Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Process-based framework for precise neuromodulation

An Article was published on 05 June 2019

A Publisher Correction to this article was published on 30 April 2019

This article has been updated

Abstract

Functional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into brain-guided psychiatric interventions. However, its clinical implementation is restricted by unstandardized methodological practices, by clinical definitions that are poorly grounded in neurobiology, and by lack of a unifying framework that dictates experimental choices. Here we put forward a new framework, termed ‘process-based NF’, which endorses a process-oriented characterization of mental dysfunctions to form precise and effective psychiatric treatments. This framework relies on targeting specific dysfunctional mental processes by modifying their underlying neural mechanisms and on applying process-specific contextual feedback interfaces. Finally, process-based NF offers designs and a control condition that address the methodological shortcomings of current approaches, thus paving the way for a precise and personalized neuromodulation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Process-based NF framework.
Fig. 2: NF control conditions from a process-based perspective.
Fig. 3: Process-based experimental designs.

Change history

  • 05 June 2019

    The original and corrected figures, and the Editorial Summary, are shown in the accompanying Publisher Correction.

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 30 April 2019

    The original and corrected text is shown in the accompanying Publisher Correction.

References

  1. Sitaram, R. et al. Nat. Rev. Neurosci. 18, 86–100 (2017).

    CAS  PubMed  Google Scholar 

  2. Casey, B. J. et al. Nat. Rev. Neurosci. 14, 810–814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Freedman, R. et al. Am. J. Psychiatry 170, 1–5 (2013).

    PubMed  Google Scholar 

  4. Sulzer, J. et al. Neuroimage 76, 386–399 (2013).

    CAS  PubMed  Google Scholar 

  5. Fovet, T., Jardri, R. & Linden, D. Curr. Pharm. Des. 21, 3384–3394 (2015).

    CAS  PubMed  Google Scholar 

  6. Thibault, R. T., MacPherson, A., Lifshitz, M., Roth, R. R. & Raz, A. Neuroimage 172, 786–807 (2017).

    PubMed  Google Scholar 

  7. Cuthbert, B. N. & Insel, T. R. BMC Med. 11, 126 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Kaiser, T. & Feng, G. Nat. Med. 21, 979–988 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Menon, V. Trends Cogn. Sci. 15, 483–506 (2011).

    PubMed  Google Scholar 

  10. Barrett, L. F. & Satpute, A. B. Curr. Opin. Neurobiol. 23, 361–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berridge, K. C. & Kringelbach, M. L. Neuron 86, 646–664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Insel, T. R. & Cuthbert, B. N. Science 348, 499–500 (2015).

    CAS  PubMed  Google Scholar 

  13. Detke, M. J., Lu, Y., Goldstein, D. J., Hayes, J. R. & Demitrack, M. A. J. Clin. Psychiatry 63, 308–315 (2002).

    CAS  PubMed  Google Scholar 

  14. Hypericum Depression Trial Study Group. J. Am. Med. Assoc. 287, 1807–1814 (2002).

    Google Scholar 

  15. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed.) (American Psychiatric Publishing, 2013).

  16. Pizzagalli, D. A. Annu. Rev. Clin. Psychol. 10, 393–423 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Nestler, E. J. & Carlezon, W. A. Jr. Biol. Psychiatry 59, 1151–1159 (2006).

    CAS  PubMed  Google Scholar 

  18. Whitton, A. E., Treadway, M. T. & Pizzagalli, D. A. Curr. Opin. Psychiatry 28, 7–12 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Snaith, R. P. et al. Br. J. Psychiatry 167, 99–103 (1995).

    CAS  PubMed  Google Scholar 

  20. Knutson, B., Westdorp, A., Kaiser, E. & Hommer, D. Neuroimage 12, 20–27 (2000).

    CAS  PubMed  Google Scholar 

  21. Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y. & Gotlib, I. H. Biol. Psychiatry 63, 686–692 (2008).

    PubMed  Google Scholar 

  22. Lutz, K. & Widmer, M. Neurosci. Neuroecon. 3, 33–35 (2014).

    Google Scholar 

  23. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (WHO, 1992).

  24. Kringelbach, M. L. & Berridge, K. C. Trends Cogn. Sci. 13, 479–487 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Salamone, J. D., Yohn, S. E., López-Cruz, L., San Miguel, N. & Correa, M. Brain 139, 1325–1347 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Nusslock, R. & Alloy, L. B. J. Affect. Disord. 216, 3–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. Neuron 84, 262–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goodkind, M. et al. JAMA. Psychiatry 72, 305–315 (2015).

    Google Scholar 

  29. Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Biol. Psychiatry 85, 379–388 (2018).

    PubMed  Google Scholar 

  30. Etkin, A., Büchel, C. & Gross, J. J. Nat. Rev. Neurosci. 16, 693–700 (2015).

    CAS  PubMed  Google Scholar 

  31. Schachar, R., Mota, V. L., Logan, G. D., Tannock, R. & Klim, P. J. Abnorm. Child Psychol. 28, 227–235 (2000).

    CAS  PubMed  Google Scholar 

  32. Verdejo-García, A., Lawrence, A. J. & Clark, L. Neurosci. Biobehav. Rev. 32, 777–810 (2008).

    PubMed  Google Scholar 

  33. Hampshire, A. & Sharp, D. J. Trends Cogn. Sci. 19, 445–452 (2015).

    PubMed  Google Scholar 

  34. Wager, T. D. et al. N. Engl. J. Med. 368, 1388–1397 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. López-Solà, M. et al. Pain 158, 34–47 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Rosenberg, M. D. et al. Nat. Neurosci. 19, 165–171 (2016).

    CAS  PubMed  Google Scholar 

  37. Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. PLoS Biol. 13, e1002180 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Sarkheil, P. et al. Behav. Brain Res. 281, 326–332 (2015).

    PubMed  Google Scholar 

  39. Paret, C. et al. Soc. Cogn. Affect. Neurosci. 11, 952–960 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Nicholson, A. A. et al. Hum. Brain Mapp. 38, 541–560 (2017).

    PubMed  Google Scholar 

  41. Cohen Kadosh, K. et al. Neuroimage 125, 616–626 (2016).

    PubMed  Google Scholar 

  42. Megumi, F., Yamashita, A., Kawato, M. & Imamizu, H. Front. Hum. Neurosci. 9, 160 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Ramot, M., Grossman, S., Friedman, D. & Malach, R. Proc. Natl Acad. Sci. USA 113, E2413–E2420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamada, T. et al. Int. J. Neuropsychopharmacol. 20, 769–781 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Ramot, M. et al. eLife 6, e28974 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Koush, Y. et al. Neuroimage 81, 422–430 (2013).

    PubMed  Google Scholar 

  47. Koush, Y. et al. Cereb. Cortex 27, 1193–1202 (2017).

    PubMed  Google Scholar 

  48. Jacob, Y., Or-Borichev, A., Jackont, G., Lubianiker, N. & Hendler, T. Network based fMRI neuro-feedback for emotion regulation; proof-of-concept. in International Workshop on Complex Networks and their Applications 1250–1260 (Springer, 2017).

  49. Haynes, J. D. Neuron 87, 257–270 (2015).

    CAS  PubMed  Google Scholar 

  50. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Trends Cogn. Sci. 10, 424–430 (2006).

    PubMed  Google Scholar 

  51. LaConte, S. M. Neuroimage 56, 440–454 (2011).

    PubMed  Google Scholar 

  52. LaConte, S. M., Peltier, S. J. & Hu, X. P. Hum. Brain Mapp. 28, 1033–1044 (2007).

    PubMed  Google Scholar 

  53. Shibata, K. Science 334, 1413–1414 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Watanabe, T., Sasaki, Y., Shibata, K. & Kawato, M. Trends Cogn. Sci. 21, 997–1010 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Cortese, A., Amano, K., Koizumi, A., Kawato, M. & Lau, H. Nat. Commun. 7, 13669 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koizumi, A. et al. Nat. Hum. Behav. 1, 0006 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Taschereau-Dumouchel, V. et al. Proc. Natl Acad. Sci. USA 115, 3470–3475 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fair, D. A. et al. PLOS Comput. Biol. 5, e1000381 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Cohen Kadosh, K., Cohen Kadosh, R., Dick, F. & Johnson, M. H. Cereb. Cortex 21, 1389–1394 (2011).

    PubMed  Google Scholar 

  60. Johnson, M. H., Grossmann, T. & Cohen Kadosh, K. Dev. Psychol. 45, 151–159 (2009).

    PubMed  Google Scholar 

  61. Cohen-Kadosh, K. & Johnson, M. H. Trends Cogn. Sci. 11, 367–369 (2007).

    PubMed  Google Scholar 

  62. Caria, A., Sitaram, R. & Birbaumer, N. Neuroscientist 18, 487–501 (2012).

    PubMed  Google Scholar 

  63. Phan, K. L. et al. Neuroreport 15, 527–532 (2004).

    PubMed  Google Scholar 

  64. Emmert, K. et al. Neuroimage Clin. 14, 97–104 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Ninaus, M. et al. Front. Hum. Neurosci. 7, 914 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Meir-Hasson, Y. et al. PLoS One 11, e0154968 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Dehghani-Arani, F., Rostami, R. & Nadali, H. Appl. Psychophysiol. Biofeedback 38, 133–141 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Buyukturkoglu, K. et al. PLoS One 10, e0135872 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Paret, C. et al. Front. Behav. Neurosci. 8, 299 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Paret, C. et al. Neuroimage 125, 182–188 (2016).

    PubMed  Google Scholar 

  71. Sokunbi, M. O., Linden, D. E., Habes, I., Johnston, S. & Ihssen, N. Front. Behav. Neurosci. 8, 392 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Ihssen, N., Sokunbi, M. O., Lawrence, A. D., Lawrence, N. S. & Linden, D. E. J. Brain Imaging Behav. 11, 915–924 (2017).

    PubMed  Google Scholar 

  73. Young, K. D. et al. Am. J. Psychiatry 174, 748–755 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Kober, S. E., Witte, M., Ninaus, M., Neuper, C. & Wood, G. Front. Hum. Neurosci. 7, 695 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Marxen, M. et al. Front. Hum. Neurosci. 10, 183 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Mueller, C. et al. J. Neurosci. Methods 209, 290–298 (2012).

    PubMed  Google Scholar 

  77. Mishra, J., Anguera, J. A. & Gazzaley, A. Neuron 90, 214–218 (2016).

    CAS  PubMed  Google Scholar 

  78. Cavazza, M. et al. Integrating virtual agents in BCI neurofeedback systems. in Proceedings of the 2014 Virtual Reality International Conference 25 (ACM, 2014).

  79. Mathiak, K. A. et al. Front. Behav. Neurosci. 9, 136 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Bohil, C. J., Alicea, B. & Biocca, F. A. Nat. Rev. Neurosci. 12, 752–762 (2011).

    CAS  PubMed  Google Scholar 

  81. Morina, N., Ijntema, H., Meyerbröker, K. & Emmelkamp, P. M. Behav. Res. Ther. 74, 18–24 (2015).

    PubMed  Google Scholar 

  82. Opriş, D. et al. Depress. Anxiety 29, 85–93 (2012).

    PubMed  Google Scholar 

  83. Rizzo, A. & Shilling, R. Eur. J. Psychotraumatol. 8, 1414560 (2017).

  84. Wiederhold, B. K. et al. IEEE Trans. Inf. Technol. Biomed. 6, 218–223 (2002).

    PubMed  Google Scholar 

  85. Vourvopoulos, A., Cardona, J.E.M. & Badia, S.B.i. Optimizing motor imagery neurofeedback through the use of multimodal immersive virtual reality and motor priming. in 2015 International Conference on Virtual Rehabilitation (ICVR) 228–234 (2015).

  86. Othmer, S. & Kaiser, D. Cyberpsychol. Behav. 3, 415–420 (2000).

    Google Scholar 

  87. Benedetti, F. Neuron 84, 623–637 (2014).

    CAS  PubMed  Google Scholar 

  88. Goldman, R. I., Stern, J. M., Engel, J. Jr. & Cohen, M. S. Neuroreport 13, 2487–2492 (2002).

    PubMed  PubMed Central  Google Scholar 

  89. Emmert, K. et al. Neuroimage 124, 806–812 (2016). Pt A.

    PubMed  Google Scholar 

  90. Paret, C. et al. Hum. Brain Mapp. 39, 3018–3031 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Harmelech, T., Friedman, D. & Malach, R. J. Neurosci. 35, 2588–2595 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Sulzer, J. et al. Neuroimage 83, 817–825 (2013).

    CAS  PubMed  Google Scholar 

  93. Greer, S. M., Trujillo, A. J., Glover, G. H. & Knutson, B. Neuroimage 96, 237–244 (2014).

    PubMed  Google Scholar 

  94. Alegria, A. A. et al. Hum. Brain Mapp. 38, 3190–3209 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Doya, K. Curr. Opin. Neurobiol. 10, 732–739 (2000).

    CAS  PubMed  Google Scholar 

  96. Corbetta, M. & Shulman, G. L. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  PubMed  Google Scholar 

  97. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. Science 306, 443–447 (2004).

    CAS  PubMed  Google Scholar 

  98. Schabus, M. Brain 140, e64 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Emmert, K. et al. Brain Imaging Behav. 11, 712–721 (2017).

    PubMed  Google Scholar 

  100. Scheinost, D. et al. Front. Behav. Neurosci. 8, 338 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Weber, E., Köberl, A., Frank, S. & Doppelmayr, M. Appl. Psychophysiol. Biofeedback 36, 37–45 (2011).

    CAS  PubMed  Google Scholar 

  102. Ninaus, M. et al. Biol. Psychol. 110, 126–133 (2015).

    CAS  PubMed  Google Scholar 

  103. Halder, S. et al. Front. Hum. Neurosci. 7, 105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kirsch, M., Gruber, I., Ruf, M., Kiefer, F. & Kirsch, P. Addict. Biol. 21, 982–992 (2016).

    PubMed  Google Scholar 

  105. MacInnes, J. J., Dickerson, K. C., Chen, N. K. & Adcock, R. A. Neuron 89, 1331–1342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Linden, D. E. J. et al. PLoS One 7, e38115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sherwood, M. S., Kane, J. H., Weisend, M. P. & Parker, J. G. Neuroimage 124, 214–223 (2016). Pt A.

    PubMed  Google Scholar 

  108. Grech, R. et al. J. Neuroeng. Rehabil. 5, 25 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Congedo, M., Lubar, J. F. & Joffe, D. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 387–397 (2004).

    PubMed  Google Scholar 

  110. Yao, J. & Dewald, J. P. Neuroimage 25, 369–382 (2005).

    PubMed  Google Scholar 

  111. Valdes-Sosa, P. A. et al. Hum. Brain Mapp. 30, 2701–2721 (2009).

    PubMed  Google Scholar 

  112. Laufs, H., Daunizeau, J., Carmichael, D. W. & Kleinschmidt, A. Neuroimage 40, 515–528 (2008).

    CAS  PubMed  Google Scholar 

  113. Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A. & Hendler, T. PLoS One 3, e3984 (2008).

    PubMed  PubMed Central  Google Scholar 

  114. de Munck, J. C. et al. Neuroimage 35, 1142–1151 (2007).

    PubMed  Google Scholar 

  115. Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L. & Corbetta, M. Proc. Natl Acad. Sci. USA 104, 13170–13175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Meir-Hasson, Y., Kinreich, S., Podlipsky, I., Hendler, T. & Intrator, N. Neuroimage 102, 128–141 (2014).

    PubMed  Google Scholar 

  117. Keynan, J. N. et al. Biol. Psychiatry 80, 490–496 (2016).

    PubMed  Google Scholar 

  118. Cohen, A. et al. Front. Robot. AI 3, 52 (2016).

    Google Scholar 

  119. Keynan, J. N. et al. Nat. Hum. Behav. 3, 52–73 (2018).

    Google Scholar 

  120. Goldway, N. et al. Neuroimage 186, 758–770 (2018).

    PubMed  Google Scholar 

  121. Klovatch-Podlipsky, I., Or-Borichev, A., Sar-El, R., Lubianiker, N. & Hendler, T. Front. Hum. Neurosci. https://doi.org/10.3389/conf.fnhum.2016.220.00018 (2016).

  122. Holmes, E. A. & Mathews, A. Clin. Psychol. Rev. 30, 349–362 (2010).

    PubMed  Google Scholar 

  123. Sepulveda, P. et al. Hum. Brain Mapp. 37, 3153–3171 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Scharnowski, F. et al. Biol. Psychol. 108, 85–97 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Johnson, K. A. et al. J. Neuroimaging 22, 58–66 (2012).

    PubMed  Google Scholar 

  126. Hellrung, L. et al. Neuroimage 166, 198–208 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

K.C.K., T.H., and D.E.J.L. are members of the BRAINTRAIN consortium, a Collaborative Project supported by the European Commission under the Health Cooperation Work Programme of the 7th Framework Programme, under Grant Agreement no. 602186. T.H. thanks the following grants: US Department of Defense grant agreement no. W81XWH-11–2–0008; Mafat, IDF, I-Core cognitive studies grant agreement no. 693210; the Israeli Ministry of Science, Technology and Space (Grant No. 3-11170); Kamin Program of the Israel Innovation Authority (Grant No. 59143); and the Sagol Network for Brain Research. N.L. thanks JOY Ventures Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors thank E. Gregorian for her contribution to the graphic illustration depicted in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Talma Hendler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lubianiker, N., Goldway, N., Fruchtman-Steinbok, T. et al. Process-based framework for precise neuromodulation. Nat Hum Behav 3, 436–445 (2019). https://doi.org/10.1038/s41562-019-0573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-019-0573-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing