Rostral locus coeruleus integrity is associated with better memory performance in older adults


For decades, research into memory decline in human cognitive ageing has focused on neocortical regions, the hippocampus and dopaminergic neuromodulation. Recent findings indicate that the locus coeruleus (LC) and noradrenergic neuromodulation may also play an important role in shaping memory development in later life. However, technical challenges in quantification of LC integrity have hindered the study of LC–cognition associations in humans. Using high-resolution, neuromelanin-sensitive magnetic resonance imaging, we found that individual differences in learning and memory were positively associated with LC integrity across a variety of memory tasks in both younger (n = 66) and older adults (n = 228). Moreover, we observed functionally relevant age differences confined to rostral LC. Older adults with a more ‘youth-like’ rostral LC also showed higher memory performance. These findings link non-invasive, in vivo indices of LC integrity to memory in ageing and highlight the role of the LC norepinephrine system in the decline of cognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic overview of the verbal learning and memory task.
Fig. 2: Pictorial rendition of the structural equation model probing associations between LC integrity and memory performance in younger and older adults on a latent level.
Fig. 3: Schematic overview of the semi-automatic analysis procedure used to extract individual LC intensity values across the rostrocaudal extent.
Fig. 4: Estimated learning and memory performance trajectories for younger and older adults.
Fig. 5: Topographical age differences in LC intensity ratios and their functional implications.

Data availability

The data on which our results are based are available from the BASE-II steering committee following approval of a research proposal ( For inquiries please contact L. Müller, BASE-II project coordinator ( To facilitate comparability of study results, we freely share the established LC probability map with the neuroscientific community (

Code availability

The custom code used for these analyses is available from the corresponding authors upon request.


  1. 1.

    Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U. & Bäckman, L. Memory aging and brain maintenance. Trends Cogn. Sci. 16, 292–305 (2012).

    PubMed  Google Scholar 

  2. 2.

    Crook, T. et al. Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change—report of a National Institute of Mental Health work group. Dev. Neuropsychol. 2, 261–276 (1986).

    Google Scholar 

  3. 3.

    Prince, M. J. et al. World Alzheimer Report 2015 – The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends (Alzheimer’s Disease International, 2015).

  4. 4.

    Nyberg, L. et al. Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory. Proc. Natl Acad. Sci. USA 113, 7918–7923 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Fandakova, Y., Lindenberger, U. & Shing, Y. L. Deficits in process-specific prefrontal and hippocampal activations contribute to adult age differences in episodic memory interference. Cereb. Cortex 24, 1832–1844 (2014).

    PubMed  Google Scholar 

  6. 6.

    Lindenberger, U. Human cognitive aging: corriger la fortune? Science 346, 572–578 (2014).

    CAS  PubMed  Google Scholar 

  7. 7.

    Leslie, F. M. et al. Noradrenergic changes and memory loss in aged mice. Brain Res. 359, 292–299 (1985).

    CAS  PubMed  Google Scholar 

  8. 8.

    Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Marien, M. R., Colpaert, F. C. & Rosenquist, A. C. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res. Rev. 45, 38–78 (2004).

    CAS  PubMed  Google Scholar 

  10. 10.

    Wilson, R. S. et al. Neural reserve, neuronal density in the locus coeruleus, and cognitive decline. Neurology 80, 1202–1208 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mather, M. & Harley, C. W. The locus coeruleus: essential for maintaining cognitive function and the aging brain. Trends Cogn. Sci. 20, 214–226 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Mei, Y. et al. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 19, 659–668 (2015).

    Google Scholar 

  13. 13.

    Luo, Y. et al. Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 14, 170–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Arnsten, A. F. T. & Goldman-Rakic, P. S. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230, 1273–1276 (1985).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hämmerer, D. et al. Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl Acad. Sci. USA 115, 2228–2233 (2018).

    PubMed  Google Scholar 

  16. 16.

    Theofilas, P. et al. Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: a stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement. 13, 236–246 (2017).

    PubMed  Google Scholar 

  17. 17.

    Szabadi, E. Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 27, 659–693 (2013).

    PubMed  Google Scholar 

  18. 18.

    Fernandes, P., Regala, J., Correia, F. & Gonçalves-Ferreira, A. J. The human locus coeruleus 3-D stereotactic anatomy. Surg. Radiol. Anat. 34, 879–885 (2012).

    CAS  PubMed  Google Scholar 

  19. 19.

    German, D. C. et al. The human locus coeruleus: computer reconstruction of cellular distribution. J. Neurosci. 8, 1776–1788 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Aston-Jones, G. & Waterhouse, B. Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 1645, 75–78 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Berridge, C. W. & Waterhouse, B. D. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33–84 (2003).

    PubMed  Google Scholar 

  22. 22.

    Manaye, K. F., McIntire, D. D., Mann, D. M. A. & German, D. C. Locus coeruleus cell loss in the aging human brain: a non-random process. J. Comp. Neurol. 358, 79–87 (1995).

    CAS  PubMed  Google Scholar 

  23. 23.

    Schwarz, L. A. & Luo, L. Organization of the locus coeruleus-norepinephrine system. Curr. Biol. 25, R1051–R1056 (2015).

    CAS  PubMed  Google Scholar 

  24. 24.

    Waterhouse, B. D. & Chandler, D. J. Heterogeneous organization and function of the central noradrenergic system. Brain Res. 1641, v–x (2016).

  25. 25.

    Ordway, G. A., Schwartz, M. A. & Frazer, A. Brain Norepinephrine: Neurobiology and Therapeutics (Cambridge Univ. Press, 2007).

  26. 26.

    Arnsten, A. F. T. & Li, B. M. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol. Psychiatry 57, 1377–1384 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  Google Scholar 

  28. 28.

    Bouret, S. & Sara, S. J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    CAS  PubMed  Google Scholar 

  29. 29.

    Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    PubMed  Google Scholar 

  30. 30.

    Nieuwenhuis, S. & Jepma, M. Investigating the role of the noradrenergic system in human cognition. in Decision Making, Affect, and Learning: Attention and Performance XXIII (eds Delgado, M., et al.) 367–386 (Oxford Univ. Press, 2011).

  31. 31.

    Sara, S. J. Locus coeruleus in time with the making of memories. Curr. Opin. Neurobiol. 35, 87–94 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).

    CAS  PubMed  Google Scholar 

  33. 33.

    Hansen, N. The longevity of hippocampus-dependent memory is orchestrated by the locus coeruleus-noradrenergic system. Neural Plast. 2017, 2727602 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    O’Dell, T. J., Connor, S. A., Guglietta, R. & Nguyen, P. V. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn. Mem. 22, 461–471 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bray, N. Learning and memory: you only learn once. Nat. Rev. Neurosci. 19, 59 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    McNamara, C. G. & Dupret, D. Two sources of dopamine for the hippocampus. Trends Neurosci. 40, 383–384 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ohm, T. G., Busch, C. & Bohl, J. Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol. Aging 18, 393–399 (1997).

    CAS  PubMed  Google Scholar 

  39. 39.

    Mouton, P. R., Pakkenberg, B., Gundersen, H. J. G. & Price, D. L. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J. Chem. Neuroanat. 7, 185–190 (1994).

    CAS  PubMed  Google Scholar 

  40. 40.

    Astafiev, S. V., Snyder, A. Z., Shulman, G. L. & Corbetta, M. Comment on ‘Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI’ and ‘Jomeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area’. Science 328, 309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zecca, L. et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl Acad. Sci. USA 101, 9843–9848 (2004).

    CAS  PubMed  Google Scholar 

  43. 43.

    Mann, D. M. A. & Yates, P. O. Lipoprotein pigments–their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells. Brain 97, 489–498 (1974).

    CAS  PubMed  Google Scholar 

  44. 44.

    Marcyniuk, B., Mann, D. M. A. & Yates, P. O. The topography of nerve cell loss from the locus caeruleus in elderly persons. Neurobiol. Aging 10, 5–9 (1989).

    CAS  PubMed  Google Scholar 

  45. 45.

    Sasaki, M., Shibata, E., Kudo, K. & Tohyama, K. Neuromelanin-sensitive MRI: basics, technique, and clinical applications. Clin. Neuroradiol. 18, 147–153 (2008).

    Google Scholar 

  46. 46.

    Sasaki, M. et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17, 1215–1218 (2006).

    Google Scholar 

  47. 47.

    Liu, K. Y. et al. Magnetic resonance imaging of the human locus coeruleus: a systematic review. Neurosci. Biobehav. Rev. 83, 325–355 (2017).

    PubMed  Google Scholar 

  48. 48.

    Keren, N. I. et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage 113, 235–245 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Albert, M. S., Moss, M. B., Tanzi, R. & Jones, K. Preclinical prediction of AD using neuropsychological tests. J. Int. Neuropsychol. Soc. 7, 631–639 (2001).

    CAS  PubMed  Google Scholar 

  50. 50.

    Belleville, S., Fouquet, C., Hudon, C., Zomahoun, H. T. V. & Croteau, J. Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychol. Rev. 27, 328–353 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Moradi, E., Hallikainen, I., Hänninen, T. & Tohka, J. Rey’s auditory verbal learning test scores can be predicted from whole brain MRI in Alzheimer’s disease. NeuroImage Clin. 13, 415–427 (2017).

    PubMed  Google Scholar 

  52. 52.

    Schoenberg, M. R. et al. Test performance and classification statistics for the Rey auditory verbal learning test in selected clinical samples. Arch. Clin. Neuropsychol. 21, 693–703 (2006).

    PubMed  Google Scholar 

  53. 53.

    Zimprich, D., Rast, P. & Martin, M. Individual differences in verbal learning in old age. in Handbook of Cognitive Aging: Interdisciplinary Perspectives (eds Hofer, S. & Alwin, D.) 224–243 (SAGE Publications, 2008).

  54. 54.

    Jones, R. N. et al. A growth curve model of learning acquisition among cognitively normal older adults. Exp. Aging Res. 31, 291–312 (2005).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zimprich, D. & Rast, P. Verbal learning changes in older adults across 18 months. Neuropsychol. Dev. Cogn. B 16, 461–484 (2009).

    Google Scholar 

  56. 56.

    McArdle, J. J. Dynamic but structural equation modeling of repeated measures data. in Handbook of Multivariate Experimental Psychology (eds Nesselroade, J. R. & Cattell, R. B.) 561–614 (Springer, 1988).

  57. 57.

    Curran, P. J., Obeidat, K. & Losardo, D. Twelve frequently asked questions about growth curve modeling. J. Cogn. Dev. 11, 121–136 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kievit, R. A. et al. Developmental cognitive neuroscience using latent change score models: a tutorial and applications. Dev. Cogn. Neurosci. 33, 99–117 (2018).

    PubMed  Google Scholar 

  59. 59.

    Brown, T. A. Confirmatory Factor Analysis for Applied Research. (Guilford Press, 2006).

  60. 60.

    Eid, M., Gollwitzer, M. & Schmitt, M. Statistik und Forschungsmethoden: Lehrbuch. Grundlagen Psychologie (Beltz, 2015).

  61. 61.

    Betts, M. J., Cardenas-Blanco, A., Kanowski, M., Jessen, F. & Düzel, E. In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 163, 150–159 (2017).

    PubMed  Google Scholar 

  62. 62.

    Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    PubMed  Google Scholar 

  63. 63.

    Steiger, J. H. Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychol. Methods 9, 164–182 (2004).

    PubMed  Google Scholar 

  64. 64.

    Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).

    Google Scholar 

  65. 65.

    Schmidt, M. Rey Auditory Verbal Learning Test: A Handbook (Western Psychological Services, 2004).

  66. 66.

    Gifford, K. A. et al. Associations between verbal learning slope and neuroimaging markers across the cognitive aging spectrum. J. Int. Neuropsychol. Soc. 21, 455–467 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Priovoulos, N. et al. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 127–136 (2017).

    Google Scholar 

  68. 68.

    Chen, X. et al. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn. Reson. Imaging 32, 1301–1306 (2014).

    PubMed  Google Scholar 

  69. 69.

    Langley, J., Huddleston, D. E., Liu, C. J. & Hu, X. Reproducibility of locus coeruleus and substantia nigra imaging with neuromelanin sensitive MRI. Magn. Reson. Mater. Phys. Biol. Med. 30, 121–125 (2017).

    CAS  Google Scholar 

  70. 70.

    Tona, K. D. et al. In vivo visualization of the locus coeruleus in humans: quantifying the test–retest reliability. Brain Struct. Funct. 222, 4203–4217 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Weinshenker, D. Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci. 41, 211–223 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chalermpalanupap, T., Weinshenker, D. & Rorabaugh, J. M. Down but not out: the consequences of pretangle tau in the locus coeruleus. Neural Plast. (2017).

    Google Scholar 

  73. 73.

    Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).

    CAS  PubMed  Google Scholar 

  74. 74.

    Robertson, I. H. A noradrenergic theory of cognitive reserve: implications for Alzheimer’s disease. Neurobiol. Aging 34, 298–308 (2013).

    CAS  PubMed  Google Scholar 

  75. 75.

    Shibata, E. et al. Age-related changes in locus coeruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn. Reson. Med. Sci. 5, 197–200 (2006).

    PubMed  Google Scholar 

  76. 76.

    Clewett, D. V. et al. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol. Aging 37, 117–126 (2016).

    CAS  PubMed  Google Scholar 

  77. 77.

    Bouret, S. & Sara, S. J. Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur. J. Neurosci. 16, 2371–2382 (2002).

    PubMed  Google Scholar 

  78. 78.

    Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    PubMed  Google Scholar 

  79. 79.

    Li, S.-C., Lindenberger, U. & Sikstrom, S. Aging cognition: from neuromodulation to representation. Trends Cogn. Sci. 5, 479–486 (2001).

    PubMed  Google Scholar 

  80. 80.

    Shing, Y. L. et al. Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci. Biobehav. Rev. 34, 1080–1091 (2010).

    PubMed  Google Scholar 

  81. 81.

    Ehrenberg, A. J. et al. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 43, 393–408 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kaufman, S. K., Del Tredici, K., Thomas, T. L., Braak, H. & Diamond, M. I. Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART. Acta Neuropathol. 136, 57 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Heinsen, H. & Grinberg, L. T. On the origin of tau seeding activity in Alzheimer’s disease. Acta Neuropathol. 136, 815–817 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Grinberg, L. T. & Heinsen, H. Light at the beginning of the tunnel? Investigating early mechanistic changes in Alzheimer’s disease. Brain 140, 2770–2773 (2017).

    PubMed  Google Scholar 

  85. 85.

    Zarow, C., Lyness, S. A., Mortimer, J. A. & Chui, H. C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337 (2003).

    PubMed  Google Scholar 

  86. 86.

    Chalermpalanupap, T. et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. J. Neurosci. 38, 74–92 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Betts, M. J., Ehrenberg, A. J., Hämmerer, D. & Düzel, E. Commentary: locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. Front. Neurosci. 12, 401 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Rorabaugh, J. M. et al. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain 140, 3023–3038 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Folstein, M. F., Folstein, S. E. & McHugh, P. R. Mini-Mental State. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    CAS  PubMed  Google Scholar 

  90. 90.

    Delius, J. A. M., Düzel, S., Gerstorf, D. & Lindenberger, U. Berlin Aging Studies (BASE and BASE-II). in Encyclopedia of Geropsychology (ed. Pachana, N. A.) 386–395 (Springer, 2015).

  91. 91.

    Gerstorf, D. et al. The Berlin Aging Study II – an overview. Gerontology 62, 311–315 (2016).

    PubMed  Google Scholar 

  92. 92.

    Bertram, L. et al. Cohort profile: the Berlin Aging Study II (BASE-II). Int. J. Epidemiol. 43, 703–712 (2014).

    PubMed  Google Scholar 

  93. 93.

    Düzel, S. et al. Supplementary material for: the Subjective Health Horizon Questionnaire (SHH-Q): assessing future time perspectives for facets of an active lifestyle. Gerontology 62, 345–353 (2016).

    PubMed  Google Scholar 

  94. 94.

    von Oertzen, T., Brandmaier, A. M. & Tsang, S. Structural equation modeling with Ωnyx. Struct. Equ. Modeling 22, 148–161 (2015).

    Google Scholar 

  95. 95.

    Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    PubMed  Google Scholar 

  96. 96.

    Avants, B. B., Tustison, N. & Song, G. Advanced normalization tools: V1.0. Insight J. 2, 1–35 (2009).

    Google Scholar 

  97. 97.

    Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46, 786–802 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Friston, K. J. Experimental design and Statistical Parametric Mapping. in Human Brain Function (eds Frackowiak, R. S. J. et al.) 599–632 (Academic Press, 2004).

  99. 99.

    Dahl, M. J., Ilg, L., Li, S.-C., Passow, S. & Werkle-Bergner, M. Diminished pre-stimulus alpha-lateralization suggests compromised self-initiated attentional control of auditory processing in old age. Neuroimage 197, 414–424 (2019).

    PubMed  Google Scholar 

Download references


This article uses data from the Berlin Aging Study II (BASE-II), which was supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung) under grant nos. 16SV5536 K, 16SV5537, 16SV5538, 16SV5837, 01UW070 and 01UW0808. Additional contributions (for example, financial, equipment, logistics, personnel) were provided by each of the other participating sites—that is, the Max Planck Institute for Human Development, Max Planck Institute for Molecular Genetics, Charité-Universitätsmedizin, German Institute for Economic Research and Humboldt-Universität zu Berlin, all located in Berlin, Germany; and the Universities of Lübeck and Tübingen, Germany. For further information about the BASE-II project, see M.W.-B. received support from the German Research Foundation (grant no. WE 4269/5-1) and the Jacobs Foundation (Early Career Research Fellowship 2017–2019). M.J.D. recieves support from a fellowship with the International Max Planck Research School on the Life Course ( M.J.D. is recipient of a stipend from the Sonnenfeld-Foundation ( M.M. was supported by an Alexander von Humboldt fellowship and by National Institutes of Health (grant no. R01AG025340). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank A. Bender, M. Betts and M. Sander for valuable discussions and assistance. We are grateful to S. Bachman and D. Zorbek, who performed the manual tracing of the LC, as well as Y. Köhncke and Y. Fandakova for statistical advice and M. Krause for help with cluster computing.

Author information




U.L. and S.K. designed the broader BASE-II study. M.J.D., M.W.-B., M.M., S.K. and N.C.B. designed the additional LC component. S.D. performed the experiments. M.J.D. and M.W.-B. analysed the data. M.J.D. and M.W.-B. wrote the manuscript. U.L., S.K., M.M., S.D. and N.C.B. gave conceptual advice. All authors revised the manuscript.

Corresponding authors

Correspondence to Martin J. Dahl or Markus Werkle-Bergner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer Review Information: Primary Handling Editor: Marike Schiffer

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figs. 1 and 2, Supplementary Results (including Supplementary Tables 2–12 and Supplementary Figs. 3–16), Supplementary Discussion and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahl, M.J., Mather, M., Düzel, S. et al. Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nat Hum Behav 3, 1203–1214 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing