Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A social interaction field model accurately identifies static and dynamic social groupings


Identifying whether people are part of a group is essential for humans to understand social interactions in social activities. Previous studies have focused mainly on the perceptual grouping of low-level visual features. However, very little attention has been paid to grouping in social scenes. Here we implemented virtual reality technology to manipulate characteristics of avatars in virtual scenes. We found that closer interpersonal distances, more direct interpersonal angles and more open avatar postures led to a higher probability of a group being judged as interactive. We developed a social interaction field model that describes a front−back asymmetric social interaction field. This model accurately predicts participants’ perceptual judgements of social grouping in real static and dynamic social scenes. Our findings indicate that the social interaction field model is an efficient computational framework for analysing social interactions and provides insight into how human observers perceive the interactions of others, enabling the identification of social groups.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Social interaction field deduced from behavioural data.

Body of the avatar in a, Unity Technologies

Fig. 2: The impact of postural openness on interaction judgement.

Body of the avatar in a, Unity Technologies

Fig. 3: The extension of the SIFM to multiple people.

Panel c, University of Reading

Fig. 4: SIFM predictions for social grouping in static and dynamic scenes.

Images in a adapted from University of Reading (left); ref. 54 and ref. 59, Springer (middle); and ref. 55, IEEE, The Technologies of Vision (TeV) team of Fondazione Bruno Kessler (right)

Fig. 5: SIFM predictions for actual human interaction behaviours.

Data availability

All data that support our findings are publicly available at

Code availability

The code for data analysis and modelling is available at


  1. Gallup, A. C. et al. Visual attention and the acquisition of information in human crowds. Proc. Natl Acad. Sci. USA 109, 7245–7250 (2012).

    CAS  Article  Google Scholar 

  2. Henderson, J. M. & Hollingworth, A. High-level scene perception. Annu. Rev. Psychol. 50, 243–271 (1999).

    CAS  Article  Google Scholar 

  3. Fletcher-Watson, S., Findlay, J. M., Leekam, S. R. & Benson, V. Rapid detection of person information in a naturalistic scene. Perception 37, 571–583 (2008).

    Article  Google Scholar 

  4. De Jaegher, H., Di Paolo, E. & Gallagher, S. Can social interaction constitute social cognition? Trends Cogn. Sci. 14, 441–447 (2010).

    Article  Google Scholar 

  5. Kendon, A. Conducting Interaction: Patterns of Behavior in Focused Encounters (Cambridge Univ. Press, 1990).

  6. Wagemans, J. et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychol. Bull. 138, 1172–1217 (2012).

    Article  Google Scholar 

  7. Wagemans, J. et al. A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychol. Bull. 138, 1218–1252 (2012).

    Article  Google Scholar 

  8. Field, D. J., Hayes, A. & Hess, R. F. Contour integration by the human visual system: evidence for a local “association field”.Vis. Res. 33, 173–193 (1993).

    CAS  Article  Google Scholar 

  9. Kubovy, M. & Wagemans, J. Grouping by proximity and multistability in dot lattices. Psychol. Sci. 6, 225–234 (1995).

    Article  Google Scholar 

  10. Grossberg, S. & Pessoa, L. Texture segregation, surface representation and figure−ground separation. Vis. Res. 38, 2657–2684 (1998).

    CAS  Article  Google Scholar 

  11. Wagemans, J. in The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience Vol. 2 (ed. Wixted, J. T.) 803–872 (Wiley, 2018).

  12. Hall, E. T. in The Hidden Dimension (eds. McNickle, R. et al.) 113–125 (Doubleday, 1966).

  13. Neri, P., Luu, J. Y. & Levi, D. M. Meaningful interactions can enhance visual discrimination of human agents. Nat. Neurosci. 9, 1186–1192 (2006).

    CAS  Article  Google Scholar 

  14. Ding, X., Gao, Z. & Shen, M. Two equals one: two human actions during social interaction are grouped as one unit in working memory. Psychol. Sci. 28, 1311–1320 (2017).

    Article  Google Scholar 

  15. Hayduk, L. A. Personal space: an evaluative and orienting overview. Psychol. Bull. 85, 117–134 (1978).

    Article  Google Scholar 

  16. Sanchez-Vives, M. V. & Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005).

    CAS  Article  Google Scholar 

  17. Parsons, T. D., Gaggioli, A. & Riva, G. Virtual reality for research in social neuroscience. Brain Sci. 7, 1–21 (2017).

    CAS  Article  Google Scholar 

  18. Banakou, D., Groten, R. & Slater, M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl Acad. Sci. USA 110, 12846–12851 (2013).

    CAS  Article  Google Scholar 

  19. Claessens, P. M. & Wagemans, J. Perceptual grouping in Gabor lattices: proximity and alignment. Percept. Psychophys. 67, 1446–1459 (2005).

    Article  Google Scholar 

  20. Apfelbaum, E. P., Sommers, S. R. & Norton, M. I. Seeing race and seeming racist? Evaluating strategic colorblindness in social interaction. J. Pers. Soc. Psychol. 95, 918–932 (2008).

    Article  Google Scholar 

  21. Glick, P. & Fiske, S. T. in Revisioning Gender (eds Ferree, M. M. et al.) 365–398 (AltaMira, 1999).

  22. Reis, H. T., Maniaci, M. R., Caprariello, P. A., Eastwick, P. W. & Finkel, E. J. Familiarity does indeed promote attraction in live interaction. J. Pers. Soc. Psychol. 101, 557–570 (2011).

    Article  Google Scholar 

  23. Reis, H. T., Nezlek, J. & Wheeler, L. Physical attractiveness in social interaction. J. Pers. Soc. Psychol. 38, 604–617 (1980).

    Article  Google Scholar 

  24. Hayduk, L. A. The shape of personal space: an experimental investigation. Can. J. Behav. Sci. 13, 87–93 (1981).

    Article  Google Scholar 

  25. Argyle, M. Bodily Communication (Routledge, 2013).

  26. Hall, J. A., Coats, E. J. & LeBeau, L. S. Nonverbal behavior and the vertical dimension of social relations: a meta-analysis. Psychol. Bull. 131, 898–924 (2005).

    Article  Google Scholar 

  27. Vacharkulksemsuk, T. et al. Dominant, open nonverbal displays are attractive at zero-acquaintance. Proc. Natl Acad. Sci. USA 113, 4009–4014 (2016).

    CAS  Article  Google Scholar 

  28. Hall, E. T. A system for the notation of proxemic behavior. Am. Anthropol. 65, 1003–1026 (1963).

    Article  Google Scholar 

  29. Ellyson, S. L. & Dovidio, J. F. in Power, Dominance, and Nonverbal Behavior (eds. Ellyson, S. L. & Dovidio, J. F.) 1–27 (Springer, 1985).

  30. Hartuv, E. & Shamir, R. A clustering algorithm based on graph connectivity. Inform. Process. Lett. 76, 175–181 (2000).

    Article  Google Scholar 

  31. Chen, K., Loy, C. C., Gong, S. & Xiang, T. Feature mining for localised crowd counting. In Proc. British Machine Vision Conference 2012 1–11 (BMVC, 2012).

  32. Zen, G., Lepri, B., Ricci, E. & Lanz, O. Space speaks—towards socially and personality aware visual surveillance. In Proceedings of the 1st ACM International Workshop on Multimodal Pervasive Video Analysis 37–42 (ACM, 2010).

  33. Sekuler, A. B. Motion segregation from speed differences: evidence for nonlinear processing. Vis. Res. 30, 785–795 (1990).

    CAS  Article  Google Scholar 

  34. Feng, L. & Bhanu, B. Understanding dynamic social grouping behaviors of pedestrians. IEEE J. Sel. Top. Signa. 9, 317–329 (2015).

    Article  Google Scholar 

  35. Palomares, N. A. Toward a theory of goal detection in social interaction. Commun. Res. 35, 109–148 (2008).

    Article  Google Scholar 

  36. Watson, A. C., Nixon, C. L., Wilson, A. & Capage, L. Social interaction skills and theory of mind in young children. Dev. Psychol. 35, 386–391 (1999).

    CAS  Article  Google Scholar 

  37. Kelly, H. H. & Stahelski, A. J. Social interaction basis of cooperators’ and competitors’ beliefs about others. J. Pers. Soc. Psychol. 16, 66–91 (1970).

    Article  Google Scholar 

  38. Dovidio, J. F., Kawakami, K. & Gaertner, S. L. Implicit and explicit prejudice and interracial interaction. J. Pers. Soc. Psychol. 82, 62–68 (2002).

    Article  Google Scholar 

  39. Mondloch, C. J. et al. Face perception during early infancy. Psychol. Sci. 10, 419–422 (1999).

    Article  Google Scholar 

  40. Rosenthal, T. L. & Zimmerman, B. J. Social Learning and Cognition (Academic, 2014).

  41. Wellman, H. M. Making Minds: How Theory of Mind Develops (Oxford Univ. Press, 2014).

  42. Mehrabian, A. Inference of attitudes from the posture, orientation, and distance of a communicator. J. Consult. Clin. Psychol. 32, 296–308 (1968).

    CAS  Article  Google Scholar 

  43. Kersten, D., Mamassian, P. & Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

    Article  Google Scholar 

  44. Wellman, H. M., Cross, D. & Watson, J. Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev. 72, 655–684 (2001).

    CAS  Article  Google Scholar 

  45. Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    Article  Google Scholar 

  46. Helbing, D. & Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995).

    CAS  Article  Google Scholar 

  47. Lewin, K. Field Theory in Social Science: Selected Theoretical Papers. (Harpers, 1951).

  48. Gessaroli, E., Santelli, E., di Pellegrino, G. & Frassinetti, F. Personal space regulation in childhood autism spectrum disorders. PLoS ONE 8, 1–8 (2013).

    Article  Google Scholar 

  49. Mehran, R., Oyama, A. & Shah, M. Abnormal crowd behavior detection using social force model. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 935–942 (IEEE, 2009).

  50. Qin, Z. & Shelton, C. R. Social grouping for multi-target tracking and head pose estimation in video. IEEE T. Pattern Anal. 38, 2082–2095 (2016).

    Article  Google Scholar 

  51. Chen, X., Qin, Z., An, L. & Bhanu, B. Multi-person tracking by online learned grouping model with non-linear motion context. IEEE T. Circ. Syst. Vid. 26, 2226–2239 (2016).

    Article  Google Scholar 

  52. Jung, E. et al. The influence of human body orientation on distance judgments. Front. Psychol. 7, 1–9 (2016).

    Google Scholar 

  53. Vestner, T., Tipper, S. P., Hartley, T., Over, H. & Rueschemeyer, S.-A. Bound together: social binding leads to faster processing, spatial distortion, and enhanced memory of interacting partners. J. Exp. Psychol. Gen. (2019).

    Article  Google Scholar 

  54. Loy, C. C., Ke, C., Shaogang, G. & Xiang, T. in Modeling, Simulation and Visual Analysis of Crowds (eds. Ali, S. et al.) 347–382 (Springer, 2013).

  55. Setti, F., Lanz, O., Ferrario, R., Murino, V. & Cristani, M. Multi-scale f-formation discovery for group detection. In 2013 IEEE International Conference on Image Processing 3547–3551 (IEEE, 2013).

  56. Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  Article  Google Scholar 

  57. Kleiner, M. et al. What’s new in Psychtoolbox-3? Perception 36, ECVP Abstract Supplement (2007).

  58. Weibull., W. A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951).

    Google Scholar 

  59. Kumagai S., Hotta K. (2014) HLAC between cells of HOG feature for crowd counting. in Advances in Visual Computing ISVC 2014. Lecture Notes in Computer Science, vol 8887 (eds. Bebis, G. et al.) (Springer, Cham, 2014).

    Chapter  Google Scholar 

Download references


This research was supported by the National Natural Science Foundation of China (grant no. 31771209). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We are grateful for the helpful comments on our manuscript from Y. Zhou and L. Li and for technical support from X.-M. Wang, M.-C. Miao and H.-N. Wu.

Author information

Authors and Affiliations



S.-G.K., C.Z., M.H. and Q.L. designed the research. Q.L., M.H., C.Z. and Y.-F.H. collected experimental data. M.H., Q.L., C.Z. and Y.-F.H. derived the models and analysed data under the supervision of S.-G.K. S.-G.K., C.Z., Q.L. and M.H. wrote the paper.

Corresponding author

Correspondence to Shu-Guang Kuai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods 1 and 2, Supplementary Figs. 1−4, Supplementary Table 1, and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Han, M., Liang, Q. et al. A social interaction field model accurately identifies static and dynamic social groupings. Nat Hum Behav 3, 847–855 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing