Neurocomputational mechanisms underlying motivated seeing

Abstract

People tend to believe that their perceptions are veridical representations of the world, but also commonly report perceiving what they want to see or hear. It remains unclear whether this reflects an actual change in what people perceive or merely a bias in their responding. Here we manipulated the percept that participants wanted to see as they performed a visual categorization task. Even though the reward-maximizing strategy was to perform the task accurately, the manipulation biased participants’ perceptual judgements. Motivation increased neural activity selective for the motivationally relevant category, indicating a bias in participants’ neural representation of the presented image. Using a drift diffusion model, we decomposed motivated seeing into response and perceptual components. Response bias was associated with anticipatory activity in the nucleus accumbens, whereas perceptual bias tracked category-selective neural activity. Our results provide a computational description of how the drive for reward leads to inaccurate representations of the world.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental design.
Fig. 2: Motivation biases visual categorization.
Fig. 3: Modeling results.
Fig. 4: DDM accounts for asymmetries in reaction times.
Fig. 5: Neural correlates of motivational bias.
Fig. 6: NAcc activation is associated with response bias.
Fig. 7: Motivation biases face-selective and scene-selective neural activity during visual categorization.

Data availability

The data that support the findings of this study are available from the corresponding author on request. Behavioural data of both the reported experiment and the in-lab replication are available at: https://github.com/ycleong/MotivatedPerception. The unthresholded p-map of the motivation consistent–motivation inconsistent contrast is available at: https://neurovault.org/collections/EAAXGDRJ/images/62743/.

Code availability

The custom code for the modelling and neuroimaging analyses is included in the Supplementary Software. The live version of the code is available at https://github.com/ycleong/MotivatedPerception.

References

  1. 1.

    Bruner, J. S. & Goodman, C. C. Value and need as organizing factors in perception. J. Abnorm. Soc. Psychol. 42, 33–44 (1947).

  2. 2.

    Dunning, D. & Balcetis, E. Wishful seeing: how preferences shape visual perception. Curr. Dir. Psychol. Sci. 22, 33–37 (2013).

  3. 3.

    Hastorf, A. H. & Cantril, H. They saw a game; a case study. J. Abnorm. Soc. Psychol. 49, 129–134 (1954).

  4. 4.

    Balcetis, E. & Dunning, D. See what you want to see: motivational influences on visual perception. J. Pers. Soc. Psychol. 91, 612–625 (2006).

  5. 5.

    Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108, 480–498 (1990).

  6. 6.

    Goldiamond, I. Indicators of perception: I. Subliminal perception, subception, unconscious perception: an analysis in terms of psychophysical indicator methodology. Psychol. Bull. 55, 373–411 (1958).

  7. 7.

    Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229 (2016).

  8. 8.

    Forstmann, B. U., Ratcliff, R. & Wagenmakers, E.-J. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67, 641–666 (2016).

  9. 9.

    Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

  10. 10.

    Berridge, K. C. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).

  11. 11.

    Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159 (2001).

  12. 12.

    Floresco, S. B. The nucleus accumbens: an interface between cognition, emotion, and action. Annu. Rev. Psychol. 66, 25–52 (2015).

  13. 13.

    Ikemoto, S. & Panksepp, J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res. Rev. 31, 6–41 (1999).

  14. 14.

    Nicola, S. M. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191, 521–550 (2007).

  15. 15.

    McGinty, V. B., Lardeux, S., Taha, S. A., Kim, J. J. & Nicola, S. M. Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78, 910–922 (2013).

  16. 16.

    Stopper, C. M. & Floresco, S. B. Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn. Affect. Behav. Neurosci. 11, 97–112 (2011).

  17. 17.

    Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

  18. 18.

    Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).

  19. 19.

    Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

  20. 20.

    Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. A general mechanism for perceptual decision-making in the human brain. Nature 431, 859–862 (2004).

  21. 21.

    Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

  22. 22.

    Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

  23. 23.

    Hasson, U., Hendler, T., Bashat, D. B. & Malach, R. Vase or face? A neural correlate of shape-selective grouping processes in the human brain. J. Cogn. Neurosci. 13, 744–753 (2001).

  24. 24.

    White, C. N. & Poldrack, R. A. Decomposing bias in different types of simple decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 385–398 (2014).

  25. 25.

    Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: hierarchical Bayesian estimation of the drift-diffusion model in Python. Front. Neuroinform. 7, 14 (2013).

  26. 26.

    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).

  27. 27.

    Boehm, U. et al. Estimating across-trial variability parameters of the diffusion decision model: expert advice and recommendations. J. Math. Psychol. 87, 46–75 (2018).

  28. 28.

    Allport, F. H. Theories of Perception and the Concept of Structure: A Review and Critical Analysis with an Introduction to a Dynamic-Structural Theory of Behavior (John Wiley & Sons, 1955).

  29. 29.

    Bruner, J. S. On perceptual readiness. Psychol. Rev. 64, 123–152 (1957).

  30. 30.

    Balcetis, E., Dunning, D. & Granot, Y. Subjective value determines initial dominance in binocular rivalry. J. Exp. Soc. Psychol. 48, 122–129 (2012).

  31. 31.

    Balcetis, E. & Dunning, D. Wishful seeing: more desired objects are seen as closer. Psychol. Sci. 21, 147–152 (2010).

  32. 32.

    van Koningsbruggen, G. M., Stroebe, W. & Aarts, H. Through the eyes of dieters: biased size perception of food following tempting food primes. J. Exp. Soc. Psychol. 47, 293–299 (2011).

  33. 33.

    Voss, A., Rothermund, K. & Brandtstädter, J. Interpreting ambiguous stimuli: separating perceptual and judgmental biases. J. Exp. Soc. Psychol. 44, 1048–1056 (2008).

  34. 34.

    Moran, R. Optimal decision making in heterogeneous and biased environments. Psychon. Bull. Rev. 22, 38–53 (2015).

  35. 35.

    Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E. & Shadlen, M. N. Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J. Neurosci. 31, 6339–6352 (2011).

  36. 36.

    Serences, J. T. Value-based modulations in human visual cortex. Neuron 60, 1169–1181 (2008).

  37. 37.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

  38. 38.

    Petersen, S. E. & Posner, M. I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012).

  39. 39.

    Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

  40. 40.

    Menon, V. in Brain Mapping (ed. Toga, A. W.) 597–611 (Academic Press, 2015).

  41. 41.

    Sridharan, D., Levitin, D. J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl Acad. Sci. USA 105, 12569–12574 (2008).

  42. 42.

    Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. Dissociable neural mechanisms track evidence accumulation for selection of attention versus action. Nat. Commun. 9, 2485 (2018).

  43. 43.

    Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

  44. 44.

    Feng, S., Holmes, P., Rorie, A. & Newsome, W. T. Can monkeys choose optimally when faced with noisy stimuli and unequal rewards? PLoS Comput. Biol. 5, e1000284 (2009).

  45. 45.

    Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J. Neurosci. 32, 2335–2343 (2012).

  46. 46.

    Rorie, A. E., Gao, J., McClelland, J. L. & Newsome, W. T. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One 5, e9308 (2010).

  47. 47.

    Summerfield, C. & Koechlin, E. Economic value biases uncertain perceptual choices in the parietal and prefrontal cortices. Front. Hum. Neurosci. 4, 208 (2010).

  48. 48.

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

  49. 49.

    Flagan, T., Mumford, J. A. & Beer, J. S. How do you see me? The neural basis of motivated meta-perception. J. Cogn. Neurosci. 29, 1908–1917 (2017).

  50. 50.

    Hughes, B. L. & Beer, J. S. Orbitofrontal cortex and anterior cingulate cortex are modulated by motivated social cognition. Cereb. Cortex 22, 1372–1381 (2012).

  51. 51.

    Korn, C. W., Prehn, K., Park, S. Q., Walter, H. & Heekeren, H. R. Positively biased processing of self-relevant social feedback. J. Neurosci. 32, 16832–16844 (2012).

  52. 52.

    Hughes, B. L. & Zaki, J. The neuroscience of motivated cognition. Trends Cogn. Sci. 19, 62–64 (2015).

  53. 53.

    Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri, S. Behavioural and neural characterization of optimistic reinforcement learning. Nat. Hum. Behav. 1, 0067 (2017).

  54. 54.

    Sharot, T., Korn, C. W. & Dolan, R. J. How unrealistic optimism is maintained in the face of reality. Nat. Neurosci. 14, 1475–1479 (2011).

  55. 55.

    Ma, D. S., Correll, J. & Wittenbrink, B. The Chicago face database: a free stimulus set of faces and norming data. Behav. Res. Methods 47, 1122–1135 (2015).

  56. 56.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

  57. 57.

    Knoblauch, K. & Maloney, L. T. Modeling Psychophysical Data in R (Springer, 2012).

  58. 58.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  59. 59.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

  60. 60.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2003).

  61. 61.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

  62. 62.

    Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83–98 (2009).

  63. 63.

    Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neruoinform. 8, 14 (2014).

  64. 64.

    Hughes, B. L., Zaki, J. & Ambady, N. Motivation alters impression formation and related neural systems. Soc. Cogn. Affect. Neurosci. 12, 49–60 (2017).

Download references

Acknowledgements

We thank I. Ballard and members of the Stanford Social Neuroscience Laboratory for scientific discussions and helpful comments on earlier versions of the manuscript. The research was supported by the Wu Tsai Neuroscience Institute NeuroChoice Initiative. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Y.C.L., B.L.H. and J.Z. designed the study. Y.C.L. and Y.W. collected and analysed the data. Y.C.L. and J.Z. wrote the manuscript, with revisions from Y.W. and B.L.H.

Correspondence to Yuan Chang Leong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Mary Elizabeth Sutherland.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information

Supplementary Notes 1–4, Supplementary Figures 1–8, Supplementary Tables 1–5, and Supplementary References.

Reporting Summary

Supplementary Software

Custom code for the multivariate analyses and drift diffusion models that are described in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark