Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous structure and dynamics in news diffusion among heterogeneous individuals

Abstract

Previous research has suggested that well-connected nodes in a network (commonly referred to as hubs) are better at spreading information than those with fewer connections (ordinary users). Here we investigate the roles of nodes with different numbers of connections by studying how people share news online. Quantitative analysis shows that users without many connections can sometimes spread news more effectively than well-connected users when the diffusion pattern has dendrite-like paths that reach far into the network, leading to a non-Gaussian distance distribution. When the hubs dominate, however, the distribution is Gaussian. Enhanced interactions among ordinary users are the key to the emergence of non-Gaussian characteristics. Finally, we introduce a message-passing model that reproduces the observed diffusion features. This model shows that patterns dominated by either hubs or ordinary users can be clearly demarcated by measuring the average number of forwards.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measuring the direction of information flow.
Fig. 2: Roles of the two types of users in real-world message spreading.
Fig. 3: Structure of news diffusion networks.
Fig. 4: Illustration of the message-passing model with heterogeneous influence strength.
Fig. 5: Reproducing the spreading patterns of news1, news2 and news3.
Fig. 6: Diffusion networks produced by the model.
Fig. 7: Parameter dependence of the diffusion network structure and diffusion patterns.

Similar content being viewed by others

Data availability

The headlines of all the news stories were collected from the hot news website of Sina News Center (http://news.sina.com.cn/hotnews/). We asked a commercial institution (https://www.shenjianshou.cn/) to help us collect data on Sina Weibo (http://weibo.com/). The downloaded data include all the posts for each piece of news (that is, their respective user interactions and the follower counts of the users) that are publicly available on Sina Weibo (users with privacy restrictions are not included in the dataset). The data that support the findings of this study are available at https://www.researchgate.net/publication/328783349_data_of_news.

Code availability

Code for the data analysis and model simulation is available at https://www.researchgate.net/publication/328783349_data_of_news. The code was run using Python 238 and Matlab R2015b39 for data analysis and Matlab R2015b for model simulation.

References

  1. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  2. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  CAS  Google Scholar 

  3. Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).

    Article  CAS  Google Scholar 

  4. Fowler, J. H. & Christakis, N. A. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. BMJ 337, a2338 (2008).

    Article  Google Scholar 

  5. Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

  6. Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).

    Article  CAS  Google Scholar 

  7. Lazarsfeld, P. F., Berelson, B. & Gaudet, H. The People’s Choice: How the Voter Makes Up His Mind in a Presidential Campaign (Columbia Univ. Press, 1948).

  8. Katz, E. & Lazarsfeld, P. F. Personal Influence (Free Press, 1955).

  9. Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science 337, 337–341 (2012).

    Article  CAS  Google Scholar 

  10. Wang, W., Tang, M., Shu, P. P. & Wang, Z. Dynamics of social contagions with heterogeneous adoption thresholds: crossover phenomena in phase transition. New J. Phys. 18, 013029 (2016).

    Article  Google Scholar 

  11. Lee, E. & Holme, P. Social contagion with degree-dependent thresholds. Phys. Rev. E 96, 012315 (2017).

    Article  Google Scholar 

  12. Yang, W., Cao, L., Wang, X. F. & Li, X. Consensus in a heterogeneous influence network. Phys. Rev. E 74, 037101 (2006).

    Article  Google Scholar 

  13. Lin, Y. T., Yang, H. X., Rong, Z. H. & Wang, B. H. Effects of heterogeneous influence of individuals on the global consensus. Int. J. Mod. Phys. C 21, 1011–1019 (2010).

    Article  Google Scholar 

  14. Xiong, F., Liu, Y. & Zhu, J. Competition of dynamic self-confidence and inhomogeneous individual influence in voter models. Entropy 15, 5292–5304 (2013).

    Article  Google Scholar 

  15. Liang, H. L., Yang, Y. P. & Wang, X. F. Opinion dynamics in networks with heterogeneous confidence and influence. Physica A 392, 2248–2256 (2013).

    Article  Google Scholar 

  16. Schmidt, A. L. et al. Anatomy of news consumption on Facebook. Proc. Natl Acad. Sci. USA 114, 3035–3039 (2017).

    Article  CAS  Google Scholar 

  17. Deffuant, G., Neau, D., Amblard, F. & Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst. 3, 87–98 (2000).

    Article  Google Scholar 

  18. Del Vicario, M. et al. The spreading of misinformation online. Proc. Natl Acad. Sci. USA 113, 554–559 (2016).

    Article  Google Scholar 

  19. Centola, D. & Macy, M. Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007).

    Article  Google Scholar 

  20. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    Article  CAS  Google Scholar 

  21. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl Acad. Sci. USA 99, 5766–5771 (2002).

    Article  CAS  Google Scholar 

  22. Onnela, J. P. & Reed-Tsochas, F. Spontaneous emergence of social influence in online systems. Proc. Natl Acad. Sci. USA 107, 18375–18380 (2010).

    Article  CAS  Google Scholar 

  23. Zheng, M. H., Lü, L. Y. & Zhao, M. Spreading in online social networks: the role of social reinforcement. Phys. Rev. E 88, 012818 (2013).

    Article  Google Scholar 

  24. Centola, D. How Behavior Spreads: the Science of Complex Contagions (Princeton Univ. Press, 2018).

  25. Romero, D. M., Meeder, B. & Kleinberg, J. Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In Proc. 20th International Conference on World Wide Web 695−704 (ACM, 2011).

  26. Borge-Holthoefer, J. et al. The dynamics of information-driven coordination phenomena: a transfer entropy analysis. Sci. Adv. 2, e1501158 (2016).

    Article  Google Scholar 

  27. Wang, W., Tang, M., Zhang, H. F. & Lai, Y. C. Dynamics of social contagions with memory of nonredundant information. Phys. Rev. E 92, 012820 (2015).

    Article  Google Scholar 

  28. Wang, W., Shu, P. P., Zhu, Y. X., Tang, M. & Zhang, Y. C. Dynamics of social contagions with limited contact capacity. Chaos 25, 103102 (2015).

    Article  Google Scholar 

  29. Pathria, R. K. Statistical Mechanics (Elsevier, 2005).

  30. Bouchaud, J.-P. & Georges, A. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990).

    Article  Google Scholar 

  31. Watts, D. J. & Dodds, P. S. Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007).

    Article  Google Scholar 

  32. Roch, C. H. The dual roots of opinion leadership. J. Polit. 67, 110–131 (2005).

    Article  Google Scholar 

  33. Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Networks 1, 215–239 (1979).

    Article  Google Scholar 

  34. Friedkin, N. E. Theoretical foundations for centrality measures. Am. J. Sociol. 96, 1478–1504 (1991).

    Article  Google Scholar 

  35. Bonacich, P. Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987).

    Article  Google Scholar 

  36. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  37. Kitsak, M. et al. Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010).

    Article  CAS  Google Scholar 

  38. Hetland, M. L. Beginning Python: from Novice to Professional 2nd ed. (Apress, 2008).

  39. Chapman S. J. Essentials of Matlab Programming 2nd ed., (Cengage Learning, 2008).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 11775034 and 11375093). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.W., Y.L. and J.X. contributed equally to all parts of the research and writing.

Corresponding authors

Correspondence to Xiaochen Wang or Jinghua Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods 1−8, Supplementary Notes 1−5, Supplementary Tables 1−6, Supplementary Figures 1−17 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lan, Y. & Xiao, J. Anomalous structure and dynamics in news diffusion among heterogeneous individuals. Nat Hum Behav 3, 709–718 (2019). https://doi.org/10.1038/s41562-019-0605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-019-0605-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing