Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A library of human electrocorticographic data and analyses

Abstract

Electrophysiological data from implanted electrodes in the human brain are rare, and therefore scientific access to such data has remained somewhat exclusive. Here we present a freely available curated library of implanted electrocorticographic data and analyses for 16 behavioural experiments, with 204 individual datasets from 34 patients recorded with the same amplifiers and at the same settings. For each dataset, electrode positions were carefully registered to brain anatomy. A large set of fully annotated analysis scripts with which to interpret these data is embedded in the library alongside them. All data, anatomical locations and analysis files (MATLAB code) are provided in a shared file structure at https://searchworks.stanford.edu/view/zk881ps0522.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental recordings.
Fig. 2: The ECoG signal.

Panel b was adapted from Ramon y Cajal’s cortex drawings.

Fig. 3: An example of basic ECoG changes when a cortical area becomes active.
Fig. 4: Comparison of broadband and ERP changes across the ventral brain surface.
Fig. 5: Methods for localizing electrode position relative to brain anatomy.
Fig. 6: Illustrating a range of analyses for a specific setting.

Similar content being viewed by others

References

  1. Katzner, S. et al. Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009).

    Article  CAS  Google Scholar 

  2. Miller, K. J. Broadband spectral change: evidence for a macroscale correlate of population firing rate? J. Neurosci. 30, 6477 (2010).

    Article  CAS  Google Scholar 

  3. Miller, K. J. et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 85(Pt 2), 711–720 (2014).

    Article  Google Scholar 

  4. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Article  Google Scholar 

  5. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in LFP power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Article  CAS  Google Scholar 

  6. Gazzaniga, M. S. The Cognitive Neurosciences (MIT Press, 2009).

  7. Miller, K. J., Zanos, S., Fetz, E. E., den Nijs, M. & Ojemann, J. G. Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J. Neurosci. 29, 3132 (2009).

    Article  CAS  Google Scholar 

  8. Miller, K. J., Hermes, D., Witthoft, N., Rao, R. P. & Ojemann, J. G. The physiology of perception in human temporal lobe is specialized for contextual novelty. J. Neurophysiol. 114, 256–263 (2015).

    Article  CAS  Google Scholar 

  9. Miller, K. J., Makeig, S., Hebb, A. O., Rao, R. P. & Ojemann, J. G. Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: The “Location on Cortex” (LOC) package for MATLAB. J. Neurosci. Methods 162, 303–308 (2007).

    Article  Google Scholar 

  10. Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J. & Ramsey, N. F. Automated electrocorticographic electrode localization on individually rendered brain surfaces. J. Neurosci. Methods 185, 293–298 (2010).

    Article  Google Scholar 

  11. Crone, N. E. et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121, 2271–2299 (1998).

    Article  Google Scholar 

  12. Crone, N. E., Miglioretti, D. L., Gordon, B. & Lesser, R. P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998).

    Article  Google Scholar 

  13. Miller, K. J. et al. Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007).

    Article  CAS  Google Scholar 

  14. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & Nijs, M. D. ECoG observations of power-law scaling in the human cortex. Preprint at arXiv https://arxiv.org/abs/0712.0846v1 (2007).

  15. Miller, K. J. et al. Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task. Front Hum. Neurosci. 4, 197 (2010).

    Article  Google Scholar 

  16. Miller, K. J., Hermes, D., Pestilli, F., Wig, G. S. & Ojemann, J. G. Face percept formation in human ventral temporal cortex. J. Neurophysiol. 118, 2614–2627 (2017).

    Article  Google Scholar 

  17. Miller, K. J., Abel, T. J., Hebb, A. O. & Ojemann, J. G. Rapid online language mapping with electrocorticography. J. Neurosurg. Pediatr. 7, 482–490 (2011).

  18. Miller, K. J. et al. Human motor cortical activity is selectively phase-entrained on underlying rhythms. PLoS Comput. Biol. 8, e1002655 (2012).

    Article  CAS  Google Scholar 

  19. Hermes, D. et al. Cortical theta wanes for language. Neuroimage 85, 738–748 (2014).

    Article  Google Scholar 

  20. Hanslmayr, S. et al. Alpha phase reset contributes to the generation of ERPs. Cereb. Cortex 17, 1–8 (2006).

    Article  Google Scholar 

  21. Schalk, G. A general framework for dynamic cortical function: the function-through-biased-oscillations (FBO) hypothesis. Front. Hum. Neurosci. 9, 352 (2015).

    Article  Google Scholar 

  22. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4, 186 (2010).

    Article  Google Scholar 

  23. Hermes, D., Miller, K., Wandell, B. & Winawer, J. Stimulus dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25, 2951–2959 (2014).

    Article  Google Scholar 

  24. Davis, P. A. Effects of acoustic stimuli on the waking human brain. J. Neurophysiol. 2, 494–499 (1939).

    Article  Google Scholar 

  25. Jasper, H. & Penfield, W. Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus. Arch. f.ür. Psychiatr. und Nervenkrankh. 183, 163–174 (1949).

    Article  Google Scholar 

  26. Miller, K. J., Schalk, G., Hermes, D., Ojemann, J. G. & Rao, R. P. Spontaneous decoding of the timing and content of human object perception from cortical surface recordings reveals complementary information in the event-related potential and broadband spectral change. PLoS Comput. Biol. 12, e1004660 (2016).

    Article  Google Scholar 

  27. University of Pennsylvania. Restoring Active Memory (RAM) http://memory.psych.upenn.edu/RAM (2018).

  28. Paulson, T. Thought powers computer, Seattle Post-Intelligencer (16 December 2004).

  29. Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).

    Article  Google Scholar 

  30. Ojemann, G., Ojemann, J., Lettich, E. & Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 71, 316 (1989).

    Article  CAS  Google Scholar 

  31. Ojemann, G. A. Models of the brain organization for higher integrative functions derived with electrical stimulation techniques. Hum. Neurobiol. 1, 243 (1982).

    CAS  PubMed  Google Scholar 

  32. Fox, P. T., Perlmutter, J. S. & Raichle, M. E. A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 9, 141–153 (1985).

    Article  CAS  Google Scholar 

  33. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  Google Scholar 

  34. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    Article  Google Scholar 

  35. Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  36. Miller, K. J. et al. Brain surface electrode co-registration using MRI and X-ray. Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE 6015–6018 (IEEE, 2010).

  37. Porat, B. A Course in Digital Signal Processing (Wiley, 1997).

  38. Goupillaud, P., Grossmann, A. & Morlet, J. Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23, 85–102 (1984).

    Article  Google Scholar 

  39. Pakkenberg, B. & Gundersen, H. J. G. Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320 (1997).

    Article  CAS  Google Scholar 

  40. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985).

    Article  CAS  Google Scholar 

  41. Schalk, G. et al. Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008).

    Article  CAS  Google Scholar 

  42. Miller, K. J. et al. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc. Natl Acad. Sci. USA 108, 4430–4435 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to J. Ojemann, M. den Nijs, R. Rao and G. Schalk for many years of selfless mentorship during the development of this library. D. Hermes, R. Eisinger and B. Wandell provided many helpful discussions about open data and helped with critical readings of this manuscript. The scientific value of the time spent by our patients at Harborview Hospital in Seattle is immense and I am thankful for their enthusiastic participation. I am financially supported by the Van Wagenen Foundation. Data collection was supported by NSF grant no. BCS-0642848 and NIH grant no. RO1NS065186. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai J. Miller.

Ethics declarations

Competing interests

The author has no competing interests.

Additional information

Peer review information: Primary Handling Editor: Marike Schiffer.

Additional information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, K.J. A library of human electrocorticographic data and analyses. Nat Hum Behav 3, 1225–1235 (2019). https://doi.org/10.1038/s41562-019-0678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-019-0678-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing