 1–11 (2019).

    Article  Google Scholar 

  42. 42.

    Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  43. 43.

    Watts, D. J. & Dodds, P. Threshold models of social influence. in The Oxford Handbook of Analytical Sociology (eds Bearman, P. & Hedström, P.) 475–497 (Oxford University Press, 2009).

  44. 44.

    Young, H. P. Innovation diffusion in heterogeneous populations: contagion, social influence, and social learning. Am. Economic Rev. 99, 1899–1924 (2009).

    Article  Google Scholar 

  45. 45.

    Vogt, S., Efferson, C. & Fehr, E. The risk of female genital cutting in Europe: comparing immigrant attitudes toward uncut girls with attitudes in a practicing country. SSM Popul. Health 3, 283–293 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Schelling, T. C. Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. J. Confl. Resolut. 17, 381–428 (1973).

    Article  Google Scholar 

  47. 47.

    Xie, J. et al. Social consensus through the influence of committed minorities. Phys. Rev. E 84, 011130 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Centola, D., Becker, J., Brackbill, D. & Baronchelli, A. Experimental evidence for tipping points in social convention. Science 360, 1116–1119 (2018).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Baronchelli, A., Felici, M., Loreto, V., Caglioti, E. & Steels, L. Sharp transition towards shared vocabularies in multi-agent systems. J. Stat. Mech. Theory Exp. 2006, P06014 (2006).

    Article  Google Scholar 

  50. 50.

    McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).

    Article  Google Scholar 

  51. 51.

    Jackson, M. O. & López-Pintado, D. Diffusion and contagion in networks with heterogeneous agents and homophily. Netw. Sci. 1, 49–67 (2013).

    Article  Google Scholar 

  52. 52.

    Young, H. P. The dynamics of social innovation. Proc. Natl. Acad. Sci. 108, 21285–21291 (2011).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Lu, Q., Korniss, G. & Szymanski, B. K. The naming game in social networks: community formation and consensus engineering. J. Econ. Interact. Coord. 4, 221 (2009).

    CAS  Article  Google Scholar 

  54. 54.

    Thomas, L. ‘Ngaitana (I Will Circumcise Myself)’: lessons from colonial campaigns to ban excision in Meru, Kenya. in Female ‘Circumcision’ in Africa: Culture, Controversy, and Change (eds. Shell-Duncan, B. & Hernlund, Y.) 129–150 (Lynne Rienner, 2000).

  55. 55.

    Gruenbaum, E. The Female Circumcision Controversy: An Anthropological Perspective (University of Pennsylvania Press, 2001).

  56. 56.

    Goodman, R. & Jinks, D. Socializing States: Promoting Human Rights through International Law (Oxford University Press, 2013).

  57. 57.

    Shell-Duncan, B., Wander, K., Hernlund, Y. & Moreau, A. Legislating change? Responses to criminalizing female genital cutting in Senegal. Law Soc. Rev. 47, 803–835 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Camilotti, G. Interventions to stop female genital cutting and the evolution of the custom: evidence on age at cutting in Senegal. J. Afr. Econ. 25, 133–158 (2016).

    Google Scholar 

  59. 59.

    Morgan, T. J. H. & Laland, K. N. The biological bases of conformity. Front. Neurosci. 6, 87 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Molleman, L. & Gächter, S. Societal background influences social learning in cooperative decision making. Evol. Hum. Behav. 39, 547–555 (2018).

    Article  Google Scholar 

  61. 61.

    Efferson, C., Lalive, R., Cacault, M. P. & Kistler, D. The evolution of facultative conformity based on similarity. PLoS One 11, e0168551 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Molleman, L., van den Berg, P. & Weissing, F. J. Consistent individual differences in human social learning strategies. Nat. Commun. 5, 3570 (2014).

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Mesoudi, A., Chang, L., Dall, S. R. X. & Thornton, A. The evolution of individual and cultural variation in social learning. Trends Ecol. Evol. 31, 215–225 (2016).

    PubMed  Article  Google Scholar 

  64. 64.

    Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (University of Chicago Press, 1985).

  65. 65.

    Krumpal, I. Determinants of social desirability bias in sensitive surveys: a literature review. Qual. Quant. 47, 2025–2047 (2013).

    Article  Google Scholar 

  66. 66.

    Apicella, C. L., Marlowe, F. W., Fowler, J. H. & Christakis, N. A. Social networks and cooperation in hunter-gatherers. Nature 481, 497 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Migliano, A. et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 0043 (2017).

    Article  Google Scholar 

  68. 68.

    Centola, D. An experimental study of homophily in the adoption of health behavior. Science 334, 1269–1272 (2011).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

For valuable comments while developing this research, we thank J. Walsh, as well as seminar participants at the universities of Bern, Konstanz, Lausanne, Nottingham and Zurich, the United Nations University in Maastricht, Harvard, and Oxford. C.E. and S.V. also thank the Swiss National Science Foundation (grant number 100018_185417/1). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

C.E. designed, implemented, and analyzed the models. S.V. surveyed the relevant policy literature. C.E. wrote the paper with input from S.V. and E.F.

Corresponding author

Correspondence to Charles Efferson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Aisha Bradshaw

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Model details, including Supplementary equations (1)–(25) and Supplementary Figs. 1–54; and Supplementary References.

Reporting Summary

Supplementary Software Guide

A brief guide explaining Supplementary Software 1–4.

Supplementary Software 1

Custom code for plotting how a policy-maker’s choices affect the distribution of threshold values.

Supplementary Software 2

Custom code for agent-based simulations under heterogeneity in preferences, responses to the intervention, and networks.

Supplementary Software 3

Custom code for numerically simulating a system of difference equations combining ingroup conformity with outgroup anti-conformity.

Supplementary Software 4

Custom code for agent-based simulations combining ingroup conformity with outgroup anti-conformity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efferson, C., Vogt, S. & Fehr, E. The promise and the peril of using social influence to reverse harmful traditions. Nat Hum Behav 4, 55–68 (2020). https://doi.org/10.1038/s41562-019-0768-2

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing