Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Socially transmitted placebo effects


Medical treatments typically occur in the context of a social interaction between healthcare providers and patients. Although decades of research have demonstrated that patients’ expectations can dramatically affect treatment outcomes, less is known about the influence of providers’ expectations. Here we systematically manipulated providers’ expectations in a simulated clinical interaction involving administration of thermal pain and found that patients’ subjective experiences of pain were directly modulated by providers’ expectations of treatment success, as reflected in the patients’ subjective ratings, skin conductance responses and facial expression behaviours. The belief manipulation also affected patients’ perceptions of providers’ empathy during the pain procedure and manifested as subtle changes in providers’ facial expression behaviours during the clinical interaction. Importantly, these findings were replicated in two more independent samples. Together, our results provide evidence of a socially transmitted placebo effect, highlighting how healthcare providers’ behaviour and cognitive mindsets can affect clinical interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental design and subjective reports of pain and beliefs of effectiveness in study 1.
Fig. 2: Objective measures of pain experience in study 1.
Fig. 3: Experimental design and subjective reports of pain and beliefs of effectiveness in study 2.
Fig. 4: Experimental design and subjective reports of pain and beliefs of effectiveness in study 3.

Data availability

The data that support the findings of this study are available at

Code availability

The code that support the findings of this study is available at


  1. 1.

    Beecher, H. K. The powerful placebo. J. Am. Med. Assoc. 159, 1602–1606 (1955).

    CAS  PubMed  Google Scholar 

  2. 2.

    Gold, H., Kwit, N. T. & Otto, H. The xanthines (theobromine and aminophylline) in the treatment of cardiac pain. J. Am. Med. Assoc. 108, 2173–2179 (1937).

    CAS  Google Scholar 

  3. 3.

    Rosenzweig, S. Some implicit common factors in diverse methods of psychotherapy. Am. J. Orthopsychiatry 6, 412–415 (1936).

    Google Scholar 

  4. 4.

    Houston, W. R. The doctor himself as a therapeutic agent. Ann. Intern. Med. 11, 1416 (1938).

    Google Scholar 

  5. 5.

    Uhlenhuth, E. H., Canter, A., Neustadt, J. O. & Payson, H. E. The symptomatic relief of anxiety with meprobamate, phenobarbital and placebo. Am. J. Psychiatry 115, 905–910 (1959).

    CAS  PubMed  Google Scholar 

  6. 6.

    Shapiro, A. K. & Shapiro, E. The Powerful Placebo: From Ancient Priest to Modern Physician (JHU Press, 2000).

  7. 7.

    Ioannidis, J. P. et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. J. Am. Med. Assoc. 286, 821–830 (2001).

    CAS  Google Scholar 

  8. 8.

    Świder, K. & Bąbel, P. The effect of the sex of a model on nocebo hyperalgesia induced by social observational learning. Pain 154, 1312–1317 (2013).

    PubMed  Google Scholar 

  9. 9.

    Vögtle, E., Barke, A. & Kröner-Herwig, B. Nocebo hyperalgesia induced by social observational learning. Pain 154, 1427–1433 (2013).

    PubMed  Google Scholar 

  10. 10.

    Colloca, L. & Benedetti, F. Placebo analgesia induced by social observational learning. Pain 144, 28–34 (2009).

    PubMed  Google Scholar 

  11. 11.

    Koban, L. & Wager, T. D. Beyond conformity: social influences on pain reports and physiology. Emotion 16, 24–32 (2016).

    PubMed  Google Scholar 

  12. 12.

    Yoshida, W., Seymour, B., Koltzenburg, M. & Dolan, R. J. Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J. Neurosci. 33, 5638–5646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Haaker, J., Yi, J., Petrovic, P. & Olsson, A. Endogenous opioids regulate social threat learning in humans. Nat. Commun. 8, 15495 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Benedetti, F., Durando, J. & Vighetti, S. Nocebo and placebo modulation of hypobaric hypoxia headache involves the cyclooxygenase-prostaglandins pathway. Pain 155, 921–928 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4, 839–849 (2017).

    PubMed  Google Scholar 

  16. 16.

    Ashar, Y. K., Chang, L. J. & Wager, T. D. Brain mechanisms of the placebo effect: an affective appraisal account. Annu. Rev. Clin. Psychol. 13, 73–98 (2017).

    PubMed  Google Scholar 

  17. 17.

    Price, D. D., Finniss, D. G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565–590 (2008).

    PubMed  Google Scholar 

  18. 18.

    Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J.-K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Benedetti, F. The Patient’s Brain: The Neuroscience Behind the Doctor–Patient Relationship (Oxford Univ. Press, 2011).

  20. 20.

    Geuter, S., Koban, L. & Wager, T. D. The cognitive neuroscience of placebo effects: concepts, predictions, and physiology. Annu. Rev. Neurosci. 40, 167–188 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    de la Fuente-Fernández, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293, 1164–1166 (2001).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Jensen, K. B. et al. Sharing pain and relief: neural correlates of physicians during treatment of patients. Mol. Psychiatry 19, 392–398 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    Olanow, C. W. et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol. 78, 248–257 (2015).

    Google Scholar 

  24. 24.

    Luborsky, L. et al. The researcher’s own therapy allegiances: a ‘wild card’ in comparisons of treatment efficacy. Clin. Psychol. Sci. Pract. 6, 95–106 (1999).

    Google Scholar 

  25. 25.

    Walach, H., Sadaghiani, C., Dehm, C. & Bierman, D. The therapeutic effect of clinical trials: understanding placebo response rates in clinical trials—a secondary analysis. BMC Med. Res. Methodol. 5, 26–37 (2005).

    Google Scholar 

  26. 26.

    Greenberg, R. P., Bornstein, R. F., Zborowski, M. J., Fisher, S. & Greenberg, M. D. A meta-analysis of fluoxetine outcome in the treatment of depression. J. Nerv. Ment. Dis. 182, 547–551 (1994).

    CAS  PubMed  Google Scholar 

  27. 27.

    Holroyd, K. A., Tkachuk, G., O’Donnell, F. & Cordingley, G. E. Blindness and bias in a trial of antidepressant medication for chronic tension-type headache. Cephalalgia 26, 973–982 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Margraf, J. et al. How ‘blind’ are double-blind studies? J. Consult. Clin. Psychol. 59, 184–187 (1991).

    CAS  PubMed  Google Scholar 

  29. 29.

    Morin, C. M. et al. How blind are double-blind placebo-controlled trials of benzodiazepine hypnotics. Sleep 18, 240–245 (1995).

    CAS  PubMed  Google Scholar 

  30. 30.

    Miller, F. G., Colloca, L. & Kaptchuk, T. J. The placebo effect: illness and interpersonal healing. Perspect. Biol. Med. 52, 518–539 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Blasini, M., Peiris, N., Wright, T. & Colloca, L. The role of patient–practitioner relationships in placebo and nocebo phenomena. Int. Rev. Neurobiol. 139, 211–231 (2018).

    PubMed  Google Scholar 

  32. 32.

    Rosenthal, R. & Rubin, D. B. Interpersonal expectancy effects: the first 345 studies. Behav. Brain Sci. 1, 377–386 (1978).

    Google Scholar 

  33. 33.

    Rosenthal, R. Interpersonal expectancy effects: a 30-year perspective. Curr. Dir. Psychol. Sci. 3, 176–179 (1994).

    Google Scholar 

  34. 34.

    Pfungst, O. Clever Hans:(The Horse of Mr. Von Osten.) A Contribution to Experimental Animal and Human Psychology (Holt, Rinehart and Winston, 1911).

  35. 35.

    Rosenthal, R. & Lawson, R. A longitudinal study of the effects of experimenter bias on the operant learning of laboratory rats. J. Psychiatr. Res. 2, 61–72 (1964).

    CAS  PubMed  Google Scholar 

  36. 36.

    Rosenthal, R. & Jacobson, L. Pygmalion in the classroom. Urban Rev. 3, 16–20 (1968).

    Google Scholar 

  37. 37.

    Rosenthal, R. Experimenter Effects in Behavioral Research (Appleton–Century–Crofts, 1966).

  38. 38.

    Doyen, S., Klein, O., Pichon, C.-L. & Cleeremans, A. Behavioral priming: it’s all in the mind but whose mind? PLoS One 7, e29081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Joyce, A. S. & Piper, W. E. Expectancy, the therapeutic alliance, and treatment outcome in short-term individual psychotherapy. J. Psychother. Pract. Res. 7, 236–248 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Meyer, B. et al. Treatment expectancies, patient alliance and outcome: further analyses from the national institute of mental health treatment of depression collaborative research program. J. Consult. Clin. Psychol. 70, 1051–1055 (2002).

    PubMed  Google Scholar 

  41. 41.

    Arnkoff, D. B., Glass, C. R. & Shapiro, S. J. in Psychotherapy Relationships that Work: Therapist Contributions and Responsiveness to Patients (ed. Norcross, J. D.) 325–346 (Oxford Univ. Press, 2002).

  42. 42.

    Gracely, R. H., Dubner, R., Deeter, W. R. & Wolskee, P. J. Clinicians expectations influence placebo analgesia. Lancet 1, 43–43 (1985).

    CAS  PubMed  Google Scholar 

  43. 43.

    Schafer, S. M., Colloca, L. & Wager, T. D. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J. Pain 16, 412–420 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Voudouris, N. J., Peck, C. L. & Coleman, G. The role of conditioning and verbal expectancy in the placebo response. Pain 43, 121–128 (1990).

    CAS  PubMed  Google Scholar 

  45. 45.

    Orne, M. T. On the social psychology of the psychological experiment: with particular reference to demand characteristics and their implications. Am. Psychol. 17, 776 (1962).

    Google Scholar 

  46. 46.

    Cheong, J., Brooks, S. & Chang, L. J. “FaceSync: Open Source Framework for Recording Facial Expressions with Head-Mounted Cameras.” F1000Res. 8, 702 (2019).

    Google Scholar 

  47. 47.

    Littlewort, G. et al. The computer expression recognition toolbox (CERT). Face Gesture 2011, 298–305 (2011).

    Google Scholar 

  48. 48.

    iMotions Biometric Research Platform v.6.0 (iMotions A/S, 2016).

  49. 49.

    Ekman, P. & Friesen, W. V. Measuring facial movement. J. Nonverbal Behav. 1, 56–75 (1976).

    Google Scholar 

  50. 50.

    Prkachin, K. M. The consistency of facial expressions of pain: a comparison across modalities. Pain 51, 297–306 (1992).

    CAS  PubMed  Google Scholar 

  51. 51.

    Lucey, P. et al. Automatically detecting pain in video through facial action units. IEEE Trans. Syst. Man Cybern. B 41, 664–674 (2011).

    Google Scholar 

  52. 52.

    Walach, H., Schimdt, S., Bihr, Y.-M. & Wiesch, S. The effects of a caffeine placebo and experimenter expectation on blood pressure, heart rate, well-being, and cognitive performance. Eur. Psychol. 6, 15 (2001).

    Google Scholar 

  53. 53.

    Walach, H., Schmidt, S., Dirhold, T. & Nosch, S. The effects of a caffeine placebo and suggestion on blood pressure, heart rate, well-being and cognitive performance. Int. J. Psychophysiol. 43, 247–260 (2002).

    PubMed  Google Scholar 

  54. 54.

    Halverson, A. M., Hallahan, M., Hart, A. J. & Rosenthal, R. Reducing the biasing effects of judges’ nonverbal behavior with simplified jury instruction. J. Appl. Psychol. 82, 590 (1997).

    Google Scholar 

  55. 55.

    Learman, L. A., Avorn, J., Everitt, D. E. & Rosenthal, R. Pygmalion in the nursing home. The effects of caregiver expectations on patient outcomes. J. Am. Geriatr. Soc. 38, 797–803 (1990).

    CAS  PubMed  Google Scholar 

  56. 56.

    Wu, L. M., Mohamed, N. E., Winkel, G. & Diefenbach, M. A. Patient and spouse illness beliefs and quality of life in prostate cancer patients. Psychol. Health 28, 355–368 (2013).

    PubMed  Google Scholar 

  57. 57.

    Wampold, B. E., Mondin, G. W., Moody, M. & Stich, F. A meta-analysis of outcome studies comparing bona fide psychotherapies: empiricially, ‘all must have prizes’. Psychol. Bull. 122, 203–215 (1997).

    Google Scholar 

  58. 58.

    Wampold, B. E. & Imel, Z. E. The Great Psychotherapy Debate: The Evidence for What Makes Psychotherapy Work (Routledge, 2015).

  59. 59.

    Weinberger, J. Common factors aren’t so common: the common factors dilemma. Clin. Psychol. Sci. Pract. 2, 45–69 (1995).

    Google Scholar 

  60. 60.

    Frank, J. D. & Frank, J. B. Persuasion and Healing: A Comparative Study of Psychotherapy (JHU Press, 1993).

  61. 61.

    Rogers, C. R. The necessary and sufficient conditions of therapeutic personality change. J. Consult. Psychol. 21, 95–103 (1957).

    CAS  PubMed  Google Scholar 

  62. 62.

    Yahne, C. E. & Miller, W. R. in Integrating Spirituality into Treatment: Resources for Practitioners (ed. Miller, W. R.) 217–233 (American Psychological Association, 1999).

  63. 63.

    Ackerman, S. J. & Hilsenroth, M. J. A review of therapist characteristics and techniques positively impacting the therapeutic alliance. Clin. Psychol. Rev. 23, 1–33 (2003).

    PubMed  Google Scholar 

  64. 64.

    Lester, G. W. & Smith, S. G. Listening and talking to patients. A remedy for malpractice suits? West. J. Med. 158, 268–272 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Luborsky, L., McLellan, A. T., Woody, G. E., O’Brien, C. P. & Auerbach, A. Therapist success and its determinants. Arch. Gen. Psychiatry 42, 602–611 (1985).

    CAS  PubMed  Google Scholar 

  66. 66.

    Okiishi, J., Lambert, M. J., Nielsen, S. L. & Ogles, B. M. Waiting for supershrink: an empirical analysis of therapist effects. Clin. Psychol. Psychother. 10, 361–373 (2003).

    Google Scholar 

  67. 67.

    Wampold, B. E. & Brown, G. S. J. Estimating variability in outcomes attributable to therapists: a naturalistic study of outcomes in managed care. J. Consult. Clin. Psychol. 73, 914–923 (2005).

    PubMed  Google Scholar 

  68. 68.

    Martin, D. J., Garske, J. P. & Davis, M. K. Relation of the therapeutic alliance with outcome and other variables: a meta-analytic review. J. Consult. Clin. Psychol. 68, 438–450 (2000).

    CAS  PubMed  Google Scholar 

  69. 69.

    Derksen, F., Bensing, J. & Lagro-Janssen, A. Effectiveness of empathy in general practice: a systematic review. Br. J. Gen. Pract. 63, e76–84 (2013).

    PubMed  Google Scholar 

  70. 70.

    Horvath, A. & Luborsky, L. The role of the therapeutic alliance in psychotherapy. J. Consult. Clin. Psychol. 61, 561–573 (1993).

    CAS  PubMed  Google Scholar 

  71. 71.

    Horvath, A. & Symonds, B. D. Relation between working alliance and outcome in psychotherapy: a meta-analysis. J. Couns. Psychol. 38, 139 (1991).

    Google Scholar 

  72. 72.

    Rakel, D. et al. Perception of empathy in the therapeutic encounter: effects on the common cold. Patient Educ. Couns. 85, 390–397 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Necka, E. A. & Atlas, L. Y. The role of social and interpersonal factors in placebo analgesia. Int. Rev. Neurobiol. 138, 161–179 (2018).

    PubMed  Google Scholar 

  74. 74.

    Thurstone, L. L. A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927).

    Google Scholar 

  75. 75.

    Fechner, G. T. Elemente der Psychophysik (Breitkopf and Hartel,1860).

  76. 76.

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Google Scholar 

  77. 77.

    Flaten, M. A., Aslaksen, P. M., Lyby, P. S. & Bjørkedal, E. The relation of emotions to placebo responses. Phil. Trans. R. Soc. Lond. B 366, 1818–1827 (2011).

    Google Scholar 

  78. 78.

    Lyby, P. S., Aslaksen, P. M. & Flaten, M. A. Is fear of pain related to placebo analgesia? J. Psychosom. Res. 68, 369–377 (2010).

    PubMed  Google Scholar 

  79. 79.

    Wager, T. D. & Atlas, L. Y. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16, 403–418 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Batt-Rawden, S. A., Chisolm, M. S., Anton, B. & Flickinger, T. E. Teaching empathy to medical students: an updated, systematic review. Acad. Med. 88, 1171–1177 (2013).

    PubMed  Google Scholar 

  81. 81.

    Sulzer, S. H., Feinstein, N. W. & Wendland, C. L. Assessing empathy development in medical education: a systematic review. Med. Educ. 50, 300–310 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fine, V. K. & Therrien, M. E. Empathy in the doctor–patient relationship: skill training for medical students. J. Med. Educ. 52, 752–757 (1977).

    CAS  PubMed  Google Scholar 

  83. 83.

    Ha, J. F. & Longnecker, N. Doctor–patient communication: a review. Ochsner J. 10, 38–43 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Vandewauw, I. et al. A TRP channel trio mediates acute noxious heat sensing. Nature 555, 662–666 (2018).

    CAS  PubMed  Google Scholar 

  85. 85.

    Jepma, M., Jones, M. & Wager, T. D. The dynamics of pain: evidence for simultaneous site-specific habituation and site-nonspecific sensitization in thermal pain. J. Pain 15, 734–746 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Davis, M. H. Measuring individual differences in empathy: evidence for a multidimensional approach. J. Pers. Soc. Psychol. 44, 113–126 (1983).

    Google Scholar 

  87. 87.

    McKinney, W. Data structures for statistical computing in Python. Proc. 9th Python Sci. Conf. 445, 51–56 (2010).

    Google Scholar 

  88. 88.

    Oliphant, T. E. A Guide to NumPy, vol. 1 (Trelgol, 2006).

  89. 89.

    Waskom, M. et al. Seaborn: Statistical Data Visualization (accessed on 15 May 2017);

  90. 90.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  91. 91.

    Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  92. 92.

    Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

    CAS  Google Scholar 

  93. 93.

    Millman, K. J. & Aivazis, M. Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011).

    Google Scholar 

  94. 94.

    Chang, L., Jolly, E., Cheong, J. H., Burnashev, A. & Chen, P.-H. A. cosanlab/nltools: 0.3.11 (Zenodo, 2018).

  95. 95.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. (2015).

  96. 96.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models. R package version 2.0-11 (2014).

  97. 97.

    Lenth, R. V. Least-squares means: the R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Google Scholar 

  98. 98.

    Jolly, E. Pymer4: connecting R and Python for linear mixed modeling. J. Open Source Softw. 3, 862 (2018).

    Google Scholar 

  99. 99.

    Werner, P. et al. Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 8, 286–99 (2017).

    Google Scholar 

  100. 100.

    Lucey, P. et al. in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 94–101 (IEEE, 2010).

  101. 101.

    Baltrušaitis, T., Robinson, P. & Morency, L. P. in IEEE Winter Conference on Applications of Computer Vision 1–10 (IEEE, 2016).

Download references


We thank M. Meyer and E. Templeton for providing comments on earlier drafts of this paper. We thank S. Byrnes for helping us to create the visualization of the facial expression models. We also thank A. Brandt and S. Sadhukha for helping with data collection. This research was supported by a Chiang Ching-Kuo Foundation for International Scholarly Exchange award (no. GS040-A-16 to P.-H.C.), a National Institute of Health grant (no. R01MH076136 to T.D.W.), National Institute of Health grants (nos. R01MH116026 and R56MH080716 to L.J.C.) and a National Science Foundation grant (no. CAREER 1848370 to L.J.C.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information




All authors designed the study. P.-H.C., J.H.C., E.J. and H.E. collected the data. P.-H.C., J.H.C. and L.J.C. analysed the data. P.-H.C., J.H.C., E.J., T.D.W. and L.J.C. wrote the paper.

Corresponding author

Correspondence to Luke J. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Mary Elizabeth Sutherland.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Statistics of all factors from models tested during the Doctor Conditioning phase in Study 1.

Factors highlighted in bold were reported in the result section.

Extended Data Fig. 2 Subjective reports from doctors and patients during the doctor–patient interaction phase in Study 1.

(A) A demonstration of the experimental design. (B) Patients reported experiencing less pain in the thermedol treatment compared to the control treatment based on their maximal pain level from their continuous pain ratings. (C) Doctors’ beliefs formed in the Doctor Conditioning phase were maintained and showed no change after administering each treatment. (D) Patients reported findings the doctors more empathetic in the thermedol treatment compared to the control treatment. All panels include data from 24 dyads. Error bars represent S.E.M.

Extended Data Fig. 3 Stats of the pain expression model.

(A) Coefficients of the pain expression (PE) model. Features are represented by max, min or tmax followed by name of action unit. Higher coefficients contribute to higher pain. (B) PE model out of sample permutation test. To test if our PE model was actually capturing meaningful signal, we evaluated the performance of our model compared to a distribution of models generated from within-subject shuffled pain ratings. We repeated this procedure 5,000 times, and found our original pain model test-set accuracy in a leave-one-subject-out cross-validation of r = .41, calculated as the average across within-subject correlations between the actual z-scored and predicted pain ratings, was at the 99.92 percentile rank (p = .003, two-tailed) suggesting that the pain model was significantly performing better than chance. (C) Permutation test for the prediction of patients’ pain ratings. We repeated a similar shuffling procedure 5,000 times in which we shuffle the pain ratings from the training set from the doctor conditioning phase then testing the model on the patients’ faces during the interaction phase to predict their pain ratings. The accuracy was determined as the average across within-subject correlations between the actual z-scored and predicted pain ratings. The PE model prediction test-set accuracy of r = .24 was at the 99.84 percentile rank (p = .003, two-tailed) suggesting that using the PE model to predict patients’ pain ratings was significantly performing better than chance.

Extended Data Fig. 4 Statistics of all factors from models tested during the Doctor Conditioning phase in Study 2.

Factors highlighted in bold were reported in the result section.

Extended Data Fig. 5 Skin conductance responses from patients in study 2.

(A) When the two treatments were administered in the original order, patients’ SCRs were significantly weaker for the thermedol than control treatment. (B) When the two treatments were administered in the reverse order, patients’ SCRs between the two treatment were not significantly different. All panels include data from 30 patients across both orders. Error bars represent S.E.M.

Extended Data Fig. 6 Statistics of all factors from models tested during the Doctor Conditioning phase in Study 3.

Factors highlighted in bold were reported in the result section.

Extended Data Fig. 7 Subjective reports of pain within each pain stimulation site from patients in Study 1 and skin conductance responses from patients in Study 3.

(A) Overall pain ratings within each site on average across both conditions indicated strong within-site habituation effect. Trial 0 indicated the practice trial for each site and trials 1 & 2 were the experimental trials. (B) The patients showed stronger SCR to the control (red) than the thermedol treatment (blue) in Study 3. Panel A includes data from 24 patients in Study 1, and panel B includes data from 24 patients in Study 3. Error bars represent S.E.M.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, PH.A., Cheong, J.H., Jolly, E. et al. Socially transmitted placebo effects. Nat Hum Behav 3, 1295–1305 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing