Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overanxious and underslept

An Author Correction to this article was published on 30 November 2020

This article has been updated

Abstract

Are you feeling anxious? Did you sleep poorly last night? Sleep disruption is a recognized feature of all anxiety disorders. Here, we investigate the basic brain mechanisms underlying the anxiogenic impact of sleep loss. Additionally, we explore whether subtle, societally common reductions in sleep trigger elevated next-day anxiety. Finally, we examine what it is about sleep, physiologically, that provides such an overnight anxiety-reduction benefit. We demonstrate that the anxiogenic impact of sleep loss is linked to impaired medial prefrontal cortex activity and associated connectivity with extended limbic regions. In contrast, non-rapid eye movement (NREM) slow-wave oscillations offer an ameliorating, anxiolytic benefit on these brain networks following sleep. Of societal relevance, we establish that even modest night-to-night reductions in sleep across the population predict consequential day-to-day increases in anxiety. These findings help contribute to an emerging framework explaining the intimate link between sleep and anxiety and further highlight the prospect of non-rapid eye movement sleep as a therapeutic target for meaningfully reducing anxiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and behavioural results.
Fig. 2: fMRI results of the In-laboratory study.
Fig. 3: mPFC activity in relation to anxiety.
Fig. 4: Sleep-rested physiology in relation to next-day anxiety.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Change history

  • 30 November 2020

    A Correction to this paper has been published: https://doi.org/10.1038/s41562-019-0754-8.

References

  1. Babson, K. A., Trainor, C. D., Feldner, M. T. & Blumenthal, H. A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: an experimental extension. J. Behav. Ther. Exp. Psychiatry 41, 297–303 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Pires, G. N., Bezerra, A. G., Tufik, S. & Andersen, M. L. Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis. Sleep. Med. 24, 109–118 (2016).

    PubMed  Google Scholar 

  3. Papadimitriou, G. N. & Linkowski, P. Sleep disturbance in anxiety disorders. Int. Rev. Psychiatry 17, 229–236 (2005).

    PubMed  Google Scholar 

  4. Breslau, N., Roth, T., Rosenthal, L. & Andreski, P. Sleep disturbance and psychiatric disorders: a longitudinal epidemiological study of young adults. Biol. Psychiatry 39, 411–418 (1996).

    CAS  PubMed  Google Scholar 

  5. Neckelmann, D., Mykletun, A. & Dahl, A. A. Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 30, 873–880 (2007).

    PubMed  PubMed Central  Google Scholar 

  6. Kessler, R. C. et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol. Psychiatr. Sci. 18, 23–33 (2009).

    Google Scholar 

  7. Mellman, T. A. Sleep and anxiety disorders. Sleep. Med. Clin. 3, 261–268 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Stein, M. B., Simmons, A. N., Feinstein, J. S. & Paulus, M. P. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am. J. Psychiatry 164, 318–327 (2007).

    PubMed  Google Scholar 

  9. Simmons, A. N. et al. Anxiety positive subjects show altered processing in the anterior insula during anticipation of negative stimuli. Hum. Brain Mapp. 32, 1836–1846 (2011).

    PubMed  Google Scholar 

  10. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    PubMed  PubMed Central  Google Scholar 

  11. Simmons, A. et al. Anxiety vulnerability is associated with altered anterior cingulate response to an affective appraisal task. Neuroreport 19, 1033–1037 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Straube, T., Schmidt, S., Weiss, T., Mentzel, H.-J. & Miltner, W. H. Dynamic activation of the anterior cingulate cortex during anticipatory anxiety. Neuroimage 44, 975–981 (2009).

    PubMed  Google Scholar 

  13. Carlson, J. M., Greenberg, T., Rubin, D. & Mujica-Parodi, L. R. Feeling anxious: anticipatory amygdalo-insular response predicts the feeling of anxious anticipation. Soc. Cogn. Affect. Neurosci. 6, 74–81 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Ewbank, M. P. et al. Anxiety predicts a differential neural response to attended and unattended facial signals of anger and fear. Neuroimage 44, 1144–1151 (2009).

    PubMed  Google Scholar 

  15. Xu, P. et al. Neural basis of emotional decision making in trait anxiety. J. Neurosci. 33, 18641–18653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Simmons, A., Strigo, I., Matthews, S. C., Paulus, M. P. & Stein, M. B. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biol. Psychiatry 60, 402–409 (2006).

    PubMed  Google Scholar 

  17. Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat. Neurosci. 7, 184 (2004).

    CAS  PubMed  Google Scholar 

  18. Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C. & Whalen, P. J. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex 21, 1667–1673 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Prater, K. E., Hosanagar, A., Klumpp, H., Angstadt, M. & Luan Phan, K. Aberrant amygdala–frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depress. Anxiety 30, 234–241 (2013).

    PubMed  Google Scholar 

  20. Campbell-Sills, L. et al. Functioning of neural systems supporting emotion regulation in anxiety-prone individuals. Neuroimage 54, 689–696 (2011).

    PubMed  Google Scholar 

  21. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828 (2005).

    CAS  PubMed  Google Scholar 

  22. Forbes, E. E. et al. Objective sleep in pediatric anxiety disorders and major depressive disorder. J. Am. Acad. Child Adolesc. Psychiatry 47, 148–155 (2008).

    PubMed  PubMed Central  Google Scholar 

  23. Fuller, K. H., Waters, W. F., Binks, P. G. & Anderson, T. Generalized anxiety and sleep architecture: a polysomnographic investigation. Sleep 20, 370–376 (1997).

    CAS  PubMed  Google Scholar 

  24. Arriaga, F. & Paiva, T. Clinical and EEG sleep changes in primary dysthymia and generalized anxiety: a comparison with normal controls. Neuropsychobiology 24, 109–114 (1990).

    PubMed  Google Scholar 

  25. Stein, M. B., Enns, M. W. & Kryger, M. H. Sleep in nondepressed patients with panic disorder: II. Polysomnographic assessment of sleep architecture and sleep continuity. J. Affect. Disord. 28, 1–6 (1993).

    CAS  PubMed  Google Scholar 

  26. Yetkin, S., Aydin, H. & Özgen, F. Polysomnography in patients with post‐traumatic stress disorder. Psychiatry Clin. Neurosci. 64, 309–317 (2010).

    PubMed  Google Scholar 

  27. Horváth, A. et al. Effects of state and trait anxiety on sleep structure: a polysomnographic study in 1083 subjects. Psychiatry Res. 244, 279–283 (2016).

    PubMed  Google Scholar 

  28. Sysoeva, Y. Y. & Verbitsky, E. Influence of the level of trait anxiety on sleep EEG of men and women. Hum. Physiol. 39, 655–662 (2013).

    Google Scholar 

  29. Woodward, S. H., Murburg, M. M. & Bliwise, D. L. PTSD-related hyperarousal assessed during sleep. Physiol. Behav. 70, 197–203 (2000).

    CAS  PubMed  Google Scholar 

  30. Norbury, R. & Evans, S. Time to think: subjective sleep quality, trait anxiety and university start time. Psychiatry Res. 271, 214–219 (2018).

  31. Gross, J. J. & Levenson, R. W. Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995).

    Google Scholar 

  32. Knight, R. G., Waal‐Manning, H. J. & Spears, G. F. Some norms and reliability data for the State‐Trait Anxiety Inventory and the Zung Self‐Rating Depression scale. Br. J. Clin. Psychol. 22, 245–249 (1983).

    PubMed  Google Scholar 

  33. Etkin, A., Egner, T. & Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011).

    PubMed  Google Scholar 

  34. Phillips, M. L., Drevets, W. C., Rauch, S. L. & Lane, R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003).

    PubMed  Google Scholar 

  35. Hahn, A. et al. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage 56, 881–889 (2011).

    PubMed  Google Scholar 

  36. Goldin, P. R., Manber, T., Hakimi, S., Canli, T. & Gross, J. J. Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch. Gen. Psychiatry 66, 170–180 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Etkin, A., Prater, K. E., Hoeft, F., Menon, V. & Schatzberg, A. F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167, 545–554 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Bishop, S. J. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11, 307–316 (2007).

    PubMed  Google Scholar 

  39. Åkerstedt, T., Kecklund, G. & Axelsson, J. Impaired sleep after bedtime stress and worries. Biol. Psychol. 76, 170–173 (2007).

    PubMed  Google Scholar 

  40. Cropley, M., Dijk, D.-J. & Stanley, N. Job strain, work rumination, and sleep in school teachers. Eur. J. Work Organ. Psychol. 15, 181–196 (2006).

    Google Scholar 

  41. Hirschfeld, R. M. The comorbidity of major depression and anxiety disorders: recognition and management in primary care. Prim. Care Companion J. Clin. Psychiatry 3, 244 (2001).

    PubMed  PubMed Central  Google Scholar 

  42. Goldstein, A. N. & Walker, M. P. The role of sleep in emotional brain function. Annu. Rev. Clin. Psychol. 10, 679–708 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Krause, A. J. et al. The sleep-deprived human brain. Nat. Rev. Neurosci. 18, 404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893 (1988).

    CAS  PubMed  Google Scholar 

  45. Creamer, M., Foran, J. & Bell, R. The Beck Anxiety Inventory in a non-clinical sample. Behav. Res. Ther. 33, 477–485 (1995).

    CAS  PubMed  Google Scholar 

  46. Motomura, Y. et al. Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PLoS One 8, e56578 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Minkel, J. D. et al. Sleep deprivation and stressors: evidence for elevated negative affect in response to mild stressors when sleep deprived. Emotion 12, 1015–1020 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Wu, H. et al. Effects of sleep restriction periods on serum cortisol levels in healthy men. Brain Res. Bull. 77, 241–245 (2008).

    CAS  PubMed  Google Scholar 

  49. Walker, M. P. & van Der Helm, E. Overnight therapy? The role of sleep in emotional brain processing. Psychol. Bull. 135, 731 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Uhde, T. W., Cortese, B. M. & Vedeniapin, A. Anxiety and sleep problems: emerging concepts and theoretical treatment implications. Curr. Psychiatry Rep. 11, 269–276 (2009).

    PubMed  Google Scholar 

  51. Shin, L. M. et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry 62, 273–281 (2005).

    PubMed  Google Scholar 

  52. Blair, K. et al. Response to emotional expressions in generalized social phobia and generalized anxiety disorder: evidence for separate disorders. Am. J. Psychiatry 165, 1193–1202 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. Lane, R. D., Reiman, E., Ahern, G. L. & Thayer, J. 21. Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cogn. 47, 97–100 (2001).

    Google Scholar 

  54. Yoo, S.-S., Gujar, N., Hu, P., Jolesz, F. A. & Walker, M. P. The human emotional brain without sleep—a prefrontal amygdala disconnect. Curr. Biol. 17, R877–R878 (2007).

    CAS  PubMed  Google Scholar 

  55. Simon, E. B. et al. Losing neutrality: the neural basis of impaired emotional control without sleep. J. Neurosci. 35, 13194–13205 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114 (2010).

    CAS  PubMed  Google Scholar 

  57. Ekman, P. E. & Davidson, R. J. The Nature of Emotion: Fundamental Questions (Oxford Univ. Press, 1994).

  58. Kecklund, G. & Åkerstedt, T. Apprehension of the subsequent working day is associated with a low amount of slow wave sleep. Biol. Psychol. 66, 169–176 (2004).

    PubMed  Google Scholar 

  59. Krystal, A. D., Edinger, J. D., Wohlgemuth, W. K. & Marsh, G. R. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep 25, 626–636 (2002).

    Google Scholar 

  60. Hall, M. et al. Psychological stress is associated with heightened physiological arousal during NREM sleep in primary insomnia. Behav. Sleep Med. 5, 178–193 (2007).

    PubMed  Google Scholar 

  61. Dijk, D.-J. Slow-wave sleep, diabetes, and the sympathetic nervous system. Proc. Natl Acad. Sci. USA 105, 1107–1108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Beissner, F., Meissner, K., Bär, K.-J. & Napadow, V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33, 10503–10511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fan, J. et al. Spontaneous brain activity relates to autonomic arousal. J. Neurosci. 32, 11176–11186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chouchou, F. & Desseilles, M. Heart rate variability: a tool to explore the sleeping brain? Front. Neurosci. 8, https://doi.org/10.3389/fnins.2014.00402 (2014).

  65. Hall, M. et al. Acute stress affects heart rate variability during sleep. Psychosom. Med. 66, 56–62 (2004).

    PubMed  Google Scholar 

  66. Bierwolf, C., Struve, K., Marshall, L., Born, J. & Fehm, H. L. Slow wave sleep drives inhibition of pituitary‐adrenal secretion in humans. J. Neuroendocrinol. 9, 479–484 (1997).

    CAS  PubMed  Google Scholar 

  67. Buckley, T. M. & Schatzberg, A. F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab. 90, 3106–3114 (2005).

    CAS  PubMed  Google Scholar 

  68. Lang, P. J. & McTeague, L. M. The anxiety disorder spectrum: fear imagery, physiological reactivity, and differential diagnosis. Anxiety Stress Coping 22, 5–25 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Craske, M. et al. Anxiety disorders. Nat. Rev. Dis. Prim. 3, 17024 (2017).

    PubMed  Google Scholar 

  70. Simon, E. B. & Walker, M. P. Sleep loss causes social withdrawal and loneliness. Nat. Commun. 9, 3146 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Spielberger, C. D. Manual for the State–Trait Anxiety Inventory STAI (Form Y) (“Self-evaluation Questionnaire”) (Consulting Psychologists Press, 1983).

  72. Hutcherson, C. et al. Attention and emotion: does rating emotion alter neural responses to amusing and sad films? Neuroimage 27, 656–668 (2005).

    CAS  PubMed  Google Scholar 

  73. Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Marteau, T. M. & Bekker, H. The development of a six-item short-form of the state scale of the Spielberger State–Trait Anxiety Inventory (STAI). Br. J. Clin. Psychol. 31, 301–306 (1992).

    CAS  PubMed  Google Scholar 

  75. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).

    PubMed  Google Scholar 

  76. Lehnkering, H. & Siegmund, R. Influence of chronotype, season, and sex of subject on sleep behavior of young adults. Chronobiol. Int. 24, 875–888 (2007).

    PubMed  Google Scholar 

  77. Åkerstedt, T. et al. Sleep duration and mortality – does weekend sleep matter? J. Sleep. Res. 28, e12712 (2019).

    PubMed  Google Scholar 

  78. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Personal. Soc. Psychol. 54, 1063 (1988).

    CAS  Google Scholar 

  79. Thompson, E. R. Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). J. Cross Cult Psychol. 38, 227–242 (2007).

    Google Scholar 

  80. Goldstein, A. N. et al. Tired and apprehensive: anxiety amplifies the impact of sleep loss on aversive brain anticipation. J. Neurosci. 33, 10607–10615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Poldrack, R. A. & Mumford, J. A. Independence in ROI analysis: where is the voodoo? Soc. Cogn. Affect. Neurosci. 4, 208–213 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    PubMed  Google Scholar 

  83. Berset, M., Elfering, A., Lüthy, S., Lüthi, S. & Semmer, N. K. Work stressors and impaired sleep: rumination as a mediator. Stress Health 27, e71–e82 (2011).

    PubMed  Google Scholar 

  84. Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 22, 3527–3541 (2003).

    PubMed  Google Scholar 

  85. Peugh, J. L. A practical guide to multilevel modeling. J. Sch. Psychol. 48, 85–112 (2010).

    PubMed  Google Scholar 

  86. Mazaika, P. K., Hoeft, F., Glover, G. H. & Reiss, A. L. Methods and software for fMRI analysis of clinical subjects. Neuroimage 47, S58 (2009).

    Google Scholar 

  87. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

    PubMed  Google Scholar 

  88. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1994).

    Google Scholar 

  89. Patel, R., Spreng, R. N., Shin, L. M. & Girard, T. A. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142 (2012).

    PubMed  Google Scholar 

  90. Cha, J. et al. Hyper-reactive human ventral tegmental area and aberrant mesocorticolimbic connectivity in overgeneralization of fear in generalized anxiety disorder. J. Neurosci. 34, 5855–5860 (2014).

    CAS  PubMed  Google Scholar 

  91. Blair, K. S. et al. Atypical modulation of medial prefrontal cortex to self-referential comments in generalized social phobia. Psychiatry Res. Neuroimaging 193, 38–45 (2011).

    Google Scholar 

  92. Burklund, L. J., Torre, J. B., Lieberman, M. D., Taylor, S. E. & Craske, M. G. Neural responses to social threat and predictors of cognitive behavioral therapy and acceptance and commitment therapy in social anxiety disorder. Psychiatry Res. Neuroimaging 261, 52–64 (2017).

    PubMed  Google Scholar 

  93. Friston, K. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    CAS  PubMed  Google Scholar 

  94. Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques, and Scoring Systems for Sleep Stages of Human Subjects (Public Health Service, US Government Printing Office, 1968).

Download references

Acknowledgements

The authors thank R. Mak-McCully for valuable assistance with data analysis, and the ISEF foundation for their continuous support. This work was supported by NIH (nos. R01AG031164, R01AG054019, RF1AG054019 and R01MH093537 to M.P.W). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.B.S and M.P.W. conceived and designed the study. E.B.S and A.R. collected the data. E.B.S, A.R. and M.P.W. analysed the data. E.B.S, A.G.H and M.P.W wrote the paper.

Corresponding authors

Correspondence to Eti Ben Simon or Matthew P. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary handling editor: Mary Elizabeth Sutherland.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sleep rested physiology in relation to next-day anxiety (PSG replication study).

(a), Anxiety association in relation to REM and non-REM sleep stages (left panel). Time spent in deep NREM sleep (NREM3) was associated with a significant reduction in next-day anxiety (right scatter plot). (b), Power in the Delta band (SWA, 0.8-4.6 Hz) during NREM sleep (left panel) was associated with lower morning anxiety (right scatter plot), most pronounced for posterior derivations (circled by a dashed line). Dashed grey lines denote zero crossing.

Extended Data Fig. 2 STAI item values (In-lab Study).

Item values for in-lab STAI-state questionnaire (mean ± SD, higher values indicate greater anxiety).

Extended Data Fig. 3 STAI item values (Online Studies).

Item values for the online short STAI-state questionnaire (day 1; mean ± SD, higher values indicate greater anxiety).

Extended Data Fig. 4 BAI item values (Online Study 2).

Item values for Beck Anxiety Inventory (day1; mean ± SD, higher values indicate greater anxiety).

Extended Data Fig. 5 Sleep Characteristics (In-lab Study).

Polysomnography sleep characteristics for the sleep-rested night (Mean ± SD). WASO, wake after sleep onset; NREM, non rapid-eye-movement sleep; SWS, slow-wave sleep (SWS, NREM stages 3 and 4); REM, rapid-eye-movement sleep.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Notes 1–4 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Simon, E., Rossi, A., Harvey, A.G. et al. Overanxious and underslept. Nat Hum Behav 4, 100–110 (2020). https://doi.org/10.1038/s41562-019-0754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-019-0754-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing