Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A potential game approach to modelling evolution in a connected society

Abstract

When studying human behaviour, it is important to understand not just how individuals interact, but also interactions at the level of communities and populations. Most previous modelling of networks has focused on interactions between individual agents. Here we provide a modelling framework to study the evolution of behaviour in connected populations, by regarding subpopulations as the basic unit of interaction and focusing on the population-level connection structure. We find that when the underlying game played by individuals is a potential game, utilizing such a structure greatly simplifies analysis. In addition, according to known general results on the convergence of evolution dynamics to Nash equilibria in a potential game, our formulation provides a tractable model on behavioural dynamics in social networks that needs only conventional techniques from evolutionary game theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Canonical examples of connected populations.
Fig. 2: Transition from a polarized medium-run equilibrium to an integrated long-run equilibrium through the long-run dynamic.
Fig. 3: Simulation of the combined best-response dynamic in the bilingual game from the medium-run equilibrium \(x_{{\rm{Ao}}}^{{\rm{Lo}}} = m^{{\rm{Lo}}}\), \(x_{{\rm{AB}}}^{{\rm{LR}}} = m^{{\rm{LR}}}\) and \(x_{\rm{oB}}^{{\rm{oR}}} = m^{{\rm{oR}}}\), with \((m^{{\rm{Lo}}},m^{{\rm{LR}}},m^{{\rm{oR}}}) = (0.4,0.4,0.2)\).

Similar content being viewed by others

Data availability

The simulation results used to produce the figures in this paper and the Supplementary Discussion are available from https://github.com/zusaiEGT/ConnectedEvol.

Code availability

The MATLAB (R2017) code for this simulation is available from https://github.com/zusaiEGT/ConnectedEvol.

References

  1. Jackson, M. O. Social and Economic Networks (Princeton Univ. Press, 2008).

  2. Levin, S. A. Dispersion and population interactions. Am. Nat. 108, 207–288 (1974).

    Article  Google Scholar 

  3. Levin, S. A. & Paine, R. Disturbance, patch formation, and community structure. Proc. Natl Acad. Sci. USA 71, 2744–2747 (1974).

    Article  CAS  Google Scholar 

  4. Chesson, P. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theor. Popul. Biol. 28, 263–287 (1985).

    Article  Google Scholar 

  5. Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).

    Article  Google Scholar 

  6. Tainaka, K. & Itoh, Y. Patch dynamics based on Prisoner’s Dilemma game: superiority of golden rule. Ecol. Modell. 150, 295–307 (2002).

    Article  Google Scholar 

  7. Hanski, I. & Gaggiotti, O. Ecology, Genetics, and Evolution of Metapopulations (Elsevier, 2004).

  8. Hanski, I. & Gilpin, M. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, 1997).

  9. Colizzaa, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467 (2008).

    Article  Google Scholar 

  10. Bauer, M. & Frey, E. Delayed adaptation in stochastic metapopulation models. EPL 122, 68002 (2018).

    Article  Google Scholar 

  11. Bauer, M. & Frey, E. Delays in fitness adjustment can lead to coexistence of hierarchically interacting species. Phys. Rev. Lett. 121, 268101 (2018).

    Article  Google Scholar 

  12. Bauer, M. & Frey, E. Multiple scales in metapopulations of public goods producers. Phys. Rev. E 97, 042307 (2018).

    Article  Google Scholar 

  13. Nagatani, T., Tainaka, K. & Ichinose, G. Metapopulation model of rock–scissors–paper game with subpopulation-specific victory rates stabilized by heterogeneity. J. Theor. Biol. 458, 103–110 (2018).

    Article  Google Scholar 

  14. Nagatani, T., Ichinose, G. & Tainaka, K. Epidemics of random walkers in metapopulation model for complete, cycle, and star graphs. J. Theor. Biol. 450, 66–75 (2018).

    Article  Google Scholar 

  15. Nagatani, T., Ichinose, G. & Tainaka, K. Metapopulation model for rock–paper–scissors game: mutation affects paradoxical impacts. J. Theor. Biol. 450, 22–29 (2018).

    Article  Google Scholar 

  16. Nagatani, T., Ichinose, G. & Tainaka, K. Heterogeneous network promotes species coexistence: metapopulation model for rock–paper–scissors game. Sci. Rep. 8, 7094 (2018).

    Article  Google Scholar 

  17. Becker, F., Wienand, K., Lechner, M., Frey, E. & Jung, H. Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci. Rep. 8, 4093 (2018).

    Article  Google Scholar 

  18. Limdi, A., Pérez-Escudero, A., Li, A. & Gore, J. Asymmetric migration decreases stability but increases resilience in a heterogeneous metapopulation. Nat. Commun. 9, 2969 (2018).

    Article  Google Scholar 

  19. Peaudecerf, F. J. et al. Microbial mutualism at a distance: the role of geometry in diffusive exchanges. Phys. Rev. E 97, 022411 (2018).

    Article  CAS  Google Scholar 

  20. Tarnita, C. E., Antal, T., Ohtsuki, H. & Nowak, M. A. Evolutionary dynamics in set structured populations. Proc. Natl Acad. Sci. USA 106, 8601–8604 (2009).

    Article  CAS  Google Scholar 

  21. Boyd, R. & Richerson, P. J. Voting with your feet: payoff biased migration and the evolution of group beneficial behavior. J. Theor. Biol. 257, 331–339 (2009).

    Article  Google Scholar 

  22. Weidenholzer, S. Coordination games and local interactions: a survey of the game theoretic literature. Games 1, 551–585 (2010).

    Article  Google Scholar 

  23. Bowles, S. & Gintis, H. The moral economy of communities: structured populations and the evolution of pro-social norms. Evol. Hum. Behav. 98, 3–25 (1998).

    Article  Google Scholar 

  24. Débarre, F., Hauert, C. & Doebeli, M. Social evolution in structured populations. Nat. Commun. 5, 3409 (2014).

    Article  Google Scholar 

  25. Lehmann, L. & Keller, L. The evolution of cooperation and altruism—a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006).

    Article  CAS  Google Scholar 

  26. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M. & Moreno, Y. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997 (2013).

    Article  Google Scholar 

  27. Zusai, D. & Lu, F. Polarization and segregation through conformity pressure and voluntary migration: simulation analysis of co-evolutionary dynamics.Games 8, 51 (2017).

    Article  Google Scholar 

  28. Rand, D. & Nowak, M. A. Human cooperation. Trends Cogn. Sci. 17, 413–425 (2013).

    Article  Google Scholar 

  29. Alger, I. & Weibull, J. A generalization of Hamilton’s rule—love others how much? J. Theor. Biol. 299, 42–54 (2012).

    Article  Google Scholar 

  30. Alger, I. & Weibull, J. Homo moralis—preference evolution under incomplete information and assortative matching. Econometrica 81, 2269–2302 (2013).

    Article  Google Scholar 

  31. Alger, I. & Weibull, J. Evolution and Kantian morality. Games Econ. Behav. 98, 56–67 (2016).

    Article  Google Scholar 

  32. Newton, J. The preferences of homo moralis are unstable under evolving assortativity. Int. J. Game Theory 46, 583–589 (2017).

    Article  Google Scholar 

  33. Monderer, D. & Shapley, L. S. Potential games. Games Econ. Behav. 14, 124–143 (1996).

    Article  Google Scholar 

  34. Sandholm, W. H. Potential games with continuous player sets. J. Econ. Theory 97, 81–108 (2001).

    Article  Google Scholar 

  35. Sandholm, W. H. Population Games and Evolutionary Dynamics (MIT Press, 2010).

  36. Bramoullé, Y., Kranton, R. & D’Amours, M. Strategic interaction and networks. Am. Econ. Rev. 104, 898–930 (2014).

    Article  Google Scholar 

  37. Szabó, G. & Borsos, I. Evolutionary potential games on lattices. Phys. Rep. 624, 1–60 (2016).

    Article  Google Scholar 

  38. Staudigl, M. Potential games in volatile environments. Games Econ. Behav. 72, 271–287 (2011).

    Article  Google Scholar 

  39. Staudigl, M. Co-evolutionary dynamics and Bayesian interaction games. Int. J. Game Theory 42, 179–210 (2012).

    Article  Google Scholar 

  40. Benaïm, M. & Weibull, J. W. Deterministic approximation of stochastic evolution in games. Econometrica 71, 873–903 (2003).

    Article  Google Scholar 

  41. Benaïm, M., Hofbauer, J. & Sorin, S. Stochastic approximations and differential inclusions. SIAM J. Control Optim. 44, 328–348 (2005).

    Article  Google Scholar 

  42. Roth, G. & Sandholm, W. H. Stochastic approximations with constant step size and differential inclusions. SIAM J. Control Optim. 51, 525–555 (2013).

    Article  Google Scholar 

  43. Hofbauer, J. Stability for the Best Response Dynamics (Univ. Vienna, 1995).

  44. Gilboa, I. & Matsui, A. Social stability and equilibrium. Econometrica 59, 859–867 (1991).

    Article  Google Scholar 

  45. Smith, M. J. The stability of a dynamic model of traffic assignment: an application of a method of Lyapunov. Transport. Sci. 18, 245–252 (1984).

    Article  Google Scholar 

  46. Schlag, K. H. Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. J. Econ. Theory 78, 130–156 (1998).

    Article  Google Scholar 

  47. McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).

    Article  Google Scholar 

  48. Ruef, M., Aldrihc, H. E. & Carter, N. M. The structure of founding teams: homophily, strong ties, and isolation among U.S. entrepreneurs. Am. Sociol. Rev. 68, 195–222 (2003).

    Article  Google Scholar 

  49. Morris, S. Contagion. Rev. Econ. Stud. 67, 57–78 (2000).

    Article  Google Scholar 

  50. Currarini, S., Jackson, M. & Pin, P. An economic model of friendship: homophily, minorities, and segregation. Econometrica 77, 1003–1045 (2009).

    Article  Google Scholar 

  51. Currarini, S., Jackson, M. O. & Pin, P. Identifying the roles of race-based choice and chance in high school friendship network formation. Proc. Natl Acad. Sci. USA 107, 4857–4861 (2010).

    Article  CAS  Google Scholar 

  52. Golub, B. & Jackson, M. O. Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2, 112–149 (2010).

    Article  Google Scholar 

  53. Golub, B. & Jackson, M. O. Does homophily predict consensus times? Testing a model of network structure via a dynamic process. Rev. Netw. Econ. 11, 1–28 (2012).

    Article  Google Scholar 

  54. Golub, B. & Jackson, M. O. How homophily affects the speed of learning and best response dynamics. Q. J. Econ. 127, 1287–1338 (2012).

    Article  Google Scholar 

  55. Golub, B. & Jackson, M. O. Network structure and the speed of learning: measuring homophily based on its consequences. Ann. Econ. Stat. 107/108, 33–48 (2012).

    Article  Google Scholar 

  56. Jackson, M. O. & López-Pintado, D. Diffusion and contagion in networks with heterogeneous agents and homophily. Netw. Sci. 1, 49–67 (2013).

    Article  Google Scholar 

  57. Bramoulle, Y., Currarini, S., Jackson, M. O., Rogers, B. W. & Pin, P. Homophily and long-run integration in social networks. J. Econ. Theory 147, 1754–1786 (2012).

    Article  Google Scholar 

  58. Bramoullé, Y. Anti-coordination and social interactions. Games Econ. Behav. 58, 30–49 (2007).

    Article  Google Scholar 

  59. Farrell, J. & Saloner, G. Converters, compatibility, and the control of interfaces. J. Ind. Econ. 40, 9 (1992).

    Article  Google Scholar 

  60. Matsuyama, K., Kiyotaki, N. & Matsui, A. Toward a theory of international currency. Rev. Econ. Stud. 60, 283–307 (1993).

    Article  Google Scholar 

  61. Zusai, D. Gains in evolutionary dynamics: a unifying approach to dynamic stability of contractive games and ESS. Preprint at arXiv https://arxiv.org/abs/1805.04898 (2018).

Download references

Acknowledgements

The authors thank I. Obara, R. Sawa and the participants of presentations at the University of Tsukuba, Stony Brook International Conference on Game Theory, East Asian Game Theory Conference and Southern Economic Association annual meetings for helpful suggestions and comments. D.Z. is grateful to the University of Oregon for hospitality during part of this work. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and D.Z. designed the framework of the research, contributed to the design and mathematical analysis of the examples, and jointly wrote the paper. J.W. contributed to surveying the literature and exploring the implications. D.Z. contributed to mathematical formulation of the general model, and wrote the MATLAB code.

Corresponding author

Correspondence to Dai Zusai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–4, and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zusai, D. A potential game approach to modelling evolution in a connected society. Nat Hum Behav 3, 604–610 (2019). https://doi.org/10.1038/s41562-019-0571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-019-0571-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing