Idiosyncratic choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics

A Publisher Correction to this article was published on 20 November 2019

This article has been updated

Abstract

Idiosyncratic tendency to choose one alternative over others in the absence of an identified reason is a common observation in two-alternative forced-choice experiments. Here we quantify idiosyncratic choice biases in a perceptual discrimination task and a motor task. We report substantial and significant biases in both cases that cannot be accounted for by the experimental context. Then, we present theoretical evidence that even in an idealized experiment, in which the settings are symmetric, idiosyncratic choice bias is expected to emerge from the dynamics of competing neuronal networks. We thus argue that idiosyncratic choice bias reflects the microscopic dynamics of choice and therefore is virtually inevitable in any comparison or decision task.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ICBs in the vertical bisection task.
Fig. 2: ICBs in the motor task.
Fig. 3: The Poisson network model.
Fig. 4: ICBs in the Poisson network model.
Fig. 5: The recurrent spiking network model.
Fig. 6: ICBs in the recurrent spiking network model.
Fig. 7: Conditional bias functions.

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author and in the ICB repository, https://github.com/Lior-Lebovich/ICB.

Code availability

The custom codes used for simulations and analyses are in the ICB repository, https://github.com/Lior-Lebovich/ICB.

Change history

  • 20 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Poulton, E. C. Bias in Quantifying Judgements. (Lawrence Erlbaum, 1989).

  2. 2.

    Green, D. M. & Swets, A. J. Signal detection theory and psychophysics. (Peninsula Press, 1966).

  3. 3.

    Klein, S. A. Measuring, estimating, and understanding the psychometric function: a commentary. Atten. Percept. Psychophys. 63, 1421–1455 (2001).

    CAS  Google Scholar 

  4. 4.

    Linares, D., Aguilar-Lleyda, D. & López-Moliner, J. Decoupling sensory from decisional choice biases in perceptual decision making. eLife 8, https://doi.org/10.7554/eLife.43994 (2019).

  5. 5.

    Baum, W. M. On two types of deviation from the matching law: bias and undermatching. J. Exp. Anal. Behav. 22, 231–242 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Laquitaine, S., Piron, C., Abellanas, D., Loewenstein, Y. & Boraud, T. Complex population response of dorsal putamen neurons predicts the ability to learn. PLoS One 8, e80683 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Barraclough, D. J., Conroy, M. L. & Lee, D. Prefrontal cortex and decision making in a mixed-strategy game. Nat. Neurosci. 7, 404–410 (2004).

    CAS  PubMed  Google Scholar 

  8. 8.

    Ashourian, P. & Loewenstein, Y. Bayesian inference underlies the contraction bias in delayed comparison tasks. PLoS One 6, e19551 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Raviv, O., Ahissar, M. & Loewenstein, Y. How recent history affects perception: the normative approach and its heuristic approximation. PLoS Comput. Biol. 8, e1002731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yeshurun, Y., Carrasco, M. & Maloney, L. T. Bias and sensitivity in two-interval forced choice procedures: tests of the difference model. Vis. Res. 48, 1837–1851 (2008).

    PubMed  Google Scholar 

  11. 11.

    Skinner, B. F. The Behavior of Organisms: An Experimental Analysis. (Appleton Century Crofts, 1938).

  12. 12.

    Thorndike, E. L. Animal Intelligence. (Macmillan, 1911).

  13. 13.

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    PubMed  Google Scholar 

  14. 14.

    Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kira, S., Yang, T. & Shadlen, M. N. A neural implementation of Wald’s sequential probability ratio test. Neuron 85, 861–873 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Google Scholar 

  18. 18.

    Ratcliff, R. & Smith, P. L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111, 333–367 (2004).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    White, C. N. & Poldrack, R. A. Decomposing bias in different types of simple decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 385–398 (2014).

    PubMed  Google Scholar 

  20. 20.

    Ratcliff, R. Theoretical interpretations of the speed and accuracy of positive and negative responses. Psychol. Rev. 92, 212–225 (1985).

    CAS  PubMed  Google Scholar 

  21. 21.

    Leite, F. P. & Ratcliff, R. What cognitive processes drive response biases? A diffusion model analysis. Judgm. Decis. Mak. 6, 651–687 (2011).

    Google Scholar 

  22. 22.

    Mulder, M. J., Wagenmakers, E., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Google Scholar 

  24. 24.

    Shinomoto, S., Shima, K. & Tanji, J. Differences in spiking patterns among cortical neurons. Neural Comput. 15, 2823–2842 (2003).

    PubMed  Google Scholar 

  25. 25.

    Hromadka, T., Deweese, M. R. & Zador, A. M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Roxin, A., Brunel, N., Hansel, D., Mongillo, G. & Vreeswijk, C. Van. On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31, 16217–16226 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Mongillo, G., Rumpel, S. & Loewenstein, Y. Inhibitory connectivity defines the realm of excitatory plasticity. Nat. Neurosci. 21, 1463–1467 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Amari, S. I. & Arbib, M. A. Competition and cooperation in neural nets. in Systems Neuroscience (ed. Metzler, J.) 119–165 (1977).

  31. 31.

    Wang, X. J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    CAS  PubMed  Google Scholar 

  32. 32.

    Feller, W. An Introduction to Probability Theory and Its Applications. (Wiley, 1968).

  33. 33.

    Smith, P. L. A note on the distribution of response times for a random walk with Gaussian increments. J. Math. Psychol. 34, 445–459 (1990).

    Google Scholar 

  34. 34.

    Broderick, T., Wong-lin, K. F. & Holmes, P. Closed-form approximations of first-passage distributions for a stochastic decision-making model. Appl. Math. Res. eXpress 2009, 123–141 (2009).

    PubMed  Google Scholar 

  35. 35.

    Urai, A. E., De Gee, J. W., Tsetsos, K. & Donner, T. H. Choice history biases subsequent evidence accumulation. eLife 8, e46331 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    De Gee, J. W. et al. Dynamic modulation of decision biases by brainstem arousal systems. eLife 6, e23232 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rorie, A. E., Gao, J., Mcclelland, J. L. & Newsome, W. T. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One 5, e9308 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J. Neurosci. 31, 6339–6352 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bernacchia, A., Seo, H., Lee, D. & Wang, X. A reservoir of time constants for memory traces in cortical neurons. Nat. Neurosci. 14, 366–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Van Vreeswijk, C. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321–1371 (1998).

    PubMed  Google Scholar 

  41. 41.

    Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Darshan, R., Wood, W. E., Peters, S., Leblois, A. & Hansel, D. A canonical neural mechanism for behavioral variability. Nat. Commun. 8, 1–13 (2017).

    Google Scholar 

  43. 43.

    Doiron, B., Litwin-kumar, A., Rosenbaum, R., Ocker, G. K. & Josić, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wimmer, K. et al. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6, 6177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Levy, R. B. & Reyes, A. D. Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J. Neurosci. 32, 5609–5619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).

    CAS  PubMed  Google Scholar 

  47. 47.

    Mi, Y., Katkov, M. & Tsodyks, M. Synaptic correlates of working memory capacity. Neuron 93, 323–330 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Najafi, F. et al. Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/354340v5 (2018).

  49. 49.

    Ferster, C. B. & Skinner, B. F. Schedules of Reinforcement. (Appleton Century Crofts, 1957).

  50. 50.

    Mongillo, G., Shteingart, H. & Loewenstein, Y. The misbehavior of reinforcement learning. Proc. IEEE 102, 528–541 (2014).

    Google Scholar 

  51. 51.

    Shteingart, H. & Loewenstein, Y. Reinforcement learning and human behavior. Curr. Opin. Neurobiol. 25, 93–98 (2014).

    CAS  PubMed  Google Scholar 

  52. 52.

    Körding, K. Decision theory: what “should” the nervous system do? Science 318, 606–610 (2007).

    PubMed  Google Scholar 

  53. 53.

    Buchanan, S. M., Kain, J. S. & de Bivort, B. L. Neuronal control of locomotor handedness in Drosophila. Proc. Natl Acad. Sci. 112, 6700–6705 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Horton, J. J., Rand, D. G. & Zeckhauser, R. J. The online laboratory: conducting experiments in a real labor market. Exp. Econ. 14, 399–425 (2011).

    Google Scholar 

  55. 55.

    Jewell, G. & Mccourt, M. E. Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38, 93–110 (2000).

    CAS  PubMed  Google Scholar 

  56. 56.

    Gentet, L. J., Avermann, M., Matyas, F., Staiger, J. F. & Petersen, C. C. H. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hansel, D., Mato, G., Meunier, C. & Neltner, L. On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10, 467–483 (1998).

    CAS  PubMed  Google Scholar 

  58. 58.

    Ratcliff, R., Cherian, A. & Segraves, M. A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J. Neurophysiol. 90, 1392–1407 (2003).

    PubMed  Google Scholar 

  59. 59.

    Philiastides, M. G., Ratcliff, R. & Sajda, P. Neural representation of task difficulty and decision making during perceptual categorization: A timing diagram. J. Neurosci. 26, 8965–8975 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. re 9, 467–479 (2008).

    CAS  Google Scholar 

  61. 61.

    Ratcliff, R. Modeling response signal and response time data. Cogn. Psychol. 53, 195–237 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ratcliff, R. Continuous versus discrete information processing: modeling accumulation of partial information. Psychol. Rev. 95, 238–255 (1988).

    CAS  PubMed  Google Scholar 

  63. 63.

    Kiani, R., Hanks, T. D. & Shadlen, M. N. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28, 3017–3029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Ratcliff, R. & Tuerlinckx, F. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychon. Bull. Rev. 9, 438–481 (2002).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

    Google Scholar 

  66. 66.

    Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: hierarchical bayesian estimation of the drift-diffusion model in python. Front. Neuroinform. 7, 14 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Matzke, D. & Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychon. Bull. Rev. 16, 798–817 (2009).

    PubMed  Google Scholar 

  68. 68.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  69. 69.

    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    Google Scholar 

  70. 70.

    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).

    Google Scholar 

Download references

Acknowledgements

We thank T. Boraud, G. Mongillo, H. Sompolinsky and T. Tron for discussions and L. Kaplan for assistance with the online experiments. This work was conducted within the scope of the France-Israel Laboratory of Neuroscience. D. H. thanks the Department of Neurobiology at the Hebrew University for its warm hospitality. This work was supported by the Israel Science Foundation (Y. LO., Grant No. 757/16), the DFG (CRC 1080 to Y. LO.), the Gatsby Charitable Foundation (Y. LO.), ANR-09-SYSC-002-01 (D. H.) and the France-Israel High Council for Science and Technology (D. H. and Y. LO.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

L. L., Y. Lavi, D. H. and Y. Loewenstein. conceived and planned the experiments; L. L., R. D., D. H. and Y. Loewenstein. developed the models; L. L., D. H. and Y. Loewenstein. wrote the manuscript.

Corresponding author

Correspondence to Lior Lebovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Mary Elizabeth Sutherland

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebovich, L., Darshan, R., Lavi, Y. et al. Idiosyncratic choice bias naturally emerges from intrinsic stochasticity in neuronal dynamics. Nat Hum Behav 3, 1190–1202 (2019). https://doi.org/10.1038/s41562-019-0682-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing