Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex

Abstract

The functional organization of human high-level visual cortex, such as the face- and place-selective regions, is strikingly consistent across individuals. An unanswered question in neuroscience concerns which dimensions of visual information constrain the development and topography of this shared brain organization. To answer this question, we used functional magnetic resonance imaging to scan a unique group of adults who, as children, had extensive visual experience with Pokémon. These animal-like, pixelated characters are dissimilar from other ecological categories, such as faces and places, along critical dimensions (foveal bias, rectilinearity, size, animacy). We show not only that adults who have Pokémon experience demonstrate distinct distributed cortical responses to Pokémon, but also that the experienced retinal eccentricity during childhood can predict the locus of Pokémon responses in adulthood. These data demonstrate that inherent functional representations in the visual cortex—retinal eccentricity—combined with consistent viewing behaviour of particular stimuli during childhood result in a shared functional topography in adulthood.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Localizer stimuli and behavioural naming performance.
Fig. 2: Experienced participants demonstrate a consistent and distinct representation for Pokémon compared to novices.
Fig. 3: Distinct cortical representation for Pokémon in experienced participants.
Fig. 4: Different visual feature statistics predict different cortical locations for Pokémon.
Fig. 5: Average contrast maps for Pokémon; and anatomical localization reveals lateral VTC responses in experienced subjects.
Fig. 6: pRF modelling reveals that the Pokémon-selective cortex is foveally biased.
Fig. 7: Places from the Pokémon game elicit typical place-selective activations in experienced participants.
Fig. 8: Response properties of the VTC vary with childhood experience with Pokémon.

Data availability

The data that support the findings of this study are available from the corresponding author on request. There are no restrictions on the sharing of the data, apart from allowing sufficient time to curate and send them on request.

Code availability

Code used to preprocess and analyse MRI data in this experiment can be found at Vistasoft (https://github.com/vistalab/vistasoft). Remaining code used to further process the data in this experiment can be found at https://www.gomezneuro.com/code.

References

  1. 1.

    Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J. et al.) 549–586 (MIT Press, 1982).

  2. 2.

    DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends Cogn. Sci. 11, 333–341 (2007).

    PubMed  Google Scholar 

  3. 3.

    Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).

    CAS  PubMed  Google Scholar 

  4. 4.

    Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    CAS  PubMed  Google Scholar 

  5. 5.

    Hanson, S. J., Matsuka, T. & Haxby, J. V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? NeuroImage 23, 156–166 (2004).

    PubMed  Google Scholar 

  6. 6.

    Grill-Spector, K., Weiner, K. S., Kay, K. N. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3, 167–196 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  Google Scholar 

  8. 8.

    Aguirre, G. K., Zarahn, E. & D’Esposito, M. An area within human ventral cortex sensitive to ‘building’ stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    CAS  PubMed  Google Scholar 

  9. 9.

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb. Cortex 17, 1604–1611 (2007).

    PubMed  Google Scholar 

  11. 11.

    McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

    PubMed  Google Scholar 

  12. 12.

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

    PubMed  Google Scholar 

  13. 13.

    Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Megevand, P. et al. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J. Neurosci. 34, 5399–5405 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113, 8162–8167 (2016).

    CAS  PubMed  Google Scholar 

  16. 16.

    Grill-Spector, K., Weiner, K. S., Kay, K. N. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci 3, 167–196 (2016).

    Google Scholar 

  17. 17.

    Weiner, K. S. & Grill-Spector, K. Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol. Res. 77, 74–97 (2013).

    PubMed  Google Scholar 

  18. 18.

    Weiner, K. S. et al. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage 170, 373–384 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Google Scholar 

  20. 20.

    Golarai, G., Liberman, A. & Grill-Spector, K. Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cereb. Cortex 27, bhv314 (2015).

    PubMed Central  Google Scholar 

  21. 21.

    Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

    CAS  PubMed  Google Scholar 

  22. 22.

    Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    CAS  PubMed  Google Scholar 

  23. 23.

    Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    CAS  Google Scholar 

  25. 25.

    Nasr, S., Echavarria, C. E. & Tootell, R. B. Thinking outside the box: rectilinear shapes selectively activate scene-selective cortex. J. Neurosci. 34, 6721–6735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Konkle, T. & Caramazza, A. Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33, 10235–10242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    de Heering, A. & Maurer, D. Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Dev. Psychobiol. 56, 96–108 (2014).

    PubMed  Google Scholar 

  28. 28.

    Gandhi, T. K., Singh, A. K., Swami, P., Ganesh, S. & Sinha, P. Emergence of categorical face perception after extended early-onset blindness. Proc. Natl Acad. Sci. USA 114, 6139–6143 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    McKyton, A., Ben-Zion, I., Doron, R. & Zohary, E. The limits of shape recognition following late emergence from blindness. Curr. Biol. 25, 2373–2378 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

    CAS  PubMed  Google Scholar 

  31. 31.

    Gomez, J., Natu, V., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9, 788 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776–1783 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sha, L. et al. The animacy continuum in the human ventral vision pathway. J. Cogn. Neurosci. 27, 665–678 (2015).

    PubMed  Google Scholar 

  35. 35.

    Wiggett, A. J., Pritchard, I. C. & Downing, P. E. Animate and inanimate objects in human visual cortex: evidence for task-independent category effects. Neuropsychologia 47, 3111–3117 (2009).

    PubMed  Google Scholar 

  36. 36.

    Warrington, E. K. & Shallice, T. Category specific semantic impairments. Brain 107, 829–854 (1984).

    PubMed  Google Scholar 

  37. 37.

    Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    CAS  PubMed  Google Scholar 

  38. 38.

    Konkle, T. & Oliva, A. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74, 1114–1124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Osher, D. E. et al. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26, 1668–1683 (2016).

    PubMed  Google Scholar 

  42. 42.

    Shatz, C. J. Emergence of order in visual system development. J. Physiol. 90, 141–150 (1996).

    CAS  Google Scholar 

  43. 43.

    Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone, M. S. Behavioral and anatomical consequences of early versus late symbol training in macaques. Neuron 73, 608–619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    CAS  PubMed  Google Scholar 

  45. 45.

    Wiesel, T. N. & Hubel, D. H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    CAS  PubMed  Google Scholar 

  46. 46.

    Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Shatz, C. J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

    CAS  PubMed  Google Scholar 

  48. 48.

    Espinosa, J. S. & Stryker, M. P. Development and plasticity of the primary visual cortex. Neuron 75, 230–249 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    CAS  PubMed  Google Scholar 

  51. 51.

    James, T. W. & James, K. H. Expert individuation of objects increases activation in the fusiform face area of children. NeuroImage 67, 182–192 (2013).

    PubMed  Google Scholar 

  52. 52.

    Nordt, M., Gomez, J., Natu, V. S. & Jeska, B. Learning to read increases the informativeness of distributed ventral temporal responses. Preprint at bioRxiv https://doi.org/10.1101/257055 (2018).

  53. 53.

    Harel, A., Gilaie-Dotan, S., Malach, R. & Bentin, S. Top-down engagement modulates the neural expressions of visual expertise. Cereb. Cortex 20, 2304–2318 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    McGugin, R. W., Newton, A. T., Gore, J. C. & Gauthier, I. Robust expertise effects in right FFA. Neuropsychologia 63, 135–144 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    CAS  PubMed  Google Scholar 

  56. 56.

    Connolly, A. C. et al. The representation of biological classes in the human brain. J. Neurosci. 32, 2608–2618 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).

    CAS  PubMed  Google Scholar 

  58. 58.

    Wandell, B. A. & Winawer, J. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19, 349–357 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Dumoulin, S. O. & Wandell, B. A. Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660 (2008).

    PubMed  Google Scholar 

  60. 60.

    Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification 2nd edn (Wiley, 2001).

  61. 61.

    Weiner, K. S. & Grill-Spector, K. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52, 1559–1573 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    McGugin, R. W., Gatenby, J. C., Gore, J. C. & Gauthier, I. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc. Natl Acad. Sci. USA 109, 17063–17068 (2012).

    CAS  PubMed  Google Scholar 

  63. 63.

    Op de Beeck, H. P., Baker, C. I., DiCarlo, J. J. & Kanwisher, N. G. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26, 13025–13036 (2006).

    Google Scholar 

  64. 64.

    Martens, F., Bulthé, J., van Vliet, C. & Op de Beeck, H. Domain-general and domain-specific neural changes underlying visual expertise. NeuroImage 169, 80–93 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Jiang, X. et al. Categorization training results in shape- and category-selective human neural plasticity. Neuron 53, 891–903 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Clarke, A., Pell, P. J., Ranganath, C. & Tyler, L. K. Learning warps object representations in the ventral temporal cortex. J. Cogn. Neurosci. 28, 1010–1023 (2016).

    PubMed  Google Scholar 

  67. 67.

    Natu, V. S. et al. Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jiang, X., Chevillet, M. A., Rauschecker, J. P. & Riesenhuber, M. Training humans to categorize monkey calls: auditory feature- and category-selective neural tuning changes. Neuron 98, 405–416 (2018).

    CAS  PubMed  Google Scholar 

  69. 69.

    Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. The development of cortical sensitivity to visual word forms. J. Cogn. Neurosci. 23, 2387–2399 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Dehaene-Lambertz, G., Monzalvo, K. & Dehaene, S. The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol. 16, e2004103 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat. Neurosci. 2, 568–573 (1999).

    CAS  PubMed  Google Scholar 

  72. 72.

    Op de Beeck, H. P., Deutsch, J. A., Vanduffel, W., Kanwisher, N. G. & DiCarlo, J. J. A stable topography of selectivity for unfamiliar shape classes in monkey inferior temporal cortex. Cereb. Cortex 18, 1676–1694 (2008).

    Google Scholar 

  73. 73.

    Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).

    CAS  PubMed  Google Scholar 

  74. 74.

    Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10, 512–522 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10, 15–30 (2007).

    Google Scholar 

  76. 76.

    Peelen, M. V., Glaser, B., Vuilleumier, P. & Eliez, S. Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev. Sci. 12, 16–25 (2009).

    Google Scholar 

  77. 77.

    Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

    PubMed  Google Scholar 

  78. 78.

    Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355, 68–71 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Weiner, K. S. & Zilles, K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 83, 48–62 (2016).

    PubMed  Google Scholar 

  80. 80.

    Hasson, U., Harel, M., Levy, I. & Malach, R. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041 (2003).

    CAS  PubMed  Google Scholar 

  81. 81.

    Lewis, T. L. & Maurer, D. Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev. Psychobiol. 46, 163–183 (2005).

    PubMed  Google Scholar 

  82. 82.

    Blais, C., Jack, R. E., Scheepers, C., Fiset, D. & Caldara, R. Culture shapes how we look at faces. PLoS One 3, e3022 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Biscaldi, M., Fischer, B. & Aiple, F. Saccadic eye movements of dyslexic and normal reading children. Perception 23, 45–64 (1994).

    CAS  PubMed  Google Scholar 

  84. 84.

    Olulade, O. A., Napoliello, E. M. & Eden, G. F. Abnormal visual motion processing is not a cause of dyslexia. Neuron 79, 180–190 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Dalton, K. M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8, 519–526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal processing capacity in high-level visual cortex is domain specific. J. Neurosci. 35, 12412–12424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Willenbockel, V. et al. Controlling low-level image properties: the SHINE toolbox. Behav. Res. Methods 42, 671–684 (2010).

    PubMed  Google Scholar 

  88. 88.

    Kay, K. N., Winawer, J., Mezer, A. & Wandell, B. A. Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

    CAS  PubMed  Google Scholar 

  90. 90.

    Feinberg, D. A. & Setsompop, K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J. Magn. Reson. 229, 90–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Rosenke, M. et al. A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage 170, 257–270 (2018).

    PubMed  Google Scholar 

  92. 92.

    Bababekova, Y., Rosenfield, M., Hue, J. E. & Huang, R. R. Font size and viewing distance of handheld smart phones. Optom. Vis. Sci. 88, 795–797 (2011).

    PubMed  Google Scholar 

  93. 93.

    McKone, E. Holistic processing for faces operates over a wide range of sizes but is strongest at identification rather than conversational distances. Vision Res. 49, 268–283 (2009).

    PubMed  Google Scholar 

  94. 94.

    Weiner, K. S. et al. The face-processing network is resilient to focal resection of human visual cortex. J. Neurosci. 36, 8425–8440 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Gomez, J. et al. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85, 216–227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Furl, N., Garrido, L., Dolan, R. J., Driver, J. & Duchaine, B. Fusiform gyrus face selectivity relates to individual differences in facial recognition ability. J. Cogn. Neurosci. 23, 1723–1740 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ruth L. Kirschstein National Research Service Award grant no. F31EY027201 to J.G., NIH grant nos. 1ROI1EY02231801A1 and 2RO1EY022318-06 to K.G.-S. and a seed grant awarded to J.G. by the Stanford University Center for Cognitive and Neurobiological Imaging. We thank A. Urai for her Matlab plotting toolbox. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

J.G. and M.B. designed and conducted the study. J.G. analysed the data. K.G.-S. oversaw the study and data analyses. J.G. and K.G.-S. wrote the manuscript.

Corresponding author

Correspondence to Jesse Gomez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figs. 1−9.

41562_2019_592_MOESM2_ESM.pdf

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez, J., Barnett, M. & Grill-Spector, K. Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 3, 611–624 (2019). https://doi.org/10.1038/s41562-019-0592-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing